
Computer Science Journal of Moldova, vol.13, no.1(37), 2005

A generalization of the chromatic polynomial of

a cycle

Julian A. Allagan

Abstract

We prove that if an edge of a cycle on n vertices is extended
by adding k vertices, then the the chromatic polynomial of such
generalized cycle is:

P (Hk, λ) = (λ− 1)n
k∑

i=0

λi + (−1)n(λ− 1).

1 Introduction

We consider simple finite graphs and assume that the basic definitions
from graph and hypergraph theory (see, for example, [1, 3, 4]) are
familiar to the reader.

Proper coloring of a graph G = (V, E), is a mapping f : V (G) →
{1, 2, . . . , λ} which is defined as an assignment of distinct colors from
a finite set of colors [λ] to the vertices of G in such a way that adjacent
vertices have different colors. Such notion has been extended in 1966
by P. Erdös and A. Hajnal to the coloring of a hypergraph [2]. Thus,
in general case, the proper coloring of a hypergraph H = (V, E) is the
labelling of the vertices of H in such a way that every hyperedge E ∈ E
has at least two vertices of distinct colors.

The function P (H,λ) counts the mappings f : V (H) → [λ] that
properly color H using colors from the set [λ] = {1, 2, . . . , λ}. Thus,
we define the chromatic polynomial of a hypergraph H as the number
of all proper colorings of H using at most λ colors [3].
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Let Cn = (V, E) be a cycle on n vertices, n ≥ 3, where V =
{v1, v2, . . . , vn}. Consider an edge E = {v1, v2} of Cn. We sequentially
increase the size of E by adding k pendant vertices (a vertex is called
pendant if its degree is one) from the set Sk = {x1, x2, x3, . . . , xk},
k ≥ 1. Notice that E becomes a hyperedge E′, containing k + 2 ≥ 3
vertices. We compute the chromatic polynomial of the obtained hyper-
graph Hk = (V ∪ Sk, E ′), where k is the number of pendant vertices
added.

2 Proof of the formula

Theorem 1. The chromatic polynomial of the hypergraph Hk has
the following form:

P (Hk, λ) = (λ− 1)n
k∑

i=0

λi + (−1)n(λ− 1).

Proof. Induction on the number of pendant vertices k. Observe
that

P (H0, λ) = (λ−1)nλ0+(−1)n(λ−1) = (λ−1)n+(−1)n(λ−1) = P (Cn, λ)

what is the chromatic polynomial of any cycle on n vertices, see [4,
p.229].

The idea of proof consists in the following procedure: we apply
to Hk, k ≥ 1, the connection-contraction algorithm which is a special
case of the splitting-contraction algorithm for mixed hypergraphs, see
[3, p.30]. In any proper coloring of H, the vertices v1, and x1 either have
different colors or have the same color. In the first case, we connect x1

and v1 by an edge; in the second case, we contract the edge {x1, v1}
and in this way identify the vertices x1 and v1. After removing of an
exterior hyperedge containing vertices x1, v1, we obtain two graphs and
some isolated vertices and compute the chromatic polynomial as a sum
of two chromatic polynomials of the respective graphs.

Consider the case k = 1. We obtain that

P (H1, λ) = P (Tn+1, λ) + P (H0, λ),
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where Tn is a tree on n vertices; it is well known that

P (Tn, λ) = λ(λ− 1)n−1.

Since P (H0, λ) = P (Cn, λ) = (λ− 1)n + (−1)n(λ− 1) we obtain

P (H1, λ) = λ(λ− 1)n + (λ− 1)n + (−1)n(λ− 1) =

= (λ− 1)n(λ + 1) + (−1)n(λ− 1).

Consider the case k = 2. Using the same procedure we obtain a
tree, a cycle and one isolated vertex. Therefore

P (H2, λ) = P (Tn+1, λ)λ + P (H1, λ).

Notice that the chromatic polynomial of the independent vertex set
P (Sk, λ) = λk because each isolated vertex can be assigned λ colors.
Using P (H1, λ) = (λ − 1)n(λ + 1) + (−1)n(λ − 1) we establish the
following equality:

P (H2, λ) = λ(λ− 1)nλ + (λ− 1)n(λ + 1) + (−1)n(λ− 1) =

= (λ− 1)n(λ2 + λ + 1) + (−1)n(λ− 1).

Let us assume that our formula for the chromatic polynomial of
P (Hj , λ) is true for any number j ≥ 1 of pendant vertices. We now
prove that

P (Hj+1, λ) = (λ− 1)n(λj+1 + λj + . . . + λ1 + λ0) + (−1)n(λ− 1).

Consider j + 1 number of pendant vertices from the set Sj+1 =
{x1, x2, . . . , xj , xj+1} added to the edge E = {v1, v2} of the cy-
cle Cn = (V, E). The edge E = {v1, v2} becomes a hyperedge
E′ = {v1, v2, x1, x2, . . . , xj , xj+1} ∈ E ′ of the new graph Hj+1 =
(V ∪ Sj+1, E ′). Applying the algorithm as described in the previous
cases to Hj+1 yields the following chromatic polynomial equality:

P (Hj+1, λ) = P (Tn+1, λ)P (Sj , λ) + P (Hj , λ).
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By the induction hypothesis,

P (Hj , λ) = (λ− 1)n(λj + λj−1 + . . . + λ1 + λ0) + (−1)n(λ− 1);

also, P (Sj , λ) = λj . Therefore the following equality holds:

P (Hj+1, λ) =

= λ(λ− 1)nλj + (λ− 1)n(λj + λj−1 + . . . + λ1 + λ0) + (−1)n(λ− 1) =

= (λ− 1)n(λj+1 + λj + . . . + λ1 + λ0) + (−1)n(λ− 1).

Consequently,

P (Hk, λ) = (λ− 1)n
k∑

i=0

λi + (−1)n(λ− 1)

holds for any number k ≥ 1 of pendant vertices added to an edge of
Cn.
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