Computer Science Journal of Moldova, vol.13, no.1(37), 2005

Variable Bit Permutations: Linear
Characteristics and Pure VBP-Based Cipher

N.A. Moldovyan, A.A. Moldovyan, N.D. Goots

Abstract

This paper describes linear characteristics of the variable bit
permutations (VBP) that are used in the form of the data-
dependent permutations. This primitive suites well to the design
of fast cheap-hardware-oriented ciphers. Because of the existence
of one characteristic with bias 1/2 we discuss possibility to de-
sign a pure VBP-based block ciphers that are indistinguishable
from a random transformation. We present design of the cipher
which is based only on VBP, fixed permutations, and XOR op-
erations. Performed analysis has shown that the designed pure
VBP-based block cipher is secure against differential and linear
attacks confirming the efficiency of the VBP as cryptographic
primitive.

Key words: variable bit permutations, data-dependent per-
mutations, linear analysis, fast block cipher

1 Introduction

Permutation networks (PNs) have been widely studied in the field of
parallel processing and telephone switching systems [1] and they are
very interesting to be used as cryptographic primitives. The PNs are
well suited for cryptographic applications, since they allow one to spec-
ify and perform permutations at the same time. A variant of the
symmetric cryptosystem based on the key-controlled PNs and Boolean
functions is presented in [2]. Another cryptographic application of PNs
is presented by the cipher ICE [3] in which a very simple PN is used
to specify a key-dependent fixed permutation. Such use of PNs has
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been shown [4] to be not very effective against differential cryptanaly-
sis. A more attractive approach is the use of PNs to perform variable
bit permutations (VBP) implemented as data-dependent permutations
(DDP) [5]. Efficiency of the use of data-dependent operations has been
demonstrated by examples of ciphers RC5 [6], RC6 [7] and MARS [§],
which are based on data-dependent rotations with 32 different modifi-
cations. The PNs can be used as controlled permutation (CP) boxes to
perform DDP. It is easy to design CP boxes (CPBs) giving possibility
to specify 264 and more different modifications of the VBP performed
on data subblocks [5] and subkeys [9].

This paper counsiders the linear characteristics of VBP, design of
the pure VBP-based cipher oriented to cheap hardware implementa-
tion, and its security against differential and linear attacks. In section
2 we consider general design of the CP boxes. We also construct mu-
tually inverse CP boxes Psy/96 and P?;}% of the order h = 2, (see
Definition 3) both of them having the same topology. In section 3 we
counsider algebraic and probabilistic properties of CP. Linear character-
istics of the CP boxes are estimated in general case. In section 4 a pure
VBP-based cipher DDP-64 using simple key scheduling is described. In
section 5 the linear and differential analysis of DDP-64 is considered.
We also propose to use switchable operations to avoid weak keys and
homogeneity of the encryption in the case of simple key scheduling.

Notation

o Let {0,1}* denote the set of all binary vectors U = (uy,..., us),
where Vi € {1, ..., s} u; € {0,1}.

o The Hamming weight ¢(U) of U be defined as the number of

nonzero components of U and ¢'(U) denote the parity of o(U), i.e.

e(U) ] >.i—1 ui, where p(U) € {0,1, ..., s} and ¢'(U) = ©(U) mod 2.

o Let us fix 4, 1 € {1, ..., s}, and write E;, for which ¢(E;) = 1 and
e; = 1.

oLet By = (0,...,0) and Dy = (1,...,1), i.e. ¢(Ep) = 0 and ¢(Dy) =
S.

o Let X @Y denote the bit-wise XOR (EXCLUSIVE-OR) operation
of the two vectors X and Y : X,Y € {0,1}".

o Let X ® Y denote bit-wise AND operation of the two vectors
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X and Y: X,Y € {0,1}*. For ¢ € {0,1} and X € {0,1}* we define
Y=c-X, where y; =c-z; Vi € {1, ..., s}.

o U denotes bit-wise complement of U, i.e. U “y ® Dy YU €
{0,1}%.

© Let o denote the binary scalar product: ¢ = Ae X = ¢/(A®X) (c €
{0,1}).

o Let Y = X>>* denote rotation of the word X by k bits, where
Vie{l,...,n—k} we have y; = 2,1 and Vie{n —k+1,...,n} we have
Yi = Titk—n-

2 Design of fast CP boxes

Let Y = F(X,V) be the two-variable function F:{0,1}" x{0,1}"* —
{0,1}".

Definition 1. Function F(X,V) is called a CP box (or P, ,-box),
if for each fized V' the function F(X,V) is a bijective mapping defined
as bit permutation.

For fixed V we have fixed bit permutation operation called CP
modification or modification of VBP operation. We shall denote mod-
ifications as F'yy or Py. We shall also use notation PTE‘/QZ for CPB with
n-bit input, n-bit output, and m-bit control input . Thus, the notation
Y =Py (X, V) =P} (X) means Y =Py (X).

In section 3.2 we use the following statements:

1. Fv(A) =B = Fv(Z) = B.

2. Fy(A® B) =Fy(A) @ Fy(B).

3. Fy(A) =B = ¢(4) =¢(B) and ¢(A) # ¢(B) = Fy(A) #
B.

4. 9(A@B)=¢(A) +¢(B)—p(A®B). If A® B = Ey, then
©(A® B) = ¢(A) + ¢(B).

