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Abstract

The game-theoretic formulation of the multiobjective multi-
commodity flow problem is considered. The dynamic version of
this problem is studied and an algorithm for its solving, based on
the concept of multiobjective games, is proposed.
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1 Introduction

In this paper we consider the game-theoretic formulation of the mul-
tiobjective multicommodity flow problem. This problem consists of
shipping a given set of commodities from their respective sources to
their sinks through a network in order to optimize different criteria so
that the total flow going through each edge does not exceed its ca-
pacity. The network is a collection of locations with directed edges
identifying feasible transportation operations. The planning problem
is to determine the amount to transport on each link in order to move
all the cargo respecting fixed criteria.

If we associate to each commodity a player, we can regard this prob-
lem as a game problem, where players interact between them and the
choices of one player influence the choices of the others. Each player
has a vector utility function, components of which are such factors as
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transportation cost, speed of transit time, quality of service and others.
Each player seeks to optimize his own utility function in response to
the actions of the other players and all the players perform this opti-
mization simultaneously and at the same time players are interested to
preserve Nash optimality principle when they interact between them.
The game theory fits perfectly in the realm of such a problem, and an
equilibrium or stable operating point of the system has to be found.
We study the dynamic version of the multiobjective multicommodity
flow problem and use the concept of multiobjective games from [1, 2].

2 The game-theoretic approach and some
preliminary results

In order to study our multiobjective multicommodity flow problem we
will use the game-theoretic concept from [1, 2].

The multiobjective game with p players is denoted by G = (X1, X2,
. . . , Xp, F 1, F 2, . . . , F p), where Xi is a set of strategies of player i, i =
1, p, and F i = (F 1

i , F 2
i , . . . , F r

i ) is a vector payoff function of player i,
defined on set of situations X = X1 ×X2 × · · · ×Xp:

F i : X1 ×X2 × · · · ×Xp → Rr, i = 1, p.

Each component F k
i of F i corresponds to a partial criterion of player

i and represents a real function defined on set of situations X = X1 ×
X2 × · · · ×Xp:

F k
i : X1 ×X2 × · · · ×Xp → R1, k = 1, r, i = 1, p.

We call the solution of the multiobjective game G = (X1, X2, . . . ,
Xp, F 1, F 2, . . . , F p) the Pareto-Nash equilibrium and define it in the
following way.

Definition. The situation x∗ = (x∗1, x
∗
2, . . . , x

∗
p) ∈ X is called

Pareto-Nash equilibrium for the multiobjective game G = (X1, X2,
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. . . , Xp, F 1, F 2, . . . , F p) if for every i ∈ {1, 2, . . . , p} the strategy x∗i
represents Pareto solution for the following multicriterion problem:

max
xi∈Xi

→ f
i
x∗(xi) = (f i1

x∗(xi), f i2
x∗(xi), . . . , f ir

x∗(xi)), i = 1, p,

where

f ik
x∗(xi) = F k

i (x∗1, x
∗
2, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
p), k = 1, r.

This definition generalizes well-known Nash equilibria notion for
classical noncooperative games (single objective games) and Pareto op-
timum for multicriterion problems. If r = 1, then G becomes classical
noncooperative game, where x∗ represents Nash equilibria solution; in
the case p = 1 the game G becomes Pareto multicriterion problem,
where x∗ is Pareto solution.

Further we formulate the main theorem which represents an exten-
sion of the Nash theorem for our multiobjective version of the game.

Theorem 1. Let G = (X1, X2, . . . , Xp, F 1, F 2, . . . , F p) be a multi-
objective game, where X1, X2, . . . , Xp are convex compact sets and
F 1, F 2, . . . , F p represent continuous vector payoff functions. More-
over, let us assume that for every i ∈ {1, 2, . . . , p} each component
F k

i (x1, x2, . . . , xi−1, xi, xi+1, . . . , xp), k ∈ {1, 2, . . . , r}, of the vector
function F i(x1, x2, . . . , xi−1, xi, xi+1, . . . , xp) represents a concave func-
tion with respect to xi on Xi for fixed x1, x2, . . . , xi−1, xi+1, . . . , xp.
Then for multiobjective game G = (X1, X2, . . . , Xp, F 1, F 2, . . . , F p)
there exists Pareto-Nash equilibria situation x∗ = (x∗1, x

∗
2, . . . , x

∗
p) ∈

X1 ×X2 × · · · ×Xp.

