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Abstract

We study the max-min paths problem, which represents a
game version of the shortest and the longest paths problem in a
weighted directed graph. In this problem the vertex set V of the
weighted directed graph G = (V, E) is divided into two disjoint
subsets VA and VB which are regarded as positional sets of two
players. The players are seeking for a directed path from the
given starting position v0 to the final position vf , where the first
player intends to maximize the integral cost of the path while the
second one has aim to minimize it. Polynomial-time algorithm
for determining max-min path in networks is proposed and its
application for solving zero value cyclic games is developed.
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1 Introduction and Problem Formulation

In this paper we consider the max-min paths problem on networks,
which generalizes classical combinatorial problems of the shortest and
the longest paths in weighted directed graphs. This max-min paths
problem arose as an auxiliary one when searching optimal stationary
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strategies of players in cyclic games [1-3]. The main results are con-
cerned with the existence of polynomial-time algorithms for determin-
ing max-min paths in networks and elaboration of such algorithms.
The application of the proposed algorithms for studying and solving
zero value cyclic games is shown.

The statement of the considered problem is the following.
Let G = (V, E) be a directed graph with vertex set V , |V | = n, and

edge set E, |E| = m. Assume that G contains a vertex vf ∈ V such
that it is attainable from each vertex v ∈ V , i.e. vf is a sink in G. On
edge set E it is given a function c : E → R, which assigns a cost c(e) to
each edge e ∈ E. In addition the vertex set is divided into two disjoint
subsets VA and VB (V = VA

⋃
VB, VA

⋂
VB = Ø), which we regard as

position sets of two players.
On G we consider a game of two players. The game starts at po-

sition v0 ∈ V . If v0 ∈ VA, then the move is done by the first player,
otherwise it is done by the second one. The move means the pas-
sage from a position v0 to a neighbour position v1 through the edge
e1 = (v0, v1) ∈ E. After that if v1 ∈ VA, then the move is done by the
first player, otherwise it is done by the second one and so on. As soon
as the final position is reached the game is over. The game can be finite
or infinite. If the final position vf is reached in finite time, then the
game is finite. In the case when the final position vf is not reached, the
game is infinite. The first player in this game has the aim to maximize∑

i c(ei) while the second one has the aim to minimize
∑

i c(ei).
Strictly the considered game in normal form can be defined as fol-

lows. We identify the strategies sA and sB of players with the maps

sA : u → v ∈ VG(u) for u ∈ VA;

sB : u → v ∈ VG(u) for u ∈ VB,

where VG(u) represents the set of extremities of edges e = (u, v) ∈ E,
i.e. VG(u) = {v ∈ V |e = (u, v) ∈ E}. Since G is a finite graph then the
set of strategies of players

SA = {sA : u → v ∈ VG(u) for u ∈ VA};
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SB = {sB : u → v ∈ VG(u) for u ∈ VB}
are finite sets. The payoff function Fv0(sA, sB) on SA × SB is defined
in the following way.

Let be in G a subgraph Gs = (V, Es) generated by edges of form
(u, sA(u)) for u ∈ VA and (u, sB(u)) for u ∈ VB. Then either a unique
directed path Ps(v0, vf ) from v0 to vf exists in Gs or such a path does
not exist in Gs. In the second case in Gs there exists a unique directed
cycle Cs, which can be reached from v0.

For given sA and sB we set

Fv0(sA, sB) =
∑

e∈E(Ps(v0,vf ))

c(e),

if in Gs there exists a directed path Ps(v0, vf ) from v0 to vf , where
E(Ps(v0, vf )) is a set of edges of the directed path Ps(v0, vf ). If in G
there are no directed paths from v0 to vf , then we define Fv0(sA, sB)
as follows. Let P ′

s(v0, u0) be a directed path, which connects the vertex
v0 with the cycle Cs and Ps(v0, u0) has no other common vertices with
Cs except u0. Then we put

Fv0(sA, sB) =





+∞, if
∑

e∈E(Cs)

c(e) > 0;

∑

e∈E(P ′s(v0,u0))

c(e), if
∑

e∈E(Cs)

c(e) = 0;

−∞, if
∑

e∈E(Cs)

c(e) < 0.

