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Abstract
In this paper we consider a vector integer programming prob-

lem with Pareto principle of optimality for the case where partial
criteria belong to the class of separable piecewise linear functions.
The limit level of the initial data’s perturbations in the space
of vector criteria parameters with norms l1 and l∞, preserved
Pareto optimality of the solutions is investigated. Formulas of
the quasistability radius and of strong quasistability radius of
the considered problem are given as corollaries.
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1 Introduction

Because of the extensive application of discrete optimization models in
economics, management and design during past decades, much atten-
tion of many specialists has been given to the study of diverse aspects
of stability and other questions relating to parametric and postopti-
mal analisis of scalar (singlecriterion) and vector (multicriterion) dis-
crete optimization problems. Under stability of a problem in the wide
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sense we understand the existence of a neighborhood in the space of
the problem parameters such that any ”perturbed” problem with pa-
rameters from this neighborhood possesses a certain kind of invariance
with respect to the initial problem. Under the stability of solution we
understand the property of solution to keep corresponding efficiency
(optimality) under mentioned perturbations.

In this paper we consider a vector integer programming problem
consisted in finding Pareto set. We suppose that all partial criteria
of the problem are separable piecewise linear functions with fixed sur-
charges. The stability of the problem defined as the semicontinuity by
Hausdorff of the optimal mapping that assigns the Pareto function of
choice, was investigated earlier [1]. Lower and upper bounds of stability
radius of the problem in the l∞ metrics were obtained.

The purpose of this work is to obtain the limit level of perturbation
in the space of vector criteria parameters with l1 and l∞ metrics pre-
serving Pareto optimality (efficiency) of a given solution. Formulas of
the quasistability and strong quasistability radii of the problem were
also obtained.

2 Base definitions and properties

Let m be the number of criteria, n be the number of variables,
C = [cij ] ∈ Rm×n, D = [dij ] ∈ Rm×n, X be a finite subset of
Zn

+ = {x ∈ Zn : xj ≥ 0, j ∈ Nn}, Nn = {1, 2, . . . , n}, where |X| > 1.
We define the vector criterion on the set of (feasible) solutions X

f(x) = (f1(x), f2(x), . . . , fm(x)) → min
x∈X

,

The components (partial criteria) are piecewise linear discontinuous
functions with fixed surcharges

fi(x) =
n∑

j=1

cij(xj), i ∈ Nm,
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where

cij(xj) =

{
cijxj + dij , if xj > 0,

0, if xj = 0.

For any integer vector x ∈ X we define a boolean vector x̃ ∈ En =
{0, 1}n with the components

x̃j =

{
1, if xj > 0,

0, if xj = 0.

Then partial criteria are linear functions:

fi(x) = Cix + Dix̃, i ∈ Nm,

where x = (x1, x2, . . . , xn)T , x̃ = (x̃1, x̃2, . . . , x̃n)T , and the subscript
at the matrix points to the corresponding row of the matrix. For ex-
ample, Ci = (ci1, ci2, . . . , cin).

Changing the elements of the pair (C, D), we obtain different vector
criteria. Therefore the pair (C, D) can be used for indexing a vector
criterion. Its partial criteria are denoted by fi(x, Ci, Di).

Further under the vector (m-criteria) problem Zm(C, D) with fixed
surcharges we understand the problem of finding of the Pareto set (the
set of efficient solutions)

Pm(C, D) = {x ∈ X : Pm(x,C, D) = ∅},

where

Pm(x,C, D) = {x′ ∈ X : g(x, x′, C, D) ≤ 0(m), g(x, x′, C, D) 6= 0(m)},

g(x, x′, C, D) = (g1, g2, . . . , gm),

gi = gi(x, x′, Ci, Di) = fi(x′, Ci, Di)− fi(x,Ci, Di), i ∈ Nm,

0(m) = (0, 0, . . . , 0) ∈ Rm.

While the set X is finite, the Pareto set Pm(C, D) is nonempty for
any matrices C,D ∈ Rm×n and for any natural number m ≥ 1.

