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Involving d-Convex Simple and Quasi-simple
Planar Graphs in R’
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Abstract

The problem of finding dimension of d-convex simple and
quasi-simple planar graphs is studied. Algorithms for involving
these graphs in R® are described.

1 Prelinimary Considerations

A connected graph can be considered as a metric space. Elements of
this metric space are vertexes of the graph; distance between two ver-
texes is minimal length of chains between them. If we denote through
d(x, y) distance between two vertexes x, y of graph G = (X; U), then
this graph defines a discrete metric space (X; d). Let X' be a finite
space, where a metric of whole values p is defined. It is known that
independently of metric p there always exists a graph G = (X; U) such
that X’ C X and distance among vertexes of subset X’ in G coincides
with distance p of a space X' (see [1]). In this case we say that metric
p is involved in graph G or metric p is realized in graph G. A lot of
results about realization of metric in special graphs are exposed in [2]
and [3].

It has also practical and theoretical interest the mutual problem.
We will say that a graph G = (X; U) is involved in a metric space X',
if there exists an application ¢ : X — X', such that any two adjacent
vertexes z, y in G have the images ¢(z) and ¢(y) in X', that are of
distance equal to 1. In other words, adjacent vertexes of graph G are
transformed into elements of distance 1 of space X’. The minimal
dimension of an FKuclidean space, where a graph G can be involved is
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called dimension of graph G and denoted dim G. The problem itself
can be formulated as follows: for any graph G = (X; U) to find its
dimension. Of course in this case we can talk about elaboration of an
algorithm that will be allowed to compute dimension of a non-oriented
graph.

In general case, the formulated problem is hard enough. In this
article we will give some results that refer to finding dimension of some
special graphs: d-convex simple and d-convex quasi-simple graphs.

2 Dimension of d-Convex Simple Planar
Graphs
By definition, a subset of vertexes A C X of a graph G = (X; U) is

called d-convez if for each two vertexes x, y € A, the following relation
is true:

<z, y>={z€ X; d(z, z) +d(z, y) =d(z, y)} C A (see[4]).
Definition 1 [5]. A non-oriented graph G = (X, U) is called d-convex
simple if any subset of vertezes A C X, 2 < |A| < |X| is not d-convez.

Since in any graph the empty set, the set formed of 1 vertex, the set
formed of two adjacent vertexes and the set of all vertexes are d-convex,
the result is that d-convex graphs are graphs with minimal number of
d-convex sets. If we denote the family of all d-convex sets of cardinal &k
by Dy, and the set of all d-convex sets of a graph with n vertexes and
m edges by D, so that

n
D= Dy,
k=0
then
|D| > |Do| + |D1] + |D2| + |Dp| =1+n+m+1=n+m+2.

In case of d-convex graph here we have always equality |D| = n+m+2.
Let us denote by I'(z) the neighborhood of vertex z, i. e. I'(z) = {y €
X|z ~y}.
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Definition 2 [5]. A wertex y is called copy for vertex z (z # y), in
graph G = (X; U) if T'(x) =T'(y).

Let T be a tree with at least 3 vertexes and Ty a sub-graph of T,
that consists of all vertexes and edges of T', without those suspended.
So, for each unsuspended vertex z from 7', we have a uniquely corre-
spondent vertex x from Ty, and for each vertex of Ty we have a uniquely
correspondent vertex from 7'. Let L(7, Tp) be a graph obtained from
T, Ty and by adding the following edges: every vertex z of Ty will be
adjacent with all vertexes from I'(z) from 7', where z and Z are corre-
spondent vertexes. It is easy to see that in graph L(T, Tj) every vertex
of degree at least 3 has a unique copy and there are no suspended
vertexes.

The next theorem is true:

Theorem 1 [6]. If T is a tree with at least 3 vertexes, then graph
G = L(T, Ty) is d-convex simple and planar.

As follows from [6] the graph described above has deal with a class
of d-convex simple planar graphs.

Theorem 2 [6]. For any d-convex simple planar graph G = (X, U),
|.X| > 3, there exists a tree T' such that G = L(T, Tj).

The theorem 2 determines a structure for d-convex simple planar
graphs, that we are going to use for finding the dimension of these
graphs.

All d-convex simple graphs with number of vertexes n < 5 are in
fig. 1.