This game is related to zero-sum positional games of two players and
it is determined by the graph G with the sink vertex vf , the partition
V = VA

⋃
VB, the cost function c : E → R and the starting position v0.

We denote the network, which determines this game, by (G,VA, VB, c).
In [4] it is shown that if G does not contain directed cycles, then

for every v ∈ V the following equality holds

p(v) = max
sA∈SA

min
sB∈SB

Fv(sA, sB) = min
sB∈SB

max
sA∈SA

Fv(sA, sB), (1)
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which means the existence of optimal strategies of players in the con-
sidered game. Moreover, in [4] it is shown that in G there exists a tree
T ∗ = (V,E∗) with sink vertex vf , which gives the optimal strategies
of players in the game for an arbitrary starting position v0 ∈ V . The
strategies of players are obtained by fixing

s∗A(u) = v, if (u, v) ∈ E∗ and u ∈ VA \ {vf};

s∗B(u) = v, if (u, v) ∈ E∗ and u ∈ VB \ {vf}.
In general case for an arbitrary graph G equality (1) may fail to hold.
Therefore we formulate necessary and sufficient conditions for the ex-
istence of optimal strategies of players in this game and a polynomial-
time algorithm for determining the tree of max-min paths from every
v ∈ V to vf . Furthermore we show that our max-min paths problem
on the network can be regarded as an zero value ergodic cycle game.
Therefore the proposed algorithm can be used for solving such games.

The formulated game on network (G, VA, VB, c) in [4] is named the
dynamic c-game. Some preliminary results related to this problem
have been obtained in [4-7]. More general models of positional games
on networks with p players have been studied in [8,9].

2 Algorithm for solving the problem on acyclic
networks

The formulated problem for acyclic networks has been studied in [4].
Let G = (V, E) be a finite directed graph without directed cycles

and given sink vertex vf . The partition V = VA
⋃

VB (VA
⋂

VB = Ø)
of vertex set of G is given and the cost function c : E → R on edges
is defined. We consider the dynamic c-game on G with given starting
position v ∈ V .

It is easy to observe that for fixed strategies of players sA ∈ SA

and sB ∈ SB the subgraph Gs = (V, Es) has a structure of directed
tree with sink vertex vf ∈ V . This means that the value Fv0(sA, sB)
is determined uniquely by the sum of edge costs of the unique directed
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path Ps(v0, vf ) from v0 to vf . In [5,6] it is proved that for acyclic c-
game on network (G,VA, VB, c) there exist the strategies of players s∗A,
s∗B such that

p(v) = Fv(s∗A, s∗B) = max
sA∈SA

min
sB∈SB

Fv(sA, sB) =

= min
sB∈SB

max
sA∈SA

Fv(sA, sB) (2)

and s∗A, s∗B do not depend on starting position v ∈ V , i.e. (2) holds for
every v ∈ V .

The equality (2) is evident in the case when ext(c, u) = 0, ∀u ∈
V \ {vf}, where

ext(c, u) =





max
v∈VG(u)

{c(u, v)}, u ∈ VA;

min
v∈VG(u)

{c(u, v)}, u ∈ VB.

In this case p(u) = 0, ∀u ∈ U and the optimal strategies of players can
be obtained by fixing the maps s∗A : VA\{vf} → V and s∗B : VB\{vf} →
V such that s∗A ∈ VEXT(c, u) for u ∈ VA \ {vf} and s∗B ∈ VEXT(c, u)
for u ∈ VB \ {vf}, where

VEXT(c, u) = {v ∈ VG(u)|c(u, v) = ext(c, u)}.

If the network (G,VA, VB, c) has the property ext(c, u) = 0, ∀u ∈ V \
{vf}, then it is named the network in canonic form. So, for the acyclic
c-game on network in canonic form equality (2) holds and p(v) = 0,
∀v ∈ V .

