A generalization of the chromatic polynomial of a cycle

Julian A. Allagan

Abstract

We prove that if an edge of a cycle on n vertices is extended by adding k vertices, then the the chromatic polynomial of such generalized cycle is: $$
P\left(H_{k}, \lambda\right)=(\lambda-1)^{n} \sum_{i=0}^{k} \lambda^{i}+(-1)^{n}(\lambda-1) .
$$

\section*{1 Introduction}

We consider simple finite graphs and assume that the basic definitions from graph and hypergraph theory (see, for example, $[1,3,4]$) are familiar to the reader.

Proper coloring of a graph $G=(V, \mathcal{E})$, is a mapping $f: V(G) \rightarrow$ $\{1,2, \ldots, \lambda\}$ which is defined as an assignment of distinct colors from a finite set of colors $[\lambda]$ to the vertices of G in such a way that adjacent vertices have different colors. Such notion has been extended in 1966 by P. Erdös and A. Hajnal to the coloring of a hypergraph [2]. Thus, in general case, the proper coloring of a hypergraph $H=(V, \mathcal{E})$ is the labelling of the vertices of H in such a way that every hyperedge $E \in \mathcal{E}$ has at least two vertices of distinct colors.

The function $P(H, \lambda)$ counts the mappings $f: V(H) \rightarrow[\lambda]$ that properly color H using colors from the set $[\lambda]=\{1,2, \ldots, \lambda\}$. Thus, we define the chromatic polynomial of a hypergraph H as the number of all proper colorings of H using at most λ colors [3].

Let $C_{n}=(V, \mathcal{E})$ be a cycle on n vertices, $n \geq 3$, where $V=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Consider an edge $E=\left\{v_{1}, v_{2}\right\}$ of C_{n}. We sequentially increase the size of E by adding k pendant vertices (a vertex is called pendant if its degree is one) from the set $S_{k}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\}$, $k \geq 1$. Notice that E becomes a hyperedge E^{\prime}, containing $k+2 \geq 3$ vertices. We compute the chromatic polynomial of the obtained hypergraph $H_{k}=\left(V \cup S_{k}, \mathcal{E}^{\prime}\right)$, where k is the number of pendant vertices added.

2 Proof of the formula

Theorem 1. The chromatic polynomial of the hypergraph H_{k} has the following form:

$$
P\left(H_{k}, \lambda\right)=(\lambda-1)^{n} \sum_{i=0}^{k} \lambda^{i}+(-1)^{n}(\lambda-1) .
$$

Proof. Induction on the number of pendant vertices k. Observe that
$P\left(H_{0}, \lambda\right)=(\lambda-1)^{n} \lambda^{0}+(-1)^{n}(\lambda-1)=(\lambda-1)^{n}+(-1)^{n}(\lambda-1)=P\left(C_{n}, \lambda\right)$
what is the chromatic polynomial of any cycle on n vertices, see [4, p.229].

The idea of proof consists in the following procedure: we apply to $H_{k}, k \geq 1$, the connection-contraction algorithm which is a special case of the splitting-contraction algorithm for mixed hypergraphs, see [$3, \mathrm{p} .30]$. In any proper coloring of H, the vertices v_{1}, and x_{1} either have different colors or have the same color. In the first case, we connect x_{1} and v_{1} by an edge; in the second case, we contract the edge $\left\{x_{1}, v_{1}\right\}$ and in this way identify the vertices x_{1} and v_{1}. After removing of an exterior hyperedge containing vertices x_{1}, v_{1}, we obtain two graphs and some isolated vertices and compute the chromatic polynomial as a sum of two chromatic polynomials of the respective graphs.

Consider the case $k=1$. We obtain that

$$
P\left(H_{1}, \lambda\right)=P\left(T_{n+1}, \lambda\right)+P\left(H_{0}, \lambda\right),
$$

where T_{n} is a tree on n vertices; it is well known that

$$
P\left(T_{n}, \lambda\right)=\lambda(\lambda-1)^{n-1} .
$$

Since $P\left(H_{0}, \lambda\right)=P\left(C_{n}, \lambda\right)=(\lambda-1)^{n}+(-1)^{n}(\lambda-1)$ we obtain

$$
\begin{aligned}
P\left(H_{1}, \lambda\right) & =\lambda(\lambda-1)^{n}+(\lambda-1)^{n}+(-1)^{n}(\lambda-1)= \\
& =(\lambda-1)^{n}(\lambda+1)+(-1)^{n}(\lambda-1) .
\end{aligned}
$$