It is easy to see that dim K1 =0, dim Ko = dim P3s =1, dim K3 =
dim Cy = 2 (see fig. 1.). Let now G = (X; U) be a d-convex simple
planar graph, with |X| > 5. In this case G has at least one vertex
x with degree at least 3, which has also a copy z. Let us suppose
that I'(z) = I'(Z) = {y1, Y2, ¥3,---,Yp}, P > 3. If we suppose that
dim G = 2 then elements of set I'(x) are placed on circle of radius 1
with centre in one point that corresponds to vertex x. On the other
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Figure 1. K, Ko, P53, K3 and C} respectively.

hand, the same vertexes should be on circle of radius 1 with centre in
one point, that corresponds to vertex . This means that in R? we
can draw two different circles of radius 1, which intersect each other in
p, p > 3 points, that is impossible. So we have dim G > 3. We will
show now that dim G = 3.

Theorem 3 IfG = (X, U), |X| > 5 is a d-convex simple planar graph
then dim G = 3.

Proof: Let G = (X, U), |X| > 5 be a d-convex simple planar
graph. According to the theorem 2 there exists a tree 7' such that
G = L(T; Ty). We will prove theorem using mathematical induction
by number of vertexes n = |X| > 5. The unique d-convex simple pla-
nar graph with n = 5 is graph in fig. 2. Let us choose in R® two
points A, B at distance less than 2 and draw two spheres of radius 1,
with centers in A and B. The intersection of these spheres is a circle C.
Let us fix on circle C three points Dy, Dy, Dj3. If we place vertexes x
and Z of graph from fig. 2 in points A and B, and y, v/, ¥” in points
Dy, Dy, D3 and join them by segments of length one to x and Z, then
we obtain an inclusion of this graph in R3.

Let us suppose that assertion of theorem is true for any d-convex
simnple planar graph G with n < k, k£ > 5 vertexes.

We will examine now case n = k + 1. According to the theorem 2,
for graph G there exists a tree T' such that G = L(T; Ty). For any
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Figure 2. d-Convex simple planar graphs with 5 vetrtexes.

arbitrary vertex z from 7" we will denote by deg, = and deg, x the
degree of x in tree 1" and graph G respectively.

Let z, y be two adjacent vertexes in tree 7', such that deg, = = 1.
It is obvious that deg, z = 2. Since according to the conditions of this
theorem the graph G has at least 5 vertexes, we have the result that
deg, y > 2. We will analyze two cases.

I deg, y > 3. If we eliminate the suspended vertex z from 7', then
we obtain a tree 1", where y is not a suspended vertex. This im-
plies that tree T} coincides with Tj. According to the theorem 1
the graph G’ = L(T",T}) is d-convex simple and planar. Because
G’ has exact one vertex less than G, by mathematical induction
we have dim G’ = 3. Let § be copy of y and its image in T. In G’
these two points are also copies one for another and theirs neigh-
borhoods coincide. Let I'(y) = {w1, we,..., wp} =1'(y), p > 3.
When we involve the graph G’ in R?, then vertexes from T'(y)
are placed on the circle that is at intersection of two spheres of
radius 1, with centers in y and §. If we place on this circle the
vertex x, then distances from it to y and y, as centers of spheres,
are equal to 1. As the result, the graph G can be involved in R?,
so dim G = 3.

IT deg, y = 2. So in T there exists a vertex z # = and adjacent
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to y. Because G has at least 5 vertexes, then deg, z > 2. This
means that tree 1j contains vertexes §y and z, which are images
of vertexes y and z. So, in graph G there are true relations:

L(y) =T(y), [I'(y) = 3|
I'(z) =T'(2), II'(2) > 3|

When we eliminate the vertex z from 7', we obtain a new tree
T', where y is a suspended vertex (deg_, y = 1). In this case the
tree T}, which is obtained from 7" by elimination of all suspended
vertexes, differs from Ty by one vertex y. So T =T —z, T} =
Ty — §. We denote G = L(T", Tj). By mathematical induction
dim G = 3. Since |I'(z) > 3|, then when we involve the graph G’
in R?, the set of vertexes I'(z) is placed on the circle, that is at
intersection of two spheres of radius 1, with centers in z and Zz.
On this circle we can place the vertex g (the vertex y is already
on this circle as a vertex of graph G'). Now since y and § are
placed on circle of diameter less than 2, then intersection of two
unitary spheres with centers in y and § is a new circle, where
we can place the vertex z. As the result, the graph G can be
involved in R?, so dim G = 3.

By mathematical induction the assertion is true for any natural n.

Theorem is proved. [

Now we are going to study a class of graphs with a wider family of

d-convex sets.