In general case equality (2) can be proved using properties of the
potential transformation c′(u, v) = c(u, v) + ε(v) − ε(u) on edges e =
(u, v) of the network, where ε : V → R is an arbitrary real function on V
(the potential transformation for positional games has been introduced
in [2]). The fact is that such transformation of the costs on edges of
the acyclic network in c-game does not change the optimal strategies
of players, although values p(v) of positions v ∈ V are changed by
p(v) + ε(vf )− ε(v). It means that for an arbitrary function ε : V → R
the optimal strategies of the players in acyclic c-games on the networks
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(G,VA, VB, c) and (G,VA, VB, c′) are the same. Using such property in
[4,5] the following theorem is proved.

Theorem 1. For an arbitrary acyclic network (G,VA, VB, c) with
a sink vertex vf there exists a function ε : V → R which determines
the potential transformation c′(u, v) = c(u, v) + ε(v) − ε(u) on edges
e = (u, v) such that the network (G,VA, VB, c) has the canonic form.
The values ε(v), v ∈ V , which determine ε : V → R, can be found by
using the following recursive formula

ε(vf ) = 0

ε(u) =





max
v∈VG(u)

{c(u, v) + ε(v)} for u ∈ VA \ {vf};
min

v∈VG(u)
{c(u, v) + ε(v)} for u ∈ VB \ {vf}. (3)

On the basis of this theorem the following algorithm for determining
optimal strategies of players in c-game is proposed in [4,5].

Algorithm 1.

1. Find the values ε(u), u ∈ V , according to recursive formula
(3) and the corresponding potential transformation c′(u, v) = c(u, v) +
ε(v)− ε(u) on edges (u, v) ∈ E.

2. Fix arbitrary maps s∗A : VA\{vf} → V and s∗B(u) ∈ VEXT(c′, u)
for u ∈ VB \ {vf}. ¤

Remark 1. The values ε(u), u ∈ V , represent the values of the
acyclic c-game on (G,VA, VB, c) with starting position u, i.e. ε(u) =
p(u), ∀u ∈ V . Algorithm 1 needs O(n2) elementary operations because
the tabulation of the values ε(u), u ∈ V , using formula (3) for acyclic
networks needs such number of operations.
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3 The main results for the problem on an ar-
bitrary network

First of all we give an example which shows that equality (1) may fails
to hold. In fig.1 it is given the network with starting position v0 = 1 and
final position vf = 4, where positions of the first player are represented
by cycles and positions of the second player are represented by squares;
values of cost functions on edges are given alongside them.
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It is easy to observe that

max
sA∈SA

min
sB∈SB

F12(sA, sB) = 1, min
sB∈SB

max
sA∈SA

F12(sA, sB) = 2.

The following theorem gives conditions for the existence of settle
values p(v) for each v ∈ V in the c-game.

Theorem 2. Let (G,VA, VB, c) be an arbitrary network with sink
vertex vf ∈ V . Moreover let us consider that

∑
e∈E(Cs)

c(e) 6= 0 for ev-
ery directed cycle Cs from Gs. Then for c-game on (G,VA, VB, c) con-
dition (1) holds if and only if there exists a function ε : V → R, which
determines a potential transformation c′(u, v) = c(u, v)+ε(v)−ε(u) on
edges (u, v) ∈ E such that ext(c′, u) = 0, ∀v ∈ V . If

∑
e∈E(Cs)

c(e) 6= 0
for every directed cycle and in G there exists the potential transforma-
tion c′(u, v) = c(u, v)+ε(v)−ε(u) on edges (u, v) ∈ E, then ε(v) = p(v),
∀v ∈ V .
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Proof. =⇒ Let us consider that
∑

e∈E(Cs)
c(e) 6= 0 for every di-

rected cycle Cs in G and condition (1) holds for every v ∈ V . More-
over, we consider that p(v) is a finite value for every v ∈ V . Taking
into account that the potential transformation does not change the cost
of cycles, we have that such transformation does not change optimal
strategies of players although values p(v) of positions v ∈ V are changed
by p(v)− ε(v) + ε(vf ). It is easy to observe that if we put ε(v) = p(v)
for v ∈ V , then the function ε : E → R determines the potential trans-
formation c′(u, v) = c(u, v) + ε(v)− ε(u) on edges (u, v) ∈ E such that
ext(c′, u) = 0, ∀v ∈ V .