While constructing CPBs it is preferable to use the layered topology
of PNs, since it permits to design very fast CPBs. A layered CPB
P, /m (Fig. 1) can be represented as superposition of s = 2m/n active
layers separated with s — 1 fixed permutations that are implemented in
hardware as simple connections. Each active layer (Fig. 1b) in a CPB
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with n-bit input is represented by the set of n/2 elementary boxes P, /1
controlled with one bit v: y; = z14, and y2 = w2, (see Fig. la).
General structure of the layered CPB is shown in Fig. 1c.

In all figures in this paper the solid lines indicate data movement,
while dotted lines indicate the controlling bits. We assume that in a lay-
ered CP box all elementary switching elements are consecutively num-
bered from left to right and from top to bottom and the ith bit of vec-
tor V' controls the ith switching element Py/;. In accordance with the
number of layers the vector V' can be represented as concatenation of s
vectors Vi, Va, ..., Vi € {0,1}"2 ie. V = (Vi, Vo, ..., Vi) = V1| Va)...|Vs.

=S T Ty T T T Tt TA
|
: a) X1 X3 : b) X1 X2 X3 X4 Xn-1 Xn i
|
| | |u| V v Vs |
: l l v : 1:.2/1 1 I)2/1 : 2/1 /2i
i P2/1 < | * * * * ) * gl :
! l l L oy Y3 Ya Yn-1 Yn |
___________________ 4
: | C) X in :
| Y1 y2 I v !
R —
td) | 1" active layer 4---l-i
! |
i X=X X) : Fixed permutation 7T, I
I n | :
! | nd . V2 I
i 5] Vi 2 active layer <!
: P n/m (--/--: r ° ry :
| i - o Fixed permutation 7% i
| | T Vi !
i Y= V) : s active layer i
| | |

Figure 1. Notation of the Py/;- (a) and Pn_/1 boxes (d), structure of

-
one active layer (b) and general structure of the layered CP boxes (c)

The following two definitions we use according to [5].

Definition 2. The CP bozes Py, and P;lm are mutual inverses,
if for all possible values of the vector V the corresponding CP modifi-
cations Py and P(/l are mutual inverses.
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Definition 3. Suppose for arbitrary h < n input bits To,, Tay, -y Tay,
and arbitrary h output bits ys,,yg,, ..., ys, there is at least one value V
which specifies a permutation Py moving x,; to yg, for alli =1,2,..., h.
Such a P, ,,-boz is called a CP box of the order h.

One active layer can be considered as the single-layer CPB S,;. It is
evidently that Py/; = 2/1, therefore S,, = S;!. A layered CPB Po/m
can be represented as superposition of the blt permutation operatlons
(Vs)

Pn/m = S%Vl)omosgl‘/?)omo“. omg_10Sy °’. The respective box P /m has

the following structure P;1m:S£1 )ows 1oS(V5 )07r;120...o ) osgvl).

Thus, to construct inverse of the CP box P,, /,,, it is sufficient to number
the boxes Py from left to right and from bottom to top and to replace
m; by 7r5__1i. We shall assume that in the boxes P 1 the switching
elements Py, are consecutively numbered from left to rlght and from
bottom to top, i.e. in the both P,, /,;, and P;/lm the th bit of V' controls
the ith elementary box P,,;. Note that the vector V; corresponding
to the jth active layer in the box P, ,, controls the (s—j+1)th active
layer in Pn Jm

In the VBP-based ciphers described below there are used P33 /g6-
and P32 /96° -boxes. These boxes have the same structure compris-
ing two subsequent cascades. The upper one consists of four boxes
Ps/12 (Fig. 2a) and the lower one consists of four parallel boxes P8 /12
(Fig. 2b). The cascades are separated with fixed permutational invo-
lution described as follows:

(1)(2,9)(3,17)(4,25)(5)(6,13)(7,21)(8,29) (10)(11,18)
(12,26)(14)(15,22)(16,30)(19)(20,27)(23)(24,31)(28)(32) *

The structure of the boxes Py /6 and P32/96 is presented in Fig. 2c
and 2d. One can show that both of these CP boxes have the second

order and each of two superpositions (Pg/)%) OPgQ/.t))ﬁ and sz/)%

’ —1
(Pg/gﬁ) represent a twelve-layer CPB of the order h = 32.
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Figure 2. The first-order boxes Py /15 (a) and P; . (b) and the second-

8/12
order boxes Pyy /96 (¢) and Pg,_g}g6 (d)

3 Properties of the controlled permutations

3.1 Terms of the linear cryptanalysis

Let F: {0,1}" — {0,1}",(r > n) be given. The resistance of the
function against linear cryptanalysis (LCA) [10,11] is determined by
the maximal value |p|, where
def 1
p =pr =pr(Lu,ly) = I(’Jr(UoFuGBYOFy=O)—§, (1)

U, lu € {0,1}", Y € {0,1}", Iy € {0,1}"\ Ep, and Lu, Iy are fixed
vectors, that we called masks, and the value p is called the deviation
(or bias). Similar to the notation used in [11] we describe linear char-
acteristic (LC) of the function F as the combination (Du, Ty, py).