3 Dimension of d-Conves Quasi-Simple Planar

Graphs

Definition 3 [6]. A graph G = (X, U) is called d-convezx quasi-simple
graph if any d-convex set A C X forms in G a complete sub-graph.

It is obvious that each d-convex simple graph is d-convex quasi-

simple. D-convex quasi-simple graphs with | X| < 5 are graphs in fig.
1 and fig. 3.
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Figure 3. Graphs P and Kj,.

Dimension of graphs in fig. 3 is 2 and 3 respectively.

Definition 4 An edge u = (z, y) of a graph G is called diagonal edge
if in G there exist at least 2 vertezes s, t adjacent with x, y.

Theorem 4 [6]. If G = (X, U) is d-convex quasi-simple planar graph
then there exists a d-convez simple planar graph Gy = (X, Uy) (called
basis graph) such that G is obtained from Gy through adding some di-
agonal edges.

In order to describe the structure of d-convex quasi-simple planar
graphs we will describe next class of graphs. Let 1" be a tree with
at least 3 vertexes. We will denote by R(T) the set of graphs that is
obtained from 7' through adding some new edges, which will respect
next conditions.

1. each new edge is incident to two old vertexes in 7', the distance
between which is equal to 2;

2. each new edge is incident to at least one suspended vertex;

3. in new graph the degree of each suspended vertex in 7' will be
equal to at most 3;

4. if the new edge (z, y) join one suspended vertex with one unsus-
pended vertex from 7" and z is that vertex of T, that was between
z and y, then degy z = 2;
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5. a) if T is not a star, then in new graph there do not exist simple
cycles, that are formed from suspended vertex of 17
b) if T' is a star and in new graph there exists a cycle that consists
only from suspended vertexes, then this cycle passes through all
suspended vertexes of T';

Like above we will denote by Ty a sub-graph of 7' that consists of all
vertexes and edges of 1" without those suspended. Let R be a graph
from R(T"). Let us construct graph L(R, Tj) like above.

Theorem 5 [7]. The graph G = (X, U), |X| > 4, is d-convex quasi-
simple planar graph if and only if there exists a tree T' and a graph
R € R(T) such that G = L(R, Ty).

It is easy to see that for the d-convex quasi-simple planar graph
L(R, Tpy) one basis graph is L(T, Ty). The question is, on how many
the dimension of d-convex quasi-simple planar graphs changes compar-
atively with the dimension of d-convex simple planar graphs. We are

going to answer it.
x
/_.-ﬁ"‘k ,
P-

2

=l

Figure 4. Class Q.

Condition 5. b) gives a special class of d-convex quasi-simple planar
graphs. Any graph from this class is formed from two vertexes copies
z and Z with I'(z) = I'(Z) = {v1, v2,---, Yp }» p > 3, such that
Z1 ~ 29 ~ 23~ ...~ 2z ~ zi(see fig. 4.). Let us denote this class by
Q. First, we are going to examine the class of graphs . These graphs
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differ by number of suspended vertexes in the star 1T'. Let us denote by
Qn, n > 2 a graph of this class with n suspended vertexes in T'. The
problem is to inscribe in a circle of radius less than 1 a regular, closed
polygonal line with unit length of edges. If we would be able to do this
then the graph @), will be placed in space like in the fig. 5., where there
in the circle will be the closed polygonal line we are talking about.

A\
Ny

X

Figure 5. @, in 3-space.

For n = 3, 4 and 5 the circles are just those we inscribe a equilateral
triangle, a square and a regular pentagon, because radiuses of these
circles are less than 1. The circle where a unit regular hexagon can
be inscribed has radius exactly equal to 1. That is why the graph Qs
remains as a limit case. In order to study general case we need to prove
first 3 lemmas.

Lemma 1 The natural odd numbers n = 2k + 1 are relatively prime
with k.

Proof: Let us assume that the greater common divisor (2k+1, k) = m,
then 3 p, ¢ € N such that:

2k+1=mp; k=mgq

or 2mq+1=mp, equivalent with m(p-2q)=1. The product of 2 natural
numbers is 1 if and only if each of them is equal to 1, so m =1. O

Lemma 2 The natural even numbers of kind n = 4k are relatively
prime with 2k — 1.
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Proof: Let us assume that the greater common divisor (4k, 2k—1) = m,
then 3 p, ¢ € N such that:

4k =mp; 2k—1=mgq

or 2(mgq + 1) = mp, we have m(p — 2q) = 2. The product of 2 natural
numbers is 2, so either m = 1, or m = 2. The number m could not be
equal to 2 because it is divisor for an odd number 2k — 1, the result is
m=1. U

Lemma 3 The natural even numbers of kind n = 4k + 2 are relatively
prime with 2k — 1.