⇐= Let us consider that there exists a potential transforma-
tion c′(u, v) = c(u, v) + ε(v) − ε(u) on edges (u, v) ∈ E such that
ext(c′, u) = 0, ∀v ∈ V . The value p(v) of the game after the potential
transformation is zero for every v ∈ V and optimal strategies of players
can be found by fixing s∗A and s∗B such that s∗A(u) ∈ VEXT(c′, u) for
u ∈ VA \ {vf} and s∗B(u) ∈ VEXT(c′, u) for u ∈ VB \ {vf}. Since the
potential transformation does not change optimal strategies of players
we put p(v) = ε(v)− ε(vf ) and obtain (1).

Corollary 1. The values p(v), v ∈ V , can be found as follows
p(v) = ε(v)− ε(vf ), i.e. the difference ε(v)− ε(vf ) is equal to the cost
of the max-min path from v to vf . If ε(vf ) = 0, then p(v) = ε(v),
∀v ∈ V .

Corollary 2. If for every directed cycle Cs in G the condition∑
e c(e) 6= 0 holds then the existence of the potential transformation

c′(u, v) = c(u, v) + ε(v)− ε(u) on edges (u, v) ∈ E such that

ext(c′, u) = 0, ∀v ∈ V (4)

represents necessary and sufficient conditions for validity of equality
(1) for every u ∈ V . In the case when in G there exists cycle Cs with∑

e∈E(Cs)
c(e) = 0 condition (4) becomes only necessary one for validity

(1) for every v ∈ V .

Corollary 3. If in c-game there exist the strategies s∗A and s∗B,
for which (1) holds for every v ∈ V and these strategies generate in G
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a tree Ts∗ = (V,Es∗) with sink vertex vf , then there exists the potential
transformation c′(u, v) = c(u, v) + ε(v) − ε(u) on edges (u, v) ∈ E
such that the graph G0 = (V, E0), generated by the set of edges E0 =
{(u, v) ∈ E | c′(u, v) = 0}, contains the tree Ts∗ as a subgraph.

Taking into account the mentioned above results we may propose
the following algorithm for determining the optimal strategies of players
in c-game based on the constructing of the tree of min-max paths.

Algorithm 2.

Preliminary step (step 0) Set V ∗ = {vf}, ε(vf ) = 0.
General step (step k) Find the set of vertices

V ′ = {u ∈ V \ V ∗ | (u, v) ∈ E, v ∈ V ∗}.

For each u ∈ V ′ we calculate

ε(u) =





max
v∈OV ∗ (u)

{ε(v) + c(u, v)}, u ∈ VA

⋂
V ′;

min
v∈OV ∗ (u)

{ε(v) + c(u, v)}, u ∈ VB

⋂
V ′,

(5)

where OV ∗(u) = {v ∈ V ∗ | (u, v) ∈ E}. Then in V ∗⋃
V ′ we find the

subset

Uk =
{

u ∈ V ∗⋃
V ′

∣∣∣ extr
v∈OV ∗∪V ′ (u)

{ε(v)− ε(u) + c(u, v) = 0}
}

and change V ∗ by Uk, i.e. V ∗ = Uk. After that we check if V ∗ = V . If
V ∗ 6= V , then go to the next step. If V ∗ = V , then define the potential
transformation c′(u, v) = c(u, v) + ε(v) − ε(u) on edges (u, v) ∈ E
and find the graph G0 = (V,E0), generated by the set of edges E0 =
{(u, v) ∈ E|c′(u, v) = 0}. In G0 fix an arbitrary tree T ∗ = (V,E∗),
which determines the optimal strategies of players as follows:

s∗A(u) = v, if (u, v) ∈ E∗ and u ∈ VA \ {vf};
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s∗B(u) = v, if (u, v) ∈ E∗ and u ∈ VB \ {vf}.