Let Y= F(X, V) be the two-variable function F: {0, 1}"x{0,1}™ —
{0,1}". Then for U = X|V, and Tu = Tz|Tv (1) is transformed in
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pr (T, Ty, Tv) =
def

1
= pp(Lz|lv,Ty) = )lg]a(XoFxGBVOFv@YoFy =0) — 7" (2)
In particular, the value V' corresponds to a subkey. For fixed value V'
the deviation has the form

pr, Lz, Uy, Tv) =
1
= pp, (To|To,Ty) & PrX ele@Vel@Y ely=0) -2 (3)
Below we shall also use the LC with the value pg, . According to dif-
ferent papers that dealt with the case of the uniformly distributed in-
dependent variables X and V the resistance of the function F against
LCA can be estimated with the help of formulas using deviations pr, .

For example, in [11] it has been derived the following formula:

Y omax LPFMr Ty Y max — 3 LPFY(Iz - Ty)
T, Iy £0 Lz, Ly£0 2m veloym ’
where  LPTv(Dg — Iy) & (AXEAGU N eToo Iy (N)ely) _ )2
Actually LP*V (T — Ty) = (2pp, (Tz, Ty))?, (4)
1
where pr, (L, Ty) = P)’(r(XOI‘a:GBFV(X)OI‘y =0)— 7

(5)
The next section of the present paper considers the case of arbitrary
distribution of the variable V including the case V = const. In this
calculation of the deviation p it is necessary to use the total probability
formula:
pF(Fx7Fy7PU) = Zva(Fx7Fy7FU) : PV7 (6)
%
where Py is the probability of the given value V.
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3.2 Linear characteristics

Analyzing LC of CP boxes we assume, that X and V are independent

variables, and Px = ﬁ = 2%, secondly, for masks 'z, 'y, T'v we
will use identifications A, B, C, in accordance with [11]. Let
d
Ae(A,B) €S 05, (4,B) - Py, (7)
%

def 1a if Fy (A :B;
where 05, (A, B) = {0 othe‘;x(;vis)e.

Note that Ap(A, B) is the probability that F(A)=B, ie. Pp(A—
B) = Ar(A, B). Accordingly, let

)\F(AaBaC) défZGFV(AaBao)PVa (8)
|4

def {1, i Fy(A)=B, CeV =0;
where 0p, (4,B,C) = {0 othe‘;xSvis)e.

Below we use the following statements:

1. p(A)#@(B)=Fy(A) #BVYV = Ap(A,B) =0.

2. p(A) =p(B) = Ap(A,B) = A\p(A,B).

3. Ar(A,B) = Ar(A, B, Ey).

4. YC \p(A,B,C) < Ap(A, B).

These statements are quite evident and can be easy derived using
general properties of permutations. Let us counsider the function

1, fAe X @ BeFy(X)®CeV =0;

def
Pv(X) = {0, otherwise.

It is easy to see, that if Px = ﬁ, then

Prv(A.B.C) = i S W (X) — 5.
X
1

Lemma. Let X and V be independent variables and Px = ook Then

1 (08, (A,B,C), if Fy(A) = B;
H{X3 2. BvX) = { 1/2, if Fy(A)# B.

X

(10)
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Proof. Let us consider two variants: Fy (A) = B and Fy (A) # B.
Case 1. Fy(A)=B=VX: Ae X @ BeFy(X) =

— Ao X OF(A) s Fr(X) = ¢(A8 X) 0 ¢/ (Fy(4) @ Fy(X)) =

=¢(AeX)e¢(Fyv(Ae X)) =¢(U)® ¢ (Fy(U)) =0.

Hence, VX Uy (X)=CeV @1 and

(X3 2 \IIV(X):{O fCeV £0. 0r, (A, B, C).
X,Fv(A):B ’

Case 2. B # Fy(A). Let A': B = Fy(A'). It is obvious, that
A £ A Let AV = A/ @A A12 = A® A" and A® = A A"
Since A" = A2 g A@ and (12 @ A@ = E; are held, then
P(A'® X) = p(A1?) @ X @ A® ® X) = p(A1?) ® X) + p(A? ® X)
and (A ® X) = p(AD @ X) + p(A1?) @ X).
According to Case 1, VX the equation A’ ¢ X ® BeFy (X) = 0 is held,
ie. BeFy(X)=A'"eX. Then Ae X P BeFy(X)=AeXDA eX =
=0 (A X)® (A ®X)=
= ¢'(AD @ X) ® (A" @ X) & ¢' (A" @ X) @ ¢'(4® © X) =
= (AY ® X)® ¢' (AP ® X) =

- <Ziagl)_1 :z:z> mod 2 & (Z

@ _y x1> mod 2 =

ila;

y(X)=| Y z|mod2®| > x| mod2&CeVel.

ilaM=1 ila?=1

Let t = o(A®). The whole set of binary vectors {X} (|[{X}| = 2")
can be represented as an association of 2" disjoint subsets, each of
which contains 2! vectors differing only in the digits corresponding
to the active (non-zero) bits of the mask A(?). Note that for each

such subset <Zia(1)_1 :1:1> mod 2 and C' e V @ 1 are constants and

<Zia(2)_1 :1:1> mod 2 is even in exactly one-half cases, i.e. for 277t .