Consider the case $k=2$. Using the same procedure we obtain a tree, a cycle and one isolated vertex. Therefore

$$
P\left(H_{2}, \lambda\right)=P\left(T_{n+1}, \lambda\right) \lambda+P\left(H_{1}, \lambda\right) .
$$

Notice that the chromatic polynomial of the independent vertex set $P\left(S_{k}, \lambda\right)=\lambda^{k}$ because each isolated vertex can be assigned λ colors. Using $P\left(H_{1}, \lambda\right)=(\lambda-1)^{n}(\lambda+1)+(-1)^{n}(\lambda-1)$ we establish the following equality:

$$
\begin{aligned}
P\left(H_{2}, \lambda\right) & =\lambda(\lambda-1)^{n} \lambda+(\lambda-1)^{n}(\lambda+1)+(-1)^{n}(\lambda-1)= \\
& =(\lambda-1)^{n}\left(\lambda^{2}+\lambda+1\right)+(-1)^{n}(\lambda-1) .
\end{aligned}
$$

Let us assume that our formula for the chromatic polynomial of $P\left(H_{j}, \lambda\right)$ is true for any number $j \geq 1$ of pendant vertices. We now prove that

$$
P\left(H_{j+1}, \lambda\right)=(\lambda-1)^{n}\left(\lambda^{j+1}+\lambda^{j}+\ldots+\lambda^{1}+\lambda^{0}\right)+(-1)^{n}(\lambda-1) .
$$

Consider $j+1$ number of pendant vertices from the set $S_{j+1}=$ $\left\{x_{1}, x_{2}, \ldots, x_{j}, x_{j+1}\right\}$ added to the edge $E=\left\{v_{1}, v_{2}\right\}$ of the cycle $C_{n}=(V, \mathcal{E})$. The edge $E=\left\{v_{1}, v_{2}\right\}$ becomes a hyperedge $E^{\prime}=\left\{v_{1}, v_{2}, x_{1}, x_{2}, \ldots, x_{j}, x_{j+1}\right\} \in \mathcal{E}^{\prime}$ of the new graph $H_{j+1}=$ $\left(V \cup S_{j+1}, \mathcal{E}^{\prime}\right)$. Applying the algorithm as described in the previous cases to H_{j+1} yields the following chromatic polynomial equality:

$$
P\left(H_{j+1}, \lambda\right)=P\left(T_{n+1}, \lambda\right) P\left(S_{j}, \lambda\right)+P\left(H_{j}, \lambda\right) .
$$

By the induction hypothesis,

$$
P\left(H_{j}, \lambda\right)=(\lambda-1)^{n}\left(\lambda^{j}+\lambda^{j-1}+\ldots+\lambda^{1}+\lambda^{0}\right)+(-1)^{n}(\lambda-1) ;
$$

also, $P\left(S_{j}, \lambda\right)=\lambda^{j}$. Therefore the following equality holds:

$$
\begin{gathered}
P\left(H_{j+1}, \lambda\right)= \\
=\lambda(\lambda-1)^{n} \lambda^{j}+(\lambda-1)^{n}\left(\lambda^{j}+\lambda^{j-1}+\ldots+\lambda^{1}+\lambda^{0}\right)+(-1)^{n}(\lambda-1)= \\
=(\lambda-1)^{n}\left(\lambda^{j+1}+\lambda^{j}+\ldots+\lambda^{1}+\lambda^{0}\right)+(-1)^{n}(\lambda-1)
\end{gathered}
$$

Consequently,

$$
P\left(H_{k}, \lambda\right)=(\lambda-1)^{n} \sum_{i=0}^{k} \lambda^{i}+(-1)^{n}(\lambda-1)
$$

holds for any number $k \geq 1$ of pendant vertices added to an edge of C_{n}.

Acknowledgements

The author expresses his sincere gratitude to Professor Vitaly Voloshin for multilateral help.

References

[1] C. Berge. Graphs and Hypergraphs. North Holland, 1989.
[2] P. Erdös, A. Hajnal. On chromatic number of graphs and setsystems. Acta Math. Acad. Sci. Hung., N.17, 1966, pp.61-99.
[3] V.Voloshin. Coloring Mixed Hypergraphs: Theory, Algorithms and Applications. American Mathematical Society 2002.
[4] D. West. Introduction to Graph Theory. Prentice Hall, 2001.

Department of Mathematics \& Physics,
Troy University
Troy, Alabama
E-mail: aallagan@hotmail.com