Now let us show that this algorithm finds the tree of max-min paths
T ∗ = (V, E∗) if such tree exists in G. ¤

Denote by V i the subset of V , where v ∈ V i if in T ∗ there exists
the directed path PT (v, v0) from v to v0 which contains i edges, i. e.
V i = {v ∈ V

∣∣∣ |PT ∗(v, v0)| = i}. So, V = V 0
⋃

V 1
⋃

V 2
⋃ · · ·⋃V r

(V i
⋂

V j = Ø), where V 0 = {vf} and V i, i ∈ {1, 2, . . . , r}, represents
the level i of vertex set of T ∗. If in G there exists several max-min
trees T ∗1 = (V, E∗

1), T ∗2 = (V, E∗
2), . . . , T ∗q = (V, E∗

q ) then we will select
the one which has number of levels r = min

1≤i≤q
{ri}.

Theorem 3. If in G there exists a tree of max-min path
T ∗ = (V, E∗) with sink vertex vf then Algorithm 2 finds it using k = r
iterations. The running time of the algorithm is O(n3).

Proof. We prove the theorem by using the induction principle on
number of levels of max-min tree. If r = 1 the theorem is evident.
Assume that the theorem is true for any r ≤ p and let us show that it
is true for r = p + 1.

Denote by V 0, V 1, . . . , V r the level sets of the tree T ∗ = (V,E∗),
V = V 0

⋃
V 1

⋃
V 2

⋃ · · ·⋃V r (V i
⋂

V j = Ø). It is easy to observe that
if we delete from T ∗ the vertex set V r and corresponding pendant edges
e = (u, v), v ∈ V r, then we obtain a tree T

∗ = (V , E
∗), V = V \ V r.

This tree T
∗ represents the tree of max-min paths for the subgraph

G = (V , E) of G generated by vertex set V .
If we apply Algorithm 2 with respect to G then according to the

induction principle we find the tree of max-min paths T
∗, which de-

termines ε : V → R and the potential transformation c(u, v) =
c(u, v) + ε(u) − ε(v) on edges (u, v) ∈ E such that extr(c′, v) = 0,
∀v ∈ V . So, Algorithm 2 on G determines uniquely the values ε(u)
according to (5).
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It is easy to observe that in G for an arbitrary vertex u ∈ V r

calculated on the basis of formula (5) the following condition holds:

ε(u) =





max
v∈VG(u)

{ε(v) + c(u, v)}, u ∈ V r
⋂

VA;

min
v∈VG(u)

{ε(v) + c(u, v)}, u ∈ V r
⋂

VB.

This means that if we apply Algorithm 2 on G then after r−1 iterations
the vertex set U r−1 coincides with V \V r. So, Algorithm 2 determines
uniquely the values ε(v), v ∈ V . Nevertheless here we have to note
that in the process of the algorithm V k ⊂ Uk and V k may differ from
Uk for some k = 1, 2, . . . , r.

Taking into account that at the general step of the algorithm it
needs O(n2) elementary operations and k ≤ r(r ≤ n) we obtain that
the running time of the algorithm is O(n3).

4 An application of the algorithm for solving
zero value cyclic games

In this section we show that zero value ergodic cycle game can be
regarded as max-min paths problem and therefore the proposed algo-
rithm can be used for determining the optimal strategies of players in
such cyclic games.

At first we remind the formulations of cyclic games and some nec-
essary preliminary results.

4.1 Cyclic games: problem formulation

Let G = (V,E) be a finite directed graph in which every vertex u ∈ V
has at least one leaving edge e = (u, v) ∈ E. On edge set E a function
c: E → R is given which assigns a cost c(e) to each edge e ∈ E. In
addition the vertex set V is divided into two disjoint subsets VA and
VB (V = VA ∪ VB, VA ∩ VB = ∅) which we will regard as positions sets
of two players.
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On G we consider the following two-person game from [1,2]. The
game starts at position v0 ∈ V . If v0 ∈ VA then the move is done by
first player, otherwise it is done by second one. The move means the
passage from position v0 to the neighbour position v1 through the edge
e1 = (v0, v1) ∈ E. After that if v1 ∈ VA then the move is done by
first player, otherwise it is done by second one and so on indefinitely.