20-1 = 271 yalues X Uy (X) =0 and for remaining 2" ! values X
Uy (X) =1 are held. Therefore, for each permutations Fy: Fy (A) #
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B we have

! Y w(X) r 1 O
N e =

Theorem 1. (About deviations of controlled permutations). Let X

and 'V be independent variables and Py = ﬁ Then

2pr(A,B,C) =2\p(A,B,C) — Ar(A, B) (11)
Proof. In accordance with (6),(9) and (10) we have

2pF(A,B,C) = 2ZpFV(A,B,C) . PV =
1%

=2 Z PV'pFV(A7B70)+2 Z PV'pFV(Avac):

1 1 1
=2 > Pv-(GFV(A,B,C)—§>+z > pv.<§_§):
V,Fy (A)=B Vi ()28

=2 PyOp,(A,B,C)=> Py-0r, (A B) =2\, (A, B,C)-Ap, (A,B).
14 14

O
Corollary 1. 2pr(A,B) = 2pr(A, B, Ey) = Pr(A — B).
Indeed,
2pr(A,B) =2pr(A, B, Ey) = 2Ap, (A, B, Ey) — Ap, (A, B) =
:2)\FV(A,B)—)\FV(A,B) :)\FV(A;B) :pF(A—>B) O

Corollary 2. VA, B 0<2pp(A,B)<1.
Corollary 3. ¢(A) # ¢(B) = pr(A,B) =0.
Indeed,
w(A) Zp(B)=B#Fy(A) VYV = Ap(A,B)=0=pp(A,B)=0. O
Corollary 4. VC |pr(A,B,C)| <pr(4A,B).
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Indeed7 0< AF(AaBao) < )\F(A’B) = |2pF(AaBao)| =
= |2)\F(A,B,C) — )\F(A,B)| < )\F(A,B) = 2pF(A,B) ==

Corollary 5. VA,B ZB:QD(B):QO(A)2PF(A’B) = ].,
ZA:(p(A):np(B)2pF(Aa B) =1
Indeed, VA,V 3!B: B = Fy(A) = Y gAr(A,B) = 1. Since
ZB:«p(B);éga(A) AF(Aa B) =0, then ZB AF (A7 B) =
- ZB:@(B):QO(A) AR (A7 B) =1l= ZB:(p(B):Lp(A) 2pF(A7 B) =
= Y Bip(B)=p(4) AF(A, B) = 1. The second formula can be similarly
derived. O

Corollary 6. VA, B pp(A,B) = pr(A, B). This is obvious, since
Ar(A, B) = Ap(A, B). O

Corollary 7. Let A= B = Ey or A= B = Dy. Then 2pr(A,B) = 1.

Corollary 8. Let ¢(A) = 1. If Pp(A — B) = const VB €
{0,1}" : @(B) = 1, then 2pp(A,B) = Pp(A — B) = 1 ie
pr(4, B) = 5(Pr(A = B) = 4.

Indeed, there exist exactly n of vectors B € {0,1}": ¢(B) = 1,
therefore Pr(A — B) = const = 1/n. This result was obtained in
[12] for data-dependent rotations which are a particular case of the CP
operations. O

Conclusion The absolute value of the deviation of LC with a non-
zero mask of the controlling vector does not exceed the wvalue of the
deviation of LC with a zero mask of V, the last being equal to half of
the probability that a given input mask transforms into a given output
mask.

Since the theorem and its corollaries include the doubled value of
deviation, it is reasonable to use the parameter p’ = |2p| which for zero
mask of the controlling vector coincide with the probability Pr(A —
B), ie. p' =|2p| = 2pp(A,B) = Pr(A — B).

The practical significance of the derived theorem and its corollaries
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lies in simplification of the calculation of LC:

1. To estimate LC of the CP boxes one can analyze ounly linear
characteristics with zero mask of the controlling vector V.

2. The calculation of the deviation pyp (A, B) is equivalent to the
calculation of the probability Pr(A — B).

3. It is sufficient to analyze only deviations of LC for which p(A) <
n/2.

4. While designing CP boxes, the condition VA, B ¢ {Ey, Do}
Prp(A — B) < 1/n is to be satisfied.

Let us consider item 4. Let &(t) def maxy py(A)— Pr(A — B) be
the function of the maximum value Pr(A — B) for given weight ¢. It
is easy to see, that £(n —t) = &(t), therefore it is enough to analyze
this function only for ¢ = {1,...,n/2}. Since the number of different
vectors B with weight ¢(B) = 1 equals n, for ¢(A) = 1 from corollary
5 one can obtain £(t) > 1/n. If VA, B € 0,1": 9(A) = ¢(B) = 1 we
have Pp(A — B) = const, then &(t) = 1/n is held. This is the case of
the uniform CP boxes of the first order.

For arbitrary ¢ <n the number of different vectors B with weight ¢
equals (7;) . Thus, there are premises of the construction of CP boxes
with monotonically descending function &(t) for t = {1,...,n/2}. For
CP boxes of the hth order we have Pp(A — B) > 0 VA, B : p(A) =
©(B) = h. The approximately uniform CP boxes are characterized by
the condition Pp(A — B) = const [5], hence for them we have Pp(A —
B) = 1/q, where q = (Z) . A necessary condition for construction of
such CP boxes is the inequality 2™ > (}') , where m is the length of the
controlling vector. However for weight 1 it is impossible to design a CP
box with pp < % While designing ciphers the VBP operations should
be combined with other operations in order to thwart linear attacks
using the LC with masks A = B = (1,...,1) (see, for example, the use
of the special nonlinear operation G in the cipher SPECTR-H64 [13]).
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4 The block cipher DDP-64

While designing the single key cryptosystem DDP-64 our strategy was
oriented to the extensive use of the controlled operations in the form
of the CP box operations. This cryptographic primitive is fast and
inexpensive while implementing in hardware. Our design criteria were
the following:

1. The cryptosystem should be an iterated 64-bit cipher.

2. The cryptalgorithm should be able to perform encryption and
decryption with simple and fast change of the sequence of the used
subkeys.