Further we need the following evident statements.
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Property 1. Let x ∈ X, x′ ∈ Pm(x,C, D). Then for any index
i ∈ Nm the following inequality is valid

gi(x, x′, Ci, Di) ≤ 0.

Property 2. The solution x is efficient if for any solution x′ 6= x
there exists an index i ∈ Nm, such that

gi(x, x′, Ci, Di) > 0.

Note, that the problem in the scalar case (m = 1) can be understood
as the problem of piecewise linear concave programming with separable
discontinuous function [2, 3]. It is obvious that in another particular
case, where D is the null matrix, the problem Zm(C,D) changes into
the m-criteria integer linear programming problem, different stability
types of which were investigated in [4].

For any natural number p we define two metrics l1 and l∞ in the
space Rp , i.e. under metrics of a vector y = (y1, y2, . . . , yp) we under-
stand correspondingly the numbers

||y||1 =
p∑

i=1

|yi|, ||y||∞ = max{|yi| : i ∈ Np}.

Under the norm of a matrix we understand the norm of the vector
composed from its elements.

The following properties are obvious for any index i ∈ Nm.

Property 3. gi(x, x′, Ci, Di) ≤ (||Ci||1 + ||Di||1)||x− x′||∞.

Property 4. gi(x, x′, Ci, Di) ≤ ||Ci||∞||x−x′||1 + ||Di||∞||x̃− x̃′||1.
Let ε > 0. According to the selected metric (l1 or l∞) in the

parameter space Rm×n × Rm×n we perturb the elements of the pair
(C, D) by addition this pair with a pairs (C ′, D′) from the set

Ω1(ε) = {(C ′, D′) ∈ Rm×n ×Rm×n : ||C ′||1 + ||D′||1 < ε},
if the metric is l1, and from the set

Ω∞(ε) = {(C ′, D′) ∈ Rm×n ×Rm×n : ||C ′||∞ < ε, ||D′||∞ < ε},
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if the metric is l∞.
The problem Zm(C +C ′, D+D′), obtained from Zm(C, D) by such

addition, is called perturbed. The pair (C ′, D′) is called perturbing.
By analogy with [5–8], under stability radius of the efficient solution

x ∈ Pm(C, D) of the problem Zm(C, D) we understand the number

ρm(x,C, D) =
{

supΞ, if Ξ 6= ∅,
0, otherwise,

where

Ξ = {ε > 0 : ∀ (C ′, D′) ∈ Ωk(ε) (x ∈ Pm(C + C ′, D + D′))}.

Here k = 1 or k = ∞ according to the above mentioned notation.
Hence, the stability radius of the efficient solution x ∈ Pm(C, D) is

the maximum level of perturbations of the vector criterion parameters
in space Rm×n (with one of the norms), which keep the efficiency of
the solution x.

3 Lemmas

By definition, put

g+
i (x, x′, Ci, Di) = max{0, gi(x, x′, Ci, Di)}.

Lemma 1. If the inequality

gi(x, x′, Ci + C ′
i, Di + D′

i) ≤ 0, (1)

holds for any index i ∈ Nm, then

g+
i (x, x′, Ci, Di) ≤ (||C ′

i||1 + ||D′
i||1)||x− x′||∞. (2)

Actually, when gi(x, x′, Ci, Di) ≤ 0 inequality (2) is evident. If
gi(x, x′, Ci, Di) > 0, then taking into account condition (1), linearity of
the function gi(x, x′, Ci, Di) and property 3 we deduce

g+
i (x, x′, Ci, Di) = gi(x, x′, Ci, Di) =
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= gi(x, x′, Ci + C ′
i, Di + D′

i)− gi(x, x′, C ′
i, D

′
i) ≤

≤ −gi(x, x′, C ′
i, D

′
i) ≤ (||C ′

i||1 + ||D′
i||1)||x− x′||∞.

Lemma 1 is proved.

Lemma 2. Let x, x′ ∈ X, x 6= x′. For any ϕ, satisfying the in-
equalities

0 < ϕ||x− x′||∞ ≤
∑

i∈Nm

g+
i (x, x′, Ci, Di), (3)

and for any perturbing pair (C ′, D′) ∈ Ω1(ϕ) the following ratio is valid

x′ 6∈ Pm(x,C + C ′, D + D′).