Proof: Let us assume that the greater common divisor (4k+2, 2k—1) =
m, then 3 p, ¢ € N such that:

dk +2=mp; 2k—1=mgq

or 2(mq+1)+2 = mp, we have m(p—2q) = 4. The product of 2 natural
numbers is 4, so either m = 1, or m = 2, or m = 4. The number m
can not be equal to 2 because it is divisor for an odd number 2k — 1, m
also can not be equal to 4, as divisor of the number 4%k + 2, the result
ism=10

From algebra we know that every number g, that is relatively
prime with n (¢ < n), is a generator for the group Z,, i. e. we
have Z, =< g >={g, 9+9, 9+9+g,..., g+g+...+g} =

n—times
{0, 1, 2,...,n—1}. Now let us take a circle and place there all
natural numbers from 0 till n — 1, at equal distances one from another
(see fig. 6.).

Let g be that number respectively prime with n from lemmas. If
we will draw line from 0 to g, then from g to g + g(modn), and so
on, then we will draw a polygonal line, that will be closed, because ¢
is a cyclic generator of all these numbers and regular, because every
line is based on the portion of circle of the same length. If we ask for
the length between two numbers be equal to 1, then we obtain that
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-2

Figure 6. Closed polygonal regular line inscribed in circle.

radius of the circle in fig. 6. is r = —2sir11(a)7 a =22 Forn=2k+1,
_ 7wk _ 7w 2k _ _ w(2k=1) _ x2k—1 N
U= g5p07 = gopgy Forn =4k, a= "= = 555, Forn =4k +2,
_ m(2k=1) _ 7m2k—1 : . .
12 = 9apg1- oince we are interested in n > 6, then we have

§ <a<g,or 1 <sin(e) < 1, finally £ < r < 1. The last fact implies
that we can place vertexes x, Z at distance d = 2v/1 — 2, (0 < d < V/3)
and in this case the circle, that is at intersection of unit spheres with
centres in x and Z, will have radius r.

We have already proved next theorem:

Theorem 6 If Q,, n > 2, n # 6 is a d-convex simple planar graph
from Q, then dim Q, = 3.

Theorem 7 If G = (X, U), |X| > 4, G # Qs, is a d-convez quasi-
simple planar graph, then dim G = 3.

Proof: Let G be a graph that satisfies conditions of theorem. If G € Q)
then according to the last theorem dimG = 3. If G & @ then according
to the theorem 5 there are a tree T', a graph R € R(T') and Tj such that
G = L(R, T0). According to the theorem 1, the graph G, = L(T'; Tp)
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is d-convex simple and planar, so according to the theorem 3, it has
dimension equal to 3. Let us place in space the graph Gy like in the
theorem 3.

There can be two cases.

1. All new edges in R join only suspended vertexes of T'. Then
according to condition 5. a), we have either some separated edges,
that join some suspended vertexes at distance 2 and according to
condition 1 they have the same predecessor, or some chains, that
join also suspended vertexes of the same predecessor, according
to conditions 1 and 3. So, if we have that y is a predecessor in
T for suspended vertexes, that are adjacent in R, then we can
replace vertexes y and § at distance d, (d < /(3)) for example
d < 0,02 and try to inscribe our chains in the circle formed
between unit spheres with centres in y, y. If we can’t do this,
because some vertexes pretend at the same place, then try again
to modify distance between y and y. We are sure that we can find
the distance for our copies, for which we can place the chains.
We can place these copies at distance at least d = /(1 —r?),

where like above, 7 = m, for n = |I'(y)| and g-computed

from lemmas. We will draw the chains here in the same order
like we do it above for cycles. So, we have that this graph is
3-dimensional.

2. Through new edges there exist some, that join a suspended vertex
with one unsuspended vertex, for example (z, y) is a new edge
with this property (see fig. 7. a)). Then in L(R, Tp) this part of
graph will be like in fig. 7. b).