The proof of Theorem 1 is given in [2].

So, if conditions of Theorem 1 are satisfied then Pareto-Nash equi-
libria solution for multiobjective game can be found by using the fol-
lowing algorithm.

Algorithm
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1. Fix an arbitrary set of real numbers α11, α12, . . . , α1r, α21, α22,
. . . , α2r, . . . , αp1, αp2, . . . , αpr, which satisfy condition





r∑

k=1

αik = 1, i = 1, p;

αik > 0, k = 1, r, i = 1, p;

2. Form the single objective game G = (X1, X2, . . . , Xp, f1, f2, . . . ,
fp), where

fi(x1, x2, . . . , xp) =
r∑

k=1

αikF
k
i (x1, x2, . . . , xp), i = 1, p;

3. Find Nash equilibria x∗ = (x∗1, x
∗
2, . . . , x

∗
p) for noncooperative

game G = (X1, X2, . . . , Xp, f1, f2, . . . , fp) and fix x∗ as Pareto-Nash
equilibria solution for multiobjective game G = (X1, X2, . . . , Xp, F 1,
F 2, . . . , F p).

3 The multiobjective multicommodity flow
problem

3.1 The static model

We consider a network N = (V, E, K, c, d, ϕ) that contains a directed
graph G = (V, E), where V is a set of vertexes, E is a set of edges,
and K = {1, 2, . . . , p} is a set of commodities that must be routed
through the same network. Each edge e ∈ E has a nonnegative ca-
pacity ce

i which bounds the amount of flow of commodity i allowed on
arc e. There is a throughput demand dv

i defined on vertexes for each
commodity in the network. To model transit costs we define the cost
function ϕ: E × R+ → R+. In such a way the following restrictions
have to be verified for the flow xe

i of commodity i sent on edge e:

∑

e∈E+(v)

xe
i −

∑

e∈E−(v)

xe
i = dv

i , ∀ v ∈ V, ∀ i ∈ K;
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0 ≤ xe
i ≤ ce

i , ∀ e ∈ E, ∀ i ∈ K;

where E+(v) = {(u, v) | (u, v) ∈ E}, E−(v) = {(v, u) | (v, u) ∈ E}.
The flow has to be shipped through the network in such a way to

optimize the vector utility function F i = (F 1
i , F 2

i , . . . , F r
i ) for every

i ∈ K:
F i : X1 ×X2 × · · · ×Xp → Rr,

F k
i : X1 ×X2 × · · · ×Xp → R1, k = 1, r,

where Xi is a set of flows of commodity i, r is a number of criteria.

3.2 The dynamic model

The static flow can not properly consider the evolution of the system
under study over time. The time is an essential component, either
because the flows take time to pass from one location to another, or
because the structure of network changes over time. To tackle this
problem, we use dynamic network flow models instead of the static
ones.

We consider the discrete time model, in which all times are in-
tegral and bounded by time horizon T , which defines the makespan
T = {0, 1, . . . , T} of time moments we consider. Time is measured in
discrete steps, so that if one unit of flow leaves node u at time t on arc
e = (u, v), one unit of flow arrives at node v at time t + τ e, where τ e

is the transit time of arc e. Each commodity has its own time-interval
Ti ⊂ T.

A dynamic network N = (V,E, K, c, τ, d, ϕ) consists of a directed
graph G = (V, E), a set K = {1, 2, . . . , p} of commodities that must
be routed through the same network within the makespan T, capacity
function c: E×K×T→ R+, transit time function τ : E → R+, demand
function d: V ×K × T→ R and cost function ϕ: E × R+ × T→ R+.
In such a way, the following restrictions have to be verified for the flow
xe

i (t) of commodity i sent on link e at time t ∈ T:
∑

e∈E+(v)
t−τe≥0

xe
i (t− τe)−

∑

e∈E−(v)

xe
i (t) = dv

i (t), ∀ t ∈ Ti, ∀ v ∈ V, ∀ i ∈ K;
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0 ≤ xe
i (t) ≤ ce

i (t), ∀ t ∈ Ti, ∀ e ∈ E, ∀ i ∈ K;

xe
i (t) = 0, ∀ e ∈ E, t = T − τe + 1, T , ∀ i ∈ K.