Proof. Suppose the opposite, i.e. there exists perturbing pair
(C ′, D′) ∈ Ω1(ϕ), such that x′ ∈ Pm(x, C+C ′, D+D′). Then according
to property 1 for any index i ∈ Nm the inequality (1) is true. Therefore
based on lemma 1 the inequality (2) is true. Hence, using inclusion
(C ′, D′) ∈ Ω1(ϕ), we conclude

∑

i∈Nm

g+
i (x, x′, Ci, Di) ≤

∑

i∈Nm

(||C ′
i||1 + ||D′

i||1)||x− x′||∞ ≤

≤ (||C ′||1 + ||D′||1)||x− x′||∞ < ϕ||x− x′||∞,

that contradicts to condition (3).
Lemma 2 is proved.

Lemma 3. Let x, x′ ∈ X, x 6= x′. For any number ε such that

ε >
∑

i∈Nm

ηi,

where
ηi||x− x′||∞ > g+

i (x, x′, Ci, Di), i ∈ Nm, (4)

there exists perturbing pair (C ′, D′) ∈ Ω1(ε), such that x′ ∈ Pm(x,C +
C ′, D + D′).
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Proof. At first note, that any number ε, under conditions of
the lemma, is positive since all the numbers ηi, i ∈ Nm. Obviously
that for proving our lemma it suffices to show the perturbing pair
(C ′, D′) ∈ Ω1(ε), such that following inequalities

gi(x, x′, Ci + C ′
i, Di + D′

i) < 0, i ∈ Nm (5)

are fulfilled. Let

q = arg max{|xj − x′j | : j ∈ Nn}

and define the elements of the perturbing pair (C ′, D′) by formulas

c′ij =
{

ηi · sign(xq − x′q), if i ∈ Nm, j = q,

0 otherwise,

d′ij = 0, i ∈ Nm, j ∈ Nn.

It is easy to see that (C ′, D′) ∈ Ω1(ε). By virtue of construction of the
pair (C ′, D′) the equalities

gi(x, x′, C ′
i, D

′
i) = −ηi||x− x′||∞, i ∈ Nm

are true. Thus, taking into account the linearity of gi(x, x′, Ci, Di) and
ratios (4), we make sure of correctness of inequality (5):

gi(x, x′, Ci + C ′
i, Di + D′

i) = gi(x, x′, Ci, Di) + gi(x, x′, C ′
i, D

′
i) =

= gi(x, x′, Ci, Di)− ηi||x− x′||∞ ≤
≤ g+

i (x, x′, Ci, Di)− ηi||x− x′||∞ < 0, i ∈ Nm.

Lemma 3 is proved.

Lemma 4. If for any index i ∈ Nm the inequality

gi(x, x′, Ci, Di) > max{||C ′
i||∞, ||D′

i||∞}(||x− x′||1 + ||x̃− x̃′||1),

holds, then
gi(x, x′, Ci + C ′

i, Di + D′
i) > 0.
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Proof, from property 4, combining it with the linearity of the func-
tion gi(x, x′, Ci, Di), and condition of the lemma we obtain

gi(x, x′, Ci + C ′
i, Di + D′

i) = gi(x, x′, Ci, Di) + gi(x, x′, C ′
i, D

′
i) ≥

≥ gi(x, x′, Ci, Di)− ||C ′
i||∞||x− x′||1 − ||D′

i||∞||x̃− x̃′||1 ≥
≥ gi(x, x′, Ci, Di)−max{||C ′

i||∞, ||D′
i||∞}(||x− x′||1 + ||x̃− x̃′||1) > 0.

Lemma 4 is proved.

Lemma 5. Let x, x′ ∈ X, x 6= x′. For any number ε such that

ε(||x−x′||1+||x̃−x̃′||1) > max{gi(x, x′, Ci, Di) : i ∈ Nm}, ε > 0 (6)

there exists a perturbing pair (C ′, D′) ∈ Ω∞(ε), such that x′ ∈
Pm(x,C + C ′, D + D′).