3. The cipher should be fast in the case of frequent change of keys.
For this reason we do not use precomputations.

4. Round transformation of data subblocks should be characterized
by high parallelism.

5. The cipher should use only DDP as basic cryptographic primitive
(therefore it is called DDP-64).

When designing a cipher based only on XOR and bit permutations
(fixed and data-dependent ones) one of important problems is that
combination of these operations usually gives ciphers which have the
following property: ”the parity of the plaintext + the parity of the key
= the parity of the ciphertext”. Such ciphers are not pseudorandom.
To avoid this problem we have constructed a special operational box
F that is based on fixed and data-dependent permutations. Structure
of this box provides the arbitrary change of the oddness of the out-
put. General structure of the encryption round proposed in [14] and
implemented in the cipher SPECTR-H64 suites very well to satisfy our
design criteria, therefore we have used SPECTR-H64 as a prototype
when developing the pure VBP-based cipher DDP-64 having 64-bit in-
put. The general encryption scheme of DDP-64 is described by the
following formulas:

C =T (M, K) and M =TE(C K),

where M is the plaintext, C is the ciphertext (M,C € {0,1}%%), K is
the secrete key (K € {0,1}!2%), T is the transformation function, and

96



Variable Bit Permutations: Linear Characteristics and ...

S

\"& V:
puiel P
96 32/96

Figure 3. General structure of DDP-64 (a) and procedure Crypt(® (b)

e € {0,1} is a parameter defining encryption (e = 0) or decryption
(e = 1) mode. The secrete key is considered as concatenation of four
32-bit subkeys K;, 1 =1,2,3,4: K = (K, Ky, K3, K4,). DDP-64 uses
no preprocessing to transform subkeys. Iterative structure of DDP-64
is shown in Fig. 3a and can be described as follows. First data block X
is divided into two 32-bit subblocks L and R and initial transformation
is performed as XORing subblocks with corresponding subkeys. Then
10 rounds with procedure Crypt(e) followed by final transformation
are performed. The structure of the procedure Crypt(e) is shown in
Fig. 3b.

4.1 Formation of the round keys

Each round key Q; = (Q;I),Q?),Q?),Q;@) € {0,1}3 is some e-
dependent transposition of the subkeys K, Ko, K3, K4. Figure 4 and

Table 1 specify round subkeys and their correspondence to the secret
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key. Subkeys K; (i = 1,...,4) are used directly in each round avoiding
any processing them. The transposing subkeys K, Ko, K3, K, is per-
formed with two boxes PQ(??,Q e The box PQ(??,Q /1 is some single-layer
CPB in which all elementary switching elements are controlled with

the same bit e. The pairs (K7, K3) and (Ks, K) are inputs of the

corresponding boxes PQ(EX)32 e Four 32-bit outputs of two boxes P2(f<)32 /1
are the e-dependent subkeys O; (i = 1,2,3,4). Thus, we have O; =K,
if e = 0, and 01=K3, 02=K4, 03=K1, O4=K2, if e = 1. Be-
ing free of any precomputing subkeys and using the same algorithm to
perform encryption and decryption the cipher DDP-64 suites well to
cheap hardware implementation.

The left data subblock combined with subkeys @\ and Q| is
used to form the controlling vectors V and V' which specify the cur-
rent modifications of the VBP performed on the right data subblock

with boxes P35/96 and P:)T;/%, respectively. The left data subblock com-

bined with subkeys Q§2) and Q§4) is also transformed with two F-boxes
implementing special variant of VBP.

4.2 Switchable fixed permutations

Change of the ciphering mode is defined by swapping subkeys K; with
two single-layer boxes P2(f<)32 /I (see Fig. 4a) and by switching the e'-
dependent fixed permutation I1(¢), where ¢’ € {0,1} and ¢’ depends
on e and on the round number j. The e’-dependent fixed permutation
in the left branch of the cryptoscheme is used to prevent homogeneity
of the encryption procedure in the case of the key having structure
K = (X, X, X, X). For this reason the schedule of the switching bit €’ is
non-periodic (see Table 1). The structure of the switchable operations
T1(¢) is shown in Fig. 4b. Tt is easy to see that we have (0 = TI,
I =107, and IE®Y(Y) = X, if Y = II(¢)(X). The permutation
IT is specified as follows:

(1,4,7,2,5,8,3,6)(9,12,15,10,13,16,11,14)
(17,20,23,18,21,24,19,22)(25,28,31,26,29,32,27,30).
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Table 1. Specification of the round subkeys and switching bit €
j = 1 2 3 4 5 6 7 8 9 |10
QY= loslo|o]os]os|os]oi]oi|0:] 04
QP = o] 05| 0|0 0. |00 |0 05|04
Q()

)

W= 10,04 05]0,]0 01| 0, |05] 04| 0
QY= lo]o|oi|os|oi|oi|os|0i| 0|0
eO=11]o0o[1]1]0 1 1]0]1
eje=1= 1]o]Jo]oO 001

I X |

' 1 3 2 4 R S

a) 32 |3 2 3 b) i I T

ie A 4 y — e i M " i

Lefep \ e { ----- ! |

bl JELE e | —Y— !