The flow has to be shipped through the network in such a way to
optimize the vector utility function F i = (F 1

i , F 2
i , . . . , F r

i ) for every
i ∈ K, where

F i : (X1 × Ti)× (X2 × Ti)× · · · × (Xp × Ti) → Rr,

F k
i : (X1 × Ti)× (X2 × Ti)× · · · × (Xp × Ti) → R1, k = 1, r.

Using the apparatus from Section 2 we reduce the considered prob-
lem to single-objective multicommodity flow problem.

4 The game formulation of the multiobjective
multicommodity flow problem

In the framework of the game theory each commodity in the formulated
problem is associated with a player. We consider a general model with
p agents each of which wishes to optimize its own vector utility function
F i, i = 1, p, which is defined on the set of strategies of all players. Each
component F k

i , k = 1, r, of the vector utility function Fi of player i
corresponds to a partial criterion of player i. Control decisions are made
by each player according to its own individual performance objectives
and depending on the choices of the other players.

Each player competes in a Nash equilibrium manner so as to opti-
mize his own criteria in the task of transporting of flow from its origins
to its destinations. Let xi be strategy of user i and x−i be strate-
gies of all other agents. For fixed i we say that x∗ = (x∗1, . . . , x

∗
p) is a

Nash equilibrium if no user can improve his utility by unilateral devi-
ation. In our problem each player has several objectives, so we use the
Pareto-Nash equilibrium concept extended to networks.

In such a way, players intend to optimize their utility functions
in the sense of Pareto and at the same time players are interested to
preserve Nash optimality principle when they interact between them.

173



M.A. Fonoberova, D.D. Lozovanu

The cost of transportation of a given resource, the time necessary to
transport it to its destination as well as the quality of the transportation
play the role of the components of the vector utility function of a player
in the game-theoretic formulation of the problem. If payoff functions
satisfy conditions of the above theorem then for solving such a problem
we apply the algorithm proposed above.

5 Applications

In real-life problems users have to make decision concerning routing
as well as type and amount of resources that they wish to transport.
Different sets of parameters may suit the service requirements of a
user. However, the performance measures depend not only on the user’s
choices, but also on the decisions of other connected users, where this
dependence is often described as a function of some network ”state”.
In this setting the game paradigm and the Pareto-Nash equilibrium
concept become the natural choice at the user level.

Game theoretic models are widely employed in the context of flow
control, routing, virtual path bandwidth allocation and pricing in mo-
dem networking. Flow problems in multimedia applications (telecon-
ferencing, digital libraries) over high-speed broadband networks can
serve a good example of this. In a multimedia network telecommunica-
tion companies carrying different traffic types (voice, data, and video)
may share the limited common network resources such as buffers or
transmission lines. These companies may have different objectives of
maximizing packet throughput or minimizing packet blocking proba-
bility. A Pareto-Nash equilibrium may be reached when companies
achieve their objectives in such a way that no company can improve
its own performance by unilaterally changing its traffic load admission
and routing strategies.

The problem of providing bandwidth which will be shared by many
users ([3, 4]) is one of the most important problems. As it is typical
for games in such a problem the interaction among the users on their
individual strategies has to be imposed. This can be done using a
utility function that depends on the availability of bandwidth and other
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factors in the network. The problem of consumer i consists in choosing
which network resource to use and how much to use it.

The game theoretic approach can be applied in a problem of power
control in radio systems ([5]). In cellular radio systems power is a
valuable commodity for the users, so a mobile user prefers to use less
power and at the same time to obtain better quality-of-service from
assigned base stations. In such a way, each mobile user wishes to
optimize his own personal objectives and choices of mobile user depend
on choices of other users.

At the end we want to mention that the network performance is a
very important factor for the improvement of the system work, which
can be achieved both during the phase, when the network parameters
are sized ([6]), and during the phase of the operation of the network.
In such a way, the network performance is not completely determined
by the technical characteristics of the network but also is a function
of system state, therefore the issue of optimal user strategies is a very
actual problem.
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