The first player has the aim to maximize lim
t→∞ inf

1
t

t∑

i=1

c(ei) while the

second player has the aim to minimize lim
t→∞ sup

1
t

t∑

i=1

c(ei).

In [1,2] it is proved that for this game there exists a value
p(v0) such that the first player has a strategy of moves that insures

lim
t→∞ inf

1
t

t∑

i=1

c(ei) ≥ p(v0) and the second player has a strategy of

moves that insures lim
t→∞ sup

1
t

t∑

i=1

c(ei) ≤ p(v0). Furthermore in [1,2]

it is shown that the players can achieve the value p(v0) applying the
strategies of moves which do not depend on t. This means that the con-
sidered game can be formulated in the terms of stationary strategies.
Such statement of the game in [2] is named cyclic game.

The strategies of players in cyclic game are defined as maps

sA: u → v ∈ VG(u) for u ∈ VA; sB: u → v ∈ VG(u) for u ∈ VB,

where VG(u) represents the set of extremities of edges e = (u, v) ∈ E,
i.e. VG(u) = {v ∈ V | e = (u, v) ∈ E}. Since G is a finite graph then
the sets of strategies of players

SA = {sA: u → v ∈ VG(u) for u ∈ VA};
SB = {sB: u → v ∈ VG(u) for u ∈ VB}

are finite sets. The payoff function Fv0 : SA × SB → R in cyclic game
is defined as follows.

Let sA ∈ SA and sB ∈ SB be fixed strategies of players. Denote by
Gs = (V, Es) the subgraph of G generated by edges of form (u, sA(u))

126



Polynomial Time Algorithm for Determining Max-Min Paths . . .

for u ∈ VA and (u, sB(u)) for u ∈ VB. Then Gs contains a unique
directed cycle Cs which can be reached from v0 through the edges
e ∈ Es. The value Fv0(sA, sB) we consider equal to mean edges cost of
cycle Cs, i.e.

Fv0(sA, sB) =
1

n(Cs)

∑

e∈E(Cs)

c(e),

where E(Cs) represents the set of edges of cycle Cs and n(Cs) is a
number of the edges of Cs. So, the cyclic game is determined uniquely
by the network (G,VA, VB, c) and starting position v0. In [1,2] it is
proved that there exist the strategies s∗A ∈ SA and s∗B ∈ SB such that

p(v) = Fv(s∗A, s∗B) = maxsA∈SA
minsB∈SB

Fv(sA, sB) =
= minsB∈SB

maxsA∈SA
Fv(sA, sB), ∀ v ∈ V.

So, the optimal strategies s∗A, s∗B of players in cyclic games do not
depend on starting position v although for different positions u, v ∈ V
the values p(u) and p(v) may be different. It means that the positions
set V can be divided into several classes V = V 1 ∪ V 2 ∪ · · · ∪ V k

according to values of positions p1, p2, . . . , pk, i.e. u, v ∈ V i if and only
if pi = p(u) = p(v). In the case k = 1 the network (G,VA, VB, c) is
named the ergodic network [2]. In [5, 6] it is shown that every cyclic
game with arbitrary network (G,VA, VB, c) and given starting position
v0 can be reduced to an auxiliary cyclic game on auxiliary ergodic
network (G′, V ′

A, V ′
B, c′).

4.2 Some Preliminary Results

In [2] the following theorem is formulated and proved.

Theorem 4. Let (G,VA, VB, c) be an arbitrary network with
the properties described in section 1. Then there exists the value
p(v), v ∈ V and the function ε: V → R which determine a poten-
tial transformation c′(u, v) = c(u, v) + ε(v) − ε(u) for costs on edges
e = (u, v) ∈ E, such that the following properties hold

a) p(u) = ext(c′, u) for v ∈ V,
b) p(u) = p(v) for u ∈ VA ∪ VB and v ∈ VEXT(c′, u),
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c) p(u) ≥ p(v) for u ∈ VA and v ∈ VG(u),
d) p(u) ≤ p(v) for u ∈ VB and v ∈ VG(u),
e) max

e∈E
|c′(e)| ≤ 2|V |max

e∈E
|c(e)|.

