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Note about the upper chromatic number of

mixed hypertrees

Kenneth Roblee, Vitaly Voloshin

Abstract

A mixed hypergraph is a triple H = (X, C,D), where X is
the vertex set and each of C, D is a family of subsets of X,
the C-edges and D-edges, respectively. A proper k-coloring of
H is a mapping c : X → [k] such that each C-edge has two
vertices with a common color and each D-edge has two vertices
with distinct colors. Upper chromatic number is the maximum
number of colors that can be used in a proper coloring. A mixed
hypergraph H is called a mixed hypertree if there exists a host
tree on the vertex set X such that every edge (C- or D-) induces
a connected subtree of this tree.

We show that if a mixed hypertree can be decomposed into
interval mixed hypergraphs then the upper chromatic number
can be computed using the same formula.

1 Introduction

In this paper, we use the terminology of [1, 2, 3, 4, 5, 6, 7]. A mixed
hypergraph H = (X, C,D) (each element of C∪D is of size at least 2) is
said to be a mixed hypertree if there exists a host tree T = (X, F ) such
that every C ∈ C and every D ∈ D induces a subtree in T [7]. An in-
terval mixed hypergraph represents a special case of a mixed hypertree,
namely, when the host graph is simply a path. In a mixed hypergraph
H = (X, C,D), a subfamily {Ci} of C-edges is said to be a sieve, if for
any x, y ∈ X and any j, k, j 6= k, the following implication holds (see
[1, 7]):

{x, y} ⊆ Cj ∩ Ck ⇒ {x, y} = D ∈ D for some D ∈ D.
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In other words, a sieve represents a subfamily of C-edges with the
property that if two C-edges intersect, then every pair of vertices from
the intersection forms a D-edge. It appears that sieves play a role in
estimating the upper chromatic number. The maximum cardinality of
a sieve is the sieve number of H and is denoted by s(H). It is proved
(see [1, 7]) that ifH = (X, C,D) is a reduced interval mixed hypergraph
(the size of each C-edge is at least 3, the size of each D-edge is at least
2, and no included edges of any type), then

χ(H) = |X| − s(H).

A C-edge is called redundant if it contains no other C-edges and after
its removal no new coloring appears. This property never happens in
classic graph or hypergraph coloring. We call a mixed hypertree H =
(X, C,D) simple if it is reduced and has no redundant C-edges. In order
to generalize the result for the upper chromatic number from interval
mixed hypergraphs to mixed hypertrees, it is necessary to investigate
the following question: if H = (X, C,D) is a simple mixed hypertree
with |X| = n and sieve number s, when is χ(H) = n− s?

The equality holds for many classes of mixed hypertrees. In this
paper, we prove it for mixed hypertrees having uniquely colorable sepa-
rator with the respective subgraphs being interval mixed hypergraphs.
However, for general mixed hypertrees it is not true. We exhibit that
the difference between χ(H) and n−s can actually be made arbitrarily
large.

2 Results

Theorem 1. If H = (X, C,D) is a simple mixed hypertree that can be
decomposed into the union of interval mixed hypergraphs T1, T2, . . . , Tk,
where k ≥ 1, so that if any two of these hypergraphs meet, they meet
only at a single vertex, then we have

χ(H) = |X(H)| − s(H).
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Before we prove the theorem, we establish a lemma regarding the
sieve number for simple mixed hypertrees as described in the statement
of the theorem.

Lemma 1. If H = (X, C,D) is a simple mixed hypertree that can be
decomposed into the union of interval mixed hypergraphs T1, T2, . . . , Tk,
where k ≥ 1, so that if any two of these hypergraphs meet, they meet
only at a single vertex, then

s(H) = s(T1) + s(T2) + · · ·+ s(Tk).

Proof. Note that hyperedges in different maximum sieves in (say)
Ti, Tj , where i 6= j, will also be in a maximum sieve of H. For, if
they intersect, they may only intersect at a single point. ¤

Proof. We prove the theorem by induction on the number k of inter-
val mixed hypergraphs. For k = 1, the mixed hypertree is an interval
mixed hypergraph, in which case it is already known the result holds.
Let us assume the result is true if there are k = m interval mixed
hypergraphs, and establish that it is true when there are m + 1 inter-
val mixed hypergraphs. Remove any one of the (m + 1)-many interval
mixed hypergraphs Ti from H (except for the intersecting vertex), and
consider the resulting mixed hypertree H′. Note that H′ is the union of
m-many interval mixed hypergraphs, and so by the inductive hypoth-
esis and with obvious notation we have

χ(H′) = |X ′| − s(H′).
Now, for the removed interval mixed hypergraph Ti we have

χ(Ti) = |Xi| − s(Ti),

since it is an interval mixed hypergraph.
Now, we note that |X(H)| = |X(H′)| + |X(Ti)| − 1. Let v be the

common vertex. Before we re-insert Ti back intoH′ to form the original
mixed hypertree H, we re-color v (in Ti) and all vertices in Ti having
that color (in the maximum coloring) in the same color that v has in a
maximum coloring of H′. Thus, we have the following:
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χ(H) = χ(H′) + χ(Ti)− 1
= |X(H′)| − s(H′) + |X(Ti)| − s(Ti)− 1
= (|X(H′)|+ |X(Ti)| − 1)− (s(H′) + s(Ti))
= |X(H)| − s(H).

In the displayed equations above, the only item we have not yet es-
tablished is the first equality. To prove this, first note that giving both
H′ and Ti a maximum coloring, then merging back these mixed hyper-
trees with the necessary adjustment in the coloring common vertex v
will give a proper coloring of H; thus, χ(H) ≥ χ(H′) + χ(Ti).

On the other hand, suppose we have a maximum coloring of H with
χ(H) colors. Now decompose H into H′ and Ti, preserving the given
maximum coloring. Then this is a coloring of H′ and of Ti; thus, we
have χ(H) ≤ χ(H′) + χ(Ti)− 1.

¤

3 Examples

First, we exhibit a simple mixed hypertree H = (X, C,D) in which the
difference between χ(H) and n− s is 1, where n = |X| and s = s(H).

Example 1. Consider the mixed hypertree H = (X, C,D), where
X = {x0, x1, . . . , x5},
C={{x0, x1, x2}, {x0, x2, x3}, {x0, x3, x4}, {x0, x4, x5}, {x0, x5, x1}},

and D = ∅. Here, χ̄(H) = 3, |X| = n = 6, and the sieve number s = 2.
Thus,

χ̄(H) = 3 6= 4 = n− s.

This example can also be generalized to similar mixed hypergraphs
with an odd number of such “satellite vertices” (the vertices that are
not the central vertex) as to make the difference between χ(H) and
|X|−s as large as desired. Here is how: Start with the mixed hypertree
H in example 1 above. Then, pick any of the satellite vertices and make
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it the satellite vertex of an added-on copy of H. The resulting mixed
hypertree – call it H1 – will have χ(H) - ( |X| − s) = 2. To make the
difference equal to 3, one could pick one of the new satellite vertices
from H1 and make it the satellite vertex of an added-on copy of H.
Continuing in this fashion, one can see how to make the difference
arbitrarily large.
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