Proof. Obviously that for proving our lemma it suffices to show
the perturbing pair (C ′, D′) ∈ Ω∞(ε), such that following inequalities

gi(x, x′, Ci + C ′
i, Di + D′

i) < 0, i ∈ Nm (7)

are true.
By virtue of (6) there exists a number α, such that

0 < α < ε,

α(||x− x′||1 + ||x̃− x̃′||1) > max{gi(x, x′, Ci, Di) : i ∈ Nm}. (8)

We assign the elements of the perturbing pair (C ′, D′) ∈ Ω∞(ε) by the
rule:

c′ij = α · sign(xj − x′j), d′ij = α · sign(x̃j − x̃′j), i ∈ Nm, j ∈ Nn.

Then taking into account the linearity of the function gi(x, x′, Ci, Di),
combining it with evident inequalities

gi(x, x′, C ′
i, D

′
i) = −α(||x− x′||1 + ||x̃− x̃′||1), i ∈ Nm,

and inequality (8), we obtain:

gi(x, x′, Ci + C ′
i, Di + D′

i) = gi(x, x′, Ci, Di) + gi(x, x′, C ′
i, D

′
i) =

= gi(x, x′, Ci, Di)− α(||x− x′||1 + ||x̃− x̃′||1) < 0, i ∈ Nm.

Lemma 5 is proved.
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4 Formulas of the stability radius of an efficient
solution

Theorem. For any number m ≥ 1 the stability radius ρm(x,C, D)
of any efficient solution x ∈ Pm(C, D) of the problem Zm(C,D) is
expressed by the formula

ρm(x,C, D) =

= min
x′∈X\{x}





∑
i∈Nm

g+
i (x, x′, Ci, Di)
||x− x′||∞ , if the metric is l1,

max
i∈Nm

gi(x, x′, Ci, Di)
||x− x′||1 + ||x̃− x̃′||1 , if the metric is l∞.

(9)

Proof. It is evident that in the right part of the equation (9) we
have non-negative numbers.

1. The case of l1 metric. First let us prove the inequality
ρm(x,C, D) ≥ ϕ1. We see that it suffices to consider the case ϕ1 > 0.
By definition of the number ϕ1, for any solution x′ 6= x inequalities
(3) are correct. Hence based on lemma 2 for any perturbing pair
(C ′, D′) ∈ Ω1(ϕ1) solution x′ 6∈ Pm(x,C + C ′, D + D′). Therefore
the set Pm(x,C + C ′, D + D′) = ∅. Thus for any perturbing pair
(C ′, D′) ∈ Ω1(ϕ1) solution x ∈ Pm(C + C ′, D + D′). Consequently
ρm(x,C, D) ≥ ϕ1.

Now we show that ρm(x,C, D) ≤ ϕ1. Let ε > ϕ1. According to
definition of the number ϕ1 there exists a solution x∗ 6= x, such that

ϕ1||x− x∗||∞ =
∑

i∈Nm

g+
i (x, x∗, Ci, Di).

Therefore there exists such positive numbers ηi that

ηi||x− x∗||∞ > g+
i (x, x∗, Ci, Di), i ∈ Nm,

ε >
∑

i∈Nm

ηi > ϕ1.

Hence by lemma 3 there exists a perturbing pair (C ′, D′) ∈ Ω1(ε) such
that x∗ ∈ Pm(x,C +C ′, D +D′), i.e. the solution x 6∈ Pm(C +C ′, D +
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D′). Hence for any number ε > ϕ1 the inequality ρm(x, C, D) < ε
holds. Thus ρm(x,C, D) ≤ ϕ1.

2. The case of l∞ metric. First prove the inequality ρm(x,C, D) ≥
ϕ∞. Without loss of generality it can be assumed that ϕ∞ > 0. By
definition of value ϕ∞ for any perturbing pair (C ′, D′) ∈ Ω∞(ϕ∞) and
any solution x′ 6= x there exists index i ∈ Nm, such that

gi(x, x′, Ci, Di)
||x− x′||1 + ||x̃− x̃′||1 ≥ ϕ∞ > max{||C ′||∞, ||D′||∞}.