32 324 \ / £ 32 320 . : '..‘:',\.','::‘ 1
v v v v : """"" :
0, O3 o 0, Oy (e,)/'/---- —————— .
| P2x32/1 EP2x32/1 vY :

Figure 4. Swapping subkeys (a) and structure of the switchable fixed
permutation (b)

4.3 Variable permutations

Variable permutations are performed with the CP boxes of the second

(V) v\t ;
order Py, o5 and (P32/96) (see section 2) and F-boxes. The F-boxes
represent special type of VBP. Construction of the F-boxes provides
arbitrary change of the output vector weight. Indeed, depending on L,
Q§2), and Q§4) eight of 32 input bits are replaced by bits of the constant
C = (10101010) while performing the operation F. Structure of the
F-box is presented in Fig. 5. The F-box comprises two three-layer CP
boxes P3,/,5 and P;;/ 4 Separated with fixed permutation II" which is
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described as follows:

(1,33)(2,9)(3,17)(4,25)(5)(6,13)(7,21)(8,34,29,40)(10,35)(11,18)
(12,26)(14)(15,36,22,38)(16,30)(19,37)(20,27)(23) (24,31)(28,39)(32).

The 80-bit controlling vector W = (Wy, Wy, W3, W4, W5), where
W; € {0,116, of the F-box is divided into 48-bit controlling vector
(W1, W2, W3) of the CP box Py 4s and 32-bit part (Wy, W) of the
controlling vector (Ws, Wy, W5) of the P;QI/ 15-Pox. The 16-bit vector
W is formed with the extension box ”Ext” (Fig. 5a) using eight of the
most significant bits of the output H = (Hy, Hy, H3, Hy, H5), where
H; € {0,1}8, of the permutation II': Ws = (Hj,Hs). The 80-bit
controlling vector W is formed with the extension box E’ input of
which is the vector Z’. Relation between Z' and W is the following:
W, = le’ Wy = le>>>5’ Wy = le>>>10’ W,y = lel’ W5 = Zilz>>>5‘

! 2
| i:
| ' 8 !
| W 8"Z1 8"22 "Z3 8"24 |
g Poio|  |Psia| |Psiz| |Psiz i |
| ’ a) | \3ID, 84D, siD, 51D,
i (D]7D25D37D4»C)/v40 ) i b) : _____ 1______‘{__2 ___IV_D_:i____‘__j_:
| Fixed permutation [1 i 32 iD = (D,,Dy,D3,Dy)
i AAAAAAAAA ' ‘: _1
S Xy (H,HyH H Hy)  Prus ) i(Hlsz»HsaHO
¥ 0t 3 3 . AR
f l 3 T H ! ' 8{H, 8 A
i IV o Sy 83Hy S EH.
o F oo LW Wy S T g i
1 80 - | Passeni 3 Wﬁv: Pyio|  [Psnz]| [Pona| [Piio]
Y I 16 e sty sty skr sy,
.......... 3 Wt

Figure 5. Structure of the F-box (a) and of the CP boxes P, /45 and
~1
P3s/as (b)
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The vectors Wi, Wy, and W3 control the 1st, 2nd, and 3d ac-
tive layers of the P3,/45-box and the vectors Wy, W5, and Ws control
the 1st, 2nd, and 3d active layers of the P?:Ql/ 15~box, correspondingly.
The vector D that is the output of P35/5 is concatenated with con-
stant C forming the vector (D;, D9, D3, Dy, C) at input of the fixed
permutation II'. At output of II' the vector (Hy, Ho, H3, Hy, Hs),
where H5 = (dl, dg, d107 d15, dlg, d22, dgg, dgg), is formed. Taklng nto
account the structure of the P3;/43-box one can see that superposi-
tion Pgy/g9011" moves arbitrary two bits of each byte Z; of the vector
Z =(4y,Zy,Z3, Zy) to Hs with the same probability. Arbitrary single
bit of each byte Z; moves to Hs with probability 272. Thus, the vector
Hj is composed of eight bits of Z = L & Q§4) which are replaced by 8
bits of C' at the output of the F-box. Depending on W different bits of
Z are replaced, therefore the oddness of the output vector of the F-box
changes arbitrarily.

4.4 Permutational involutions

Rotation operation ”>3> 16" performed on the left data subblock
is used as permutational involution saving the ”symmetric” use of
the most significant (Lj) and least significant (L;) halfs of L while
performing two F-box operations. The fixed permutation 11(¢) has
been selected to provide condition (II(¢)(L))>>16 = I1(¢)(L>>16) for
¢’ € {0,1} which is necessary for correct decryption. Permutational in-
volution I in the right branch provides each bit at the input of the box

P33/96 influences 31 bits at the output of the box P?:Zl/% even in the case

V = V' (without I in the case V = V' each input bit of P3;/g¢ influ-

g;/%). The involution I is described with

two rotations by eight bits: Y = I(X1,Xy) = (X778, X578), where
X1, X € {0,1}!6. This permutation improves the resultant VBP cor-

responding to subsequently performed operations P3y/96 and P?:Ql/%.

: vy tion V) (vt
Indeed, even in the case V =V the superposition P32/%o I O(P32/96)
forms an effective CP box permutation all modifications of which are

different permutational involutions. In general case we have V # V’,

ences only one output bit of P
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since the data are combined with different subkeys while forming the
controlling vectors corresponding to the operations Pgy /96 and P?,_Q}%.
Investigating the role of the fixed permutation between two mutually
inverse CP box operations we have performed many statistic experi-
ments which have shown that the use of such permutation significantly
improves the properties of the transformation performed with two mu-

tually inverse CP boxes.