The values p(v), v ∈ V on network (G,VA, VB, c) are determined
unequally and the optimal strategies of players can be found in the fol-
lowing way: fix the arbitrary strategies s∗A: VA → V and s∗B: VB → V
such that s∗A(u) ∈ VEXT(c′, u) for u ∈ VA and s∗B(u) ∈ VEXT(c′, u)
for u ∈ VB.

Further we shall use the theorem 4 in the case of the ergodic network
(G,V1, V2, c), i.e. we shall use the following corollary.

Corollary 4. Let (G,VA, VB, c) be an ergodic network. Then
there exist the value p and the function ε: V → R which determines
a potential transformation c′(u, v) = c(u, v) + ε(v) − ε(u) for costs of
edges e = (u, v) ∈ E such that p = ext(c′, u) for u ∈ V . The optimal
strategies of players can be found as follows: fix arbitrary strategies
s∗A: VA → V and s∗B: VB → V such that s∗A(u) ∈ VEXT(c′, u) for
u ∈ VA and s∗B(u) ∈ VEXT(c′, u) for u ∈ VB.

4.3 The reduction of cyclic games to ergodic ones

Let us consider an arbitrary network (G,VA, VB, c) with given start-
ing position v0 ∈ V which determines a cyclic game. In [5, 6] it is
shown that this game can be reduced to a cyclic game on auxiliary
ergodic network (G′,WA,WB, c), G′ = (W,F ) in which the value p(v0)
is preserving, v0 ∈ W = V ∪X ∪ Y .

The graph G′ = (W,F ) is obtained from G if each edge e = (u, v)
is changed by a triple of edges e1 = (u, x), e2 = (x, y), e3 = (y, v)
with the costs c(e1) = c(e2) = c(e3) = c(e). Here x ∈ X, y ∈ Y and
u, v ∈ V ; W = V ∪X ∪Y . In addition in G′ each vertex x is connected
with v0 by edge (x, v0) with the cost c(x, v0) = M (M is a great value)
and each edge (y, v0) is connected with v0 by edge (y, v0) with the cost
c = (y, v0) = −M . In (G′,WA,WB, c) the sets WA and WB are defined
as follows: WA = VA ∪ Y ; WB = VB ∪X.

It is easy to observe that this reduction can be done in linear time.
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4.4 The reduction of zero value ergodic cyclic games to
max-min paths problem

Let us consider a zero value cyclic game on ergodic network (G,VA, VB,
c), G = (V, E). Then according to Theorem 8 there exists the function
ε : V → R which determines the potential transformation c′(u, v) =
c(u, v) + ε(v)− ε(u) on edges (u, v) ∈ E such that

ext(c, u) = 0, ∀v ∈ V. (6)

This means that if vf is a vertex of the cycle Cs∗ determined by optimal
strategies s∗A and s∗B then the problem of finding the function ε : V → R
which determines the canonic potential transformation is equivalent to
the problem of finding the values ε(v), v ∈ V in max-min paths problem
on G with sink vertex vf where ε(vf ) = 0.

So, in order to solve zero value cyclic game we fix each time a
vertex v ∈ V as a sink vertex (vf = v) and solve a max-min paths
problem on G with sink vertex vf . If for given vf = v the obtained
function ε : V → R on the basis of Algorithm 2 determines the potential
transformation which satisfies (6) then we fix s∗A and s∗B such that
s∗A(u) ∈ VEXT(c′, u) for u ∈ VA and s∗B(u) ∈ VEXT(c′, u) for u ∈ VB.
If for given v the function ε : V → R does not satisfy (6) then we select
another vertex v ∈ V as a sink vertex and so on. This means that the
optimal strategies of players in zero value ergodic cyclic games can be
found in time O(n4).
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