From this according to lemma 4 we have

gi(x, x′, Ci + C ′
i, Di + D′

i) > 0.

Thus, taking into account property 2, solution x belongs to the Pareto
set of the perturbed problem Zm(C + C ′, D + D′). Consequently
ρm(x,C, D) ≥ ϕ∞.

Further we prove that ρm(x,C, D) ≤ ϕ∞. According to the defini-
tion of number ϕ∞ there exists a solution x∗ 6= x, such that

ϕ∞(||x− x∗||1 + ||x̃− x̃∗||1) = max{gi(x, x∗, Ci, Di) : i ∈ Nm}.
Then for ε > ϕ∞ inequality (6) is fulfilled. Hence based on lemma
5 there exists a perturbing pair (C ′, D′) ∈ Ω∞(ε), such that x∗ ∈
Pm(x,C + C ′, D + D′), i.e. the solution x 6∈ Pm(C + C ′, D + D′).
Thereby it is proved that for any number ε > ϕ∞ the inequality
ρm(x,C, D) < ε is valid. Hence ρm(x,C, D) ≤ ϕ∞.

Theorem is proved.

5 Corollaries

Under the quasistability of a vector problem of discrete optimization
we usually understand [4, 9–12] the Hausdorff lower semicontinuity of
the set-valued (point-to-set) mapping determining the Pareto choice
function. In other words, the problem Zm(C, D) is called quasistabil-
ity if there exists a number ε > 0, such that for any perturbing pair
(C ′, D′) ∈ Ω(ε) the following conclusion is valid

Pm(C, D) ⊆ Pm(C + C ′, D + D′).
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Therefore quasistability radius of the problem is determined as follows:

ρm
1 (C, D) =

{
supΦ1, if Φ1 6= ∅,
0, otherwise,

where

Φ1 = {ε > 0 : ∀ (C ′, D′) ∈ Ωk(ε) (Pm(C,D) ⊆ Pm(C+C ′, D+D′))},

Ωk(ε) is the above mentioned set of perturbing pairs (C ′, D′). In other
words, quasistability radius of the problem Zm(C,D) is the maximum
level of perturbations of matrices C and D in the space of parameters
of the vector criterion with the corresponding norm such that Pareto
set can only expand.

Directly from the theorem we obtain

Corollary 1. For any m ≥ 1 for quasistability radius ρm
1 (C, D) of

the problem Zm(C, D) the following formula is valid

ρm
1 (C, D) =

= min
x∈P m(C,D)

min
x′∈X\{x}





∑
i∈Nm

g+
i (x, x′, Ci, Di)
||x− x′||∞ , if themetric is l1,

max
i∈Nm

gi(x, x′, Ci, Di)
||x− x′||1 + ||x̃− x̃′||1 , if themetric is l∞.

Therefore next corollary is true.

Corollary 2. For any m ≥ 1 the problem Zm(C,D) is quasistable
if and only if Pm(C, D) = Sm(C,D).

Here Sm(C, D) is the traditional Smale set, i.e. the set of strictly
efficient solutions of the problem Zm(C,D), which is a subset of the
Pareto set and defined in the following way [13]:

Sm(C,D) = {x ∈ X : Sm(x,C,D) = ∅},

where

Sm(x,C, D) = {x′ ∈ X\{x} : g(x, x′, C, D) ≤ 0(m)}.
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When we relax the demand of preservation of all the Pareto set
in definition of the quasistability of problem Zm(C,D), we get the
concept of the strong quasistability. This type of the stability means
the existence of neighborhood of vector criterion parameters such that
although disappearance of the old effective solutions is possible but
there exists at least one pareto-optimal solution of initial problem, that
preserves its efficiency under small perturbations of parameters. In
other words there exists at least one stable Pareto optimum. Thus
under the strong quasistability radius of the problem Zm(C, D) we
understand the number

