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An Automatic Proof of Euler’s Formula

Jun Zhang

Abstract

In this information age, everything is digitalized. The encod-
ing of functions and the automatic proof of functions are impor-
tant. This paper will discuss the automatic calculation for Taylor
expansion coefficients, as an example, it can be applied to prove
Euler’s formula automatically.
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1 Introduction

The expansion of Taylor series is a very old topic in both pure and
applied mathematics that plays a crucial role in both fundamental the-
ory and applications. Computer algebra systems provide an interactive
environment to assist in solving many mathematical problems.

One way to define an analytic function f(z) is in terms of its Taylor
series expansion at z = 0,

f(z) = a0 + a1z + a2z
2 + · · ·+ anzn + · · ·

Quite a few theorems exist about how to find the coefficient an of
a general term anzn in the expansion, which we shall denote [zn]f(z).
Under some conditions, we have Taylor’s formula [1]:

an = [zn]f(z) =
f (n)(0)

n!
.

This is a very nice formula and can be quite useful in finding a specific
term such as [z3]f(z). However, for an arbitrary number n (usually
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considered to be very large), we cannot use the formula directly to
determine [zn]f(z).

Ravenscroft implemented a Maple package called genfunc that can
calculate [zn]f(z) for any rational function f(z) [2]. Rational func-
tions, however, are very well structured and easy to handle. As shown
by Ravenscroft, every nontrivial rational generating function F (z) en-
codes a sequence that is defined by a homogeneous linear recurrence
with constant coefficients [3]. So finding [zn]f(z) reduces to solving
a linear homogeneous recurrence with constant coefficients which, in
turn, reduces to solving a corresponding polynomial equation.

If f(z) is not a rational function, it is difficult in practice to calculate
[zn]f(z). In many cases, an exact expansion of [zn]f(z) is impossible to
find or too complicated to be of practical value. In such instances, we
often have to settle for an asymptotic representation of [zn]f(z). Sadly
and perhaps surprisingly, as Bruno Salvy stated a decade ago, “Current
symbolic computation systems generally lack facilities for manipulating
asymptotic expansion computations of a form more complex than the
first terms of Taylor series or Puiseux expansions (involving fractional
powers)[4]”. This situation has not changed significantly since then.

This work is to provide an approach to calculate Taylor coefficients
of functions, as an example, it can be applied to prove Euler’s formula
automatically.

2 Laplace Method

Assume that the function f is defined for 0 ≤ t < ∞. We write the
Laplace transform as

F (s) = ÃL{f(t)} =
∫ ∞

0
e−stf(t)dt.

We shall refer to f(t) as the original function and to F (s) as the Laplace
transform of the function f(t). We also refer to f(t) as the inverse
Laplace transform of F (s). The symbol ÃL denotes the Laplace trans-
formation. The function e−st is called the kernel of the transformation.
In our work, we think of s as a real variable. If the integral converges

4



An Automatic Proof of Euler’s Formula

for all s greater than some s0, then F (s) is well defined and we say
that the transform exists.

Now, let us look at some examples:
Example. Compute the Laplace transform of f(t) = e2t.
∫ ∞

0
e−stf(t)dt =

∫ ∞

0
e−ste2tdt =

∫ ∞

0
e−(s−2)tdt

= lim
b→∞

∫ b

0
e−(s−2)tdt = lim

b→∞
−

[
e−(s−2)t

s− 2

∣∣∣∣
b

0

]

= lim
b→∞

[
1

s− 2
− e−(s−2)b

s− 2

]
.

This limit exists only when s > 2. Hence,
∫ ∞

0
e−stf(t)dt =

1
s− 2

, s > 2. ♦

Now, let us consider the integral

f̂(x) =
1
x

∫ ∞

0
e−t/xf(t)dt.

This is just the Laplace transform in which the variable x of the
generating function has been replaced by its reciprocal.

3 Expansion Theory

We present the main theorem for our work based on Laplace transfor-
mation. See [5] for a proof.

Theorem 3.1. If

1. f(t) is bounded and continuous for 0 < t < ∞,

2. f̂(x) = 1
x

∫∞
0 e−t/xf(t)dt, and

3. f̂(x) =
∑∞

n=0 anxn, 0 < x < ρ,
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then we have

f(x) =
∞∑

n=0

an
xn

n!
, 0 < x < ∞.

This theorem can serve as an alternate way to calculate the general
term of a Taylor series expansion. Let us look at several examples.

Example. Consider f(t) = sin(t).

f̂(x) =
1
x

∫ ∞

0
e−t/x sin(t)dt

= −
∫ ∞

0
sin(t)de−t/x

= − lim
b→∞

[
e−t/x sin(t)

∣∣∣∣
b

0

]
+

∫ ∞

0
e−t/x cos(t)dt

= − lim
b→∞

[
xe−t/x cos(t)

∣∣∣∣
b

0

]
− x

∫ ∞

0
e−t/x sin(t)dt

= x− x2f̂(x),

so we have

f̂(x) =
x

x2 + 1
= x− x3 + x5 − · · · , 0 < x < 1.

By Theorem 3.1,

f(x) = x− x3

3!
+

x5

5!
− · · · ,

is the series expansion for sin(x), as predicted. ♦

4 Automatic Calculation

Based on the above discussion, we can implement a procedure in Maple
called ”coefficient” as following:

with(inttrans);
with(genfunc);
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coefficient := proc (y, x)
local tem1, tem2;
tem1 :=laplace(y, x, s);
tem1 := subs (s = 1/t, tem1);
tem1 := tem1/t;
tem2 := rgf expand(tem1, t, n));
tem2 := (simplify(tem2))/n!;
return tem2

end

Example 1. Consider f(t) = sin(t). By applying the above ”coef-
ficient” procedure in Maple, we have an answer

[tn]f(t) = sin(nπ/2)/n!.

Example 2. Consider f(t) = cos(at) sin(bt), where a and b are
nonzero real constants (a 6= b). Apply the ”coefficient” procedure in
Maple, we get an answer equivalent to

[tn]f(t) =
1

4(a− b)n!
((I(a− b))n + (−I(a− b))n)

− 1
4(a + b)n!

((I(a + b))n + (−I(a + b))n).

where I is the imaginary number such that I2 = −1.

Example 3. Consider f(t) = eIx − cos(x)− I sin(x). By applying
the above ”coefficient” procedure in Maple, we have an answer

[tn]f(t) = 0.

Since f(x) is analytic, and all its Taylor’s expansion coefficients are 0,
we proved the Euler’s formula eIx = cos(x) + I sin(x).

5 Conclusion

This method provides a way to calculate the general coefficients of Tay-
lor’s expansion. It works for all the functions such that their Laplace
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transforms are rational. There is a wide range of functions satisfying
such a condition, including the examples above, ex, sink(z), cosk(z),
etc, where k is an natural number.

More advanced algorithms were developed in [6]. The algorithms
developed in [6] can be used to calculate the coefficients for a much
wide range of functions beyond rational functions, and return exact
solutions. This paper provides an alternative solution with simpler
implementation.
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