4.5 Formation of the controlling vectors V' and V'’

Controlling vectors corresponding to the boxes P3s/96 and P;Q}% are
formed using the same extension box E implemented with simple con-
nections. The inputs of the E-boxes corresponding to the boxes P33 /g6
and P§21/96 are LV = L @ le) and L'®) = (L'>>19) @ Q§-3) (see

. ’ >>16 . .
Fig. 3b), where L' = (H(e )(L)) , respectively. Let the 96-bit vec-

tors V = (Vl, ‘/2, Vg, Vv4, V5, Vﬁ) and VI = (Vll, VvQI, Vg’, VZ, V5’, Vg) be the
outputs of the respective E-boxes. The extension box provides the
following relations:

Vi = Lgl)7 Vo = (Lgl))>>>67 Vs = (Lgl))>>>12,V4 _ Lgll)7
Vs = (LELI))>>>6, Ve = (Lg))>>>12,

V) = Ll(?’)a V) = (L§3))>>>6, V! = (Ll(3))>>>12,V4' _ L;f’),
Vi = (1—123))>>>67 V] = (LS’))»NQ-

The extension box provides each bit of L influences three elementary
boxes Py in the CP box P39 /96 and three Py i-boxes in P?TQI/%,. While
designing the box E we have used the following criterion: For all values
of the controlling vector the permutation of each input bit of CPB must
be defined by six different bits of L. Due to realization of this criterion
each bit of L influences exactly six bits of R while performing the CPB
operation. It is easy to see that such distribution of the controlling bits
provides that arbitrary input bit of the boxes P33 /96 and P?’E}%,
to each output position with the same probability if L is a uniformly
distributed random variable.

moves
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5 Discussion

Cipher DDP-64 presents an example of the pure VBP-based ciphers.
The CP are extensively used in three different ways: (1) as VBP that
are the basic cryptographic primitive, (2) as e-dependent swapping
subkeys to change ciphering mode, and (3) in the switching permuta-
tion I1¢). Analogously to the VBP-based cipher SPECTR-H64 [13]
the cryptosystem DDP-64 is fast in the case of frequent change of keys,
since it is free of the key preprocessing. Avalanche effect spreads mostly
when the changed bits are used as controlling ones, but not when they
are transformed with the CP box operations (some avalanche connected
with F-boxes is defined by the use of eight input bits as an internal con-
trolling vector denoted earlier as Ws). In comparison with SPECTR-
H64 the cipher DDP-64 has the following features:

1. It uses all secrete key in each round.

2. The DDP-64 is free of any additional nonlinear primirives (for
example, the operation G in SPECTR-H64 ) and uses two F-boxes
executed in parallel with the CP box operation P3j/96. Each of two
F-boxes is a special CP box generating at output the binary vector
with arbitrary weight.

3. Round transformation includes special permutational involutions
performed on the left and right data subblock and a switchable fixed
permutation.

5.1 Some properties of VBP

For operations F, P33 /g6, and P?;}% it is quite easy to calculate differ-
ential characteristics (DC) corresponding to differences with few num-
ber of active bits. Let A,L[ be the difference with arbitrary h active
(non-zero) bits corresponding to some vector U. Let Apjiy,...in, be the
difference with active bits corresponding to digits i1, ...,5.
Avalanche effect corresponding to the operations Py, /96, and P?;}%
is caused by the use of the data subblock L to define the values V' and
V'. Each bit of the left data subblock influences three bits of each of

these controlling vectors. Each controlling bit influences two bits of
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the right data subblock. Thus, due to VBP performed on the right
data subblock R with boxes Py /96, and P3_2}96 one bit of L influences
statistically about 12 bits of R. In the case when some difference with
one active bit A{“ ; asses the left branch of the cryptoscheme it influ-
ences three elementary switching elements permuting six different bits
of the right data subblock. For example, if the input difference of the
CP box P3y/96 has no active bits (the case of zero difference), then the
difference AlL/Z. can cause the generation at output of the Py /96—b0X the
following differences: (1) Aj with probability 273; (2) Al with proba-
bility 3 - 273; (3) A/, with probability 3 -273; (4) A} with probability
273, (Some other DC of the boxes Py /96 are presented in [15].)
Avalanche effect corresponding to the operations F relates to the
use of the left data subblock to specify controlling vectors W and W'.
Besides, avalanche spreads due to dependence of the output of ”Ext”-
box on L. Let consider the vector L = (L;, Ly) before the operation ” >
>> 16”. Each bit I;, where 1 <1 < 16, of L; influences three elementary
boxes Py /1 of the Psy/43-box in the lower F-box and two boxes Py/; of
the P:)E}48—box in the upper F-box. Besides, with probability 272 (this
probability corresponds to the event that [; is moved to Hs) the bit
l; influences two boxes Py/; of the P3_2} 45-Pox in the upper F-box and

with the same probability /; influences two boxes Py, of the P3_2} 1g~POx

in the lower F-box. Analogous properties have all bits of Ly, since after
the operation 7> 16” we have (L;, L)' = (L, L;).