ρm
2 (C, D) =

{
supΦ2, if Φ2 6= ∅,
0, otherwise,

where

Φ2 = {ε > 0 : ∃ x ∈ Pm(C,D) ∀ (C ′, D′) ∈ Ωk(ε)

(x ∈ Pm(C + C ′, D + D′))}.
Directly from the theorem we obtain

Corollary 3. For strong quasistability radius ρm
2 (C, D), m ≥ 1 of

the problem Zm(C, D) the following formula is valid

ρm
2 (C, D) =

= max
x∈P m(C,D)

min
x′∈X\{x}





∑
i∈Nm

g+
i (x, x′, Ci, Di)
||x− x′||∞ , if themetric is l1,

max
i∈Nm

gi(x, x′, Ci, Di)
||x− x′||1 + ||x̃− x̃′||1 , if themetric is l∞.

Hence we obtain

Corollary 4. For any m ≥ 1 the problem Zm(C, D) is strongly
quasistable problem if and only if Sm(C,D) 6= ∅.

The next two statements follow from corollaries 3 and 4.
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Corollary 5. Any quasistable problem Zm(C,D),m ≥ 1, is
strongly quasistable.

Corollary 6. For any scalar problem Z1(C,D), C ∈ Rn, D ∈ Rn

the next statements are equivalent:
a) Z1(C,D) is quasistable,
b) Z1(C, D) is strongly quasistable,
c) Z1(C, D) has a unique optimal solution.

6 Example

Let us give a simple example which illustrates stated results. Let us
consider a two-criterion problem. X = {x1, x2, x3, x4, x5}, where

x1 = (1, 0, 0, 0)T , x2 = (0, 1, 0, 0)T , x3 = (0, 0, 1, 0)T ,

x4 = (2, 3, 1, 1)T , x5 = (2, 4, 1, 1)T ,

the matrices C and D are

C =
[

2 5 5 3
7 1 1 2

]
, D =

[
1 3 3 0
2 1 1 4

]
.

Then
f(x1) = (3, 9), f(x2) = f(x3) = (8, 2),

f(x4) = (34, 28), f(x5) = (39, 29),

Pareto set consists of three solutions x1, x2, x3, Smale set contains
just one solution x1. Therefore the problem is quasistable (in virtue of
corollary 2), but is not strongly quasistable (in virtue of corollary 4).
By the theorem it is easy to calculate

ρ2(x1, C, D) =
{

5, if the metric is l1,
5
4 , if the metric is l∞,

(10)

ρ2(x2, C, D) = ρ2(x3, C, D) = 0 for any metric (l1 or l∞).
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Hence in virtue of corollaries 1 and 3 the quasistability and strong
quasistability radii take on the forms correspondingly

ρ2
1(C, D) = 0 for any metric (l1 or l∞),

ρ2
2(C,D) =

{
5, if the metric is l1,
5
4 , if the metric is l∞.

Now consider two new another variants of the problem changing
just the set of the admissible solutions X.

Variant 1. Let X ′ = X \ {x3} = {x1, x2, x4, x5}. Then the Pareto
set {x1, x2} and the Smale set are congruent. Therefore the problem is
quasistable and strong quasistable simultaneously. Using formula (9),
we make sure that the value ρ2(x1, C,D) is defined by formula (10)
too.

ρ2(x2, C, D) =
{

7, if the metric is l1,
7
4 , if the metric is l∞.

Taking into account corollaries 1 and 3, we get the quasistability and
strong quasistability radii:

ρ2
1(C,D) =

{
5, if the metric is l1,
5
4 , if the metric is l∞,

ρ2
2(C,D) =

{
7, if the metric is l1,
7
4 , if the metric is l∞.

Variant 2. Let X ′′ = X \ {x1} = {x2, x3, x4, x5}. Then {x2, x3} is
the Pareto set. The Smale set is empty. By the formula (9) we have

ρ2(x2, C,D) = ρ2(x3, C, D) = 0 for any metric.

Therefore in virtue of corollaries 2 and 4, the problem is neither qua-
sistable nor strongly quasistable.
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