Now we will consider a new tree T, that will be identical with
T, except the portion from fig. 7. a), where it will be like in the
fig. 8. a), i. e. the vertexes y, z and Zz are suspended in 7'
and edges (y, z), (y, z) will be new edges, which will be added
to R'. Then the graph L(R!, T}) looks like the graph L(R, Tp),
except the part of graph, where it looks like in the fig. 8. b). It
is easy to see that graph L(R, Tp) is a sub-graph of L(R!,Ty),
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a) b)

Figure 7. Portion of graphs R, G, where an edge joins a suspended
vertex with the unsuspended one.

a) b)

Figure 8. Portion of graphs R!, G, after transformations.
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because of edge (Z, y). If we will do the same transformations for
each edge that joins unsuspended vertexes, then we will obtain
a graph, that is d-convex quasi-simple planar graph and all new
edges join only suspended vertexes. According to the first part
of the proof, this graph can be involved in 3-dimensional space,
after that we can exclude the additional edges. So this graph is
also 3- dimensional.

Theorem is proved. [

4 Algorithm for Involving d-Convex Simple
Planar Graphs in R?

Let G = (X; U) be a d-convex simple planar graph with |X| > 5.
According to the theorem 2, we can consider G = L(T; Ty). Algorithm
for involving G in R? is an iterative algorithm, at each step of which
the place of all vertexes from neighborhood of two copies-vertexes is
found. In process of algorithm two special sets of vertexes are formed:

1. R - the set of all vertexes of the graph GG, which we have not yet
placed in R3. Of course, initially R = X.

2. S - the set of all pairs of copies-vertexes, which was already placed
in R?, but their neighborhoods were not yet researched.

Description of algorithm:

1. The sets R = X, S = () are formed;

2. Find any vertex x € R, of degree greater than 2 and its copy Z.
Include them in S, i. e. § = SU{(z, z)}. Place the vertexes
x, T in R3, arbitrary at distance less than 2.

3. Take any pair of copies (z; z) € S and change the sets:

S=8—{(z;z)}; R=R-—{x; z}.
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4. For every y € I'(z) N R:

(a) if degy = 2, then place arbitrary the vertex y on circle that is
at intersection of spheres with radius 1 and centres in x, Z.
Modify the set R:

R=R—{y};

(b) if deg y > 2, then find § € I'(z) N R, place arbitrary the
vertex y, y on circle that is at intersection of spheres with
radius 1 and centres in z, . Modify the sets .S and R:

S=585U{ly; 9)}; R=R—A{y; y};
5. If S # () then go to 3, else STOP.

5 Algorithm for Involving d-Convex Quasi-
simple Planar Graphs in R?

Let G = (X; U) be a d-convex quasi-simple planar graph with | X| > 5,
G # Qs. According to the theorem 4 we have that any d-convex quasi-
simple planar graph is obtained from the d-convex simple one by adding
some new edges. These edges form either a family £ of simple chains,
or a simple cycle and then the graph is one from family . Algorithm
for involving G in R? is also an iterative algorithm, and in order to
discribe it we will use the same sets of vertexes S and R.
Description of algorithm:

1. If G € Q then the pair of copies-vertexes is placed in R® at

distance 1
d=2\1-—12  where "= g
2Slnm
and
B k, ifn—2=2+1
9=V 2%k—1, ifn-2=4k orn—2=4k+2

The other vertexes of G are placed in R? like it is described in
proof of theorem 6. If G & () then go to 2.
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2. The sets R = X, S = () are formed and find a pair of copies-
vertexes z, T from G, set d=0,01; Change the set:

R=R—{z; z}.

3. Put d=d+0,01. If d > /3 then put d = V1 —r2, where r is
computed like in 1. for n = |T'(x)|. Place the vertexes z, z in R3
at distance d.

4. From vertexes I'(z) N R form two new sets Wy, Wa:

Wi={y el(@)NR|T(z)NI(y) =0} Wy=(I'(z)NR)— W

If Wy # () then go to 5, else go to 6.

5. The vertexes from Wy generate in G a family of simple chains.
Try to place all vertexes from W5 on the circle between x, Z, such
that adjacent vertexes to be placed at distance 1. If we can do
this then R = R — W5 and go to 6, else go to 3.

6. If Wy = () then go to 7, else for every y € W

(a) if degy = 2, then place arbitrary the vertex y on circle that is
at intersection of spheres with radius 1 and centres in x, Z.
Modify the set R:

R=R—{y};
(b) if deg y > 2, then find y € I'(z) N R, place arbitrary the

vertex y, ¢ on circle that is at intersection of spheres with
radius 1 and centres in z, z. Modify the sets S and R:

S=SU{(y; 9)}; R=R—{y; y}

7. If S # 0 then take any pair (z; Z), put S = S — {(z; 7)},
R =R —{z, z}, d=0,01 and go to 3, else STOP.
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