5.2 Security estimation

We have considered different types of attacks against DDP-64. Our re-
sults show that the differential cryptanalysis (DCA) is the most power-
ful attack. The iterative two-round DCs with differences (AL, Af?) and
(AL, AR) have the highest probability: P(2) ~ P = 1.37-2717. The
difference (AL, Af) passes eight and ten rounds of DDP-64 with proba-
bilities P(8) = P*(2) =~ 1.79-2757 and P(10) = P5(2) ~ 1.23-27%. For
some random cipher we have P ((AlL, Al — (Af, AOR)’) =2764.25 =
275 > P(8) > P(10). Thus, DDP-64 with eight and ten rounds is
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undistinguishable from random cipher with differential attack using
the most efficient two-round iterative characteristic.

Linear cryptanalysis (LCA) seems to be less efficient to attack DDP-
64 as compared with DCA. Let denote the input mask as A = (A%, Af)
and the output mask as B = (B%, B®). Linear attacks using masks A =
B = (1,1,...,1) are prevented because of the use of two operations F
changing arbitrary the oddness of their output. Using results of section
3 it is easy to find that the bias (deviation) of the linear characteristics
(LC) with z < 31 active bits has value b < 275 for each of the boxes
P35/965 P§21/96, and F, the maximal value corresponding to z = 1. Our

linear analysis of DDP-64 has shown that among masks AL, A% BL,
and B% corresponding to individual subblocks and having weight less
than 31 the masks with weight 1 have the maximal bias.

Analogously to consideration of the LC of the CP boxes, the LCA
of the DDP-64 can be performed investigating the movement of the
active bits through one or several encryption rounds. For LC with in-
put mask A = (Aﬁi,Aﬁj) and output mask B = (Bﬁi,,Bﬁg), where
indices indicate that we consider 32-bit masks with one active bit cor-
responding to ith and i'th (jth and gth) digits in the left (right) data
subblocks at input and output respectively. It is easy to show that for
arbitrary digits 4, j, and g (digit i’ is defined by digit 7) the bias b(1) of
the one-round iterative LC (A, B, b(1)) is b(1) = 0.56 - 2716, The last
value is derived from the probability p = 0.56 - 271° that the jth bit
of R is XORed two times with ith bit of L and then is moved to the
gth digit at the output of the operation P?TQI/%. For r-round LC (A4, B,
b(r)) one can obtain b(r) < 277!, For the random cipher LCs have
bias b =~ 2732 > b(r) > 271 > b(3), therefore we can conclude that
three-round DDP-64 is secure against LCA.

In spite of the simplicity of the key schedule the ”symmetric” keys
K' =(X,Y,Y,X) and K" = (X, X, X, X) are not weak or semi-weak,
since decryption requires switching the fixed permutation in the left
branch of the cryptoscheme of DDP-64 (from Fig. 3 it is easy to see
that T(=9(C,K") # M, where C = T=0(M, K")). Tt seems to
be difficult to calculate a semi-weak key-pair for DDP-64, if it is still
possible. Slide attacks in the case of ”symmetric” keys are also ineffi-
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cient, since the encryption with DDP-64 is free of homogeneity (in the
sense of [16]) due to the non-periodic schedule of the switching bit ¢’
specifying the fixed permutation 11(¢) performed on the left data sub-
block. This shows that the switchable operations can play sufficiently
important role in the block ciphers which are free of the key prepro-
cessing. For comparison one can remark that SPECTR-H64 which
uses no switchable operations has weak keys (for all X its 256-bit key
K = (X,X,...,X) is a weak one) and in the case of the weak key it
seems vulnarable to slide attack.

Use of some strong key scheduling is a standard way to prevent weak
keys and homogeneity in DDP-64, however this significantly encreases
the hardware implementation cost.

5.3 Conclusion

Theoretic analysis of LC of the VBP operations conserving the weight
of the transformed vector has shown that the principal problem in the
design of VBP-based ciphers is to prevent LCA using masks A = B =
(1,1,...,1). Examples of such attacks are proposed in [17,18]. In the
known VBP-based ciphers SPECTR-H64 [13], SPECTR-128 [19], and
Cobra-H64 [15] additional non-linear operations are used to thwart such
variants of LCA. When developing a pure VBP-based cipher we have
proposed a new type of the VBP operations (F-box operations) the
use of which allows one to solve the mentioned problem without using
additional non-linear operations.

The F-box operations have been used to design the cipher DDP-64.
Presented analysis of DDP-64 illustrates efficiency of the use of VBP in
the design of the block ciphers. The VBP thwarts well differential, lin-
ear, and other attacks allowing one to use comparatively small number
of the encryption rounds. The efficiency of hardware implementation
of the VBP-based ciphers is defined by the following factors: (1) VBP
are efficient as cryptographic primitive, (2) property of the controlla-
bility of this primitive allows designing new advanced cryptoschemes,
(3) VBP are fast and cheap in hardware [20]. Design of DDP-64 can
be characterized as a design at bit level that defines low hardware im-

106



Variable Bit Permutations: Linear Characteristics and ...

plementation cost and high performance including the case of frequent
change of keys.

Structure of DDP-64 suites well for detailed estimating DCs and
LGCs corresponding to differences and masks with few active bits. To
attack DDP-64 the DCA is significantly more efficient than LCA. The
DCA defines the minimum number of rounds for secure encryption with
DDP-64.

We have also shown that in the case of the simple key scheduling
the weak keys and homogeneity of the encryption can be prevented
using switchable operations. Development of the simple and efficient
switchable (e-dependent) operations is a new interesting item in the
design of the ciphers that are free of precomputing the round keys.
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