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The multiobjective transportation fractional
programming model

Alexandra I. Tkacenko

Abstract

In this paper the multiobjective transportation problem of
linear-fractional type with one nonlinear time constraint criterion
is investigated. Particularly, the case of the identical denomina-
tors is studied. The concrete procedure to find the set of all basic
efficient solutions for this model is proposed. This algorithm is
tested on an annexed example.

Keywords and phrases: multiobjective problem, optimiza-
tion, linear-fractional criterion, basic efficient solution, bottleneck
restriction

The transportation problem dealing with the total cost minimizing
criterion, considered as a classical one, is well-known and sufficiently
analyzed in the respective sources.

The transportation model of a ”bottleneck” type is a specific prob-
lem within the transportation classical issue, the objective function of
which is a non-linear one. Special cases of these types of problems are
investigated in many paper-works like [1], [2], [5], [6], where concrete
algorithms in order to solve them are carried out. The transportation
model of the "bottleneck” type with 2 criteria, where the first one is
providing the total transportation cost minimization and the second
one, that is non-linear, is strangling in time, is studied in article [7],
where the authors propose the concrete algorithm to solve it. The
special algorithm for solving transportation model of the ”"bottleneck”
type with 3 criteria is presented in paper [8], where it is tested on a
concrete example.
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One should mention that in our daily life the multiobjective frac-
tional programming models are of great interest. We are often con-
cerned about the optimization of the ratios like the summary cost of
the total transportation expenditures to the maximal necessary time to
satisfy the demands, the total benefits or production values into time
unit, the total depreciation into time unit and many other important
similar criteria, which may appear in order to evaluate the economical
activities and make the correct managerial decisions. These problems
led to the "bottleneck” transportation model with multiple fractional
criteria, where the ”"bottleneck” criteria appear as a "minmax” time
constraining. The common characteristic of these objective ratios is
the identical denominators. Concrete algorithms for solving of special
models of transportation type with one criterion, where the objective
function is a fractional one, are proposed in papers [3],[4].

The multicriterial transportation model of "bottleneck” type with
two fractional criteria is defined as follows:
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zij > 0,0 =1,m,j=1,n (7)

where ¢;; - cost of transporting a unit from source ¢ to destination
J, dij - deterioration of a unit while transporting from source 4 to
destination j, a; - availability at source 7, b; - requirement at destination
J> Z;j - amount transported from source ¢ to destination j, t;; - time of
transporting a unit from source 7 to destination j.

A non traditional algorithm of building numerous efficient solutions
of the models is carried out here. There is no sense to look for an
optimal solution to settle the multicriterial mathematical models. As
it often occurs, there are no solutions at all.

That is why, one should better determine the multitude of non-
dominant solutions, which are known as efficient solutions or optimal
in the terms of Pareto.

In order to solve the multi criteria model the notion of an efficient
solution has been introduced.

DEF: The feasible solution for the multiple criteria model is con-
sidered to be efficient if and only if another feasible solution, for which
we obtain a better value at least for one criterion while the values of
the rest criteria remain unmodified, doesn’t exist.

In order to solve the problem (1)- (7) by finding the set of the
efficient basic solutions, we reduce it to the following model:

m n
minzl = Z Z CijTij (8)

i—1 j—1
m n
min zy = Z Z dijij 9)
i=1 j=1
min z3 = max{t;j|z;; > 0} (10)
0]

in conditions (4)-(7)

The authors Y.P. Aneja and K.P.K. Nair in their paper: ”Bicriteria
transportation problem” [1] propose an algorithm to solve the model
(8)-(10) in conditions (4)-(7). The algorithm determines the multi-
tude of extreme non-dominant solutions within the admissible space of
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solutions. The algorithm is theoretically and scientifically tested and
proved in a concrete case.

The algorithm of solving the model (1)-(7) develops a procedure of
building a multitude of all efficient, basic solutions. This set coincides
with the set of the efficient basic solutions for the model (8)-(10) in
conditions (4)-(7). That is why we reduce the multicriterial fractional
transportation model of "bottleneck” type (1)-(7) to the problem (8)-
(10) in the restrictions (4)-(7) in order to find the set of its basic efficient
solutions.

Theorem 1. The set of the efficient basic solutions of the model
(1)-(7) and the model (8)-(10) coincide.

Proof. Let X! be an efficient basic solution for the model (1)-(7),
and 71 = max{t;; /lej > 0}. We state that for each available solution
17-7

X? of this model and corresponding 7%, where T? = max{t;; /a:fj > 0},
0]

based on the definition of the efficient solution, the following inequali-
ties are true:

Z1(XY) < Z1(X?) and Zy(X1) < Zy(X?)
or (11)
Z1(X") < Z1(X?) and Zy(X1) < Zy(X?)

where 72 < T1, 7' >0, 7% > 0.

We suppose that the solution X! is not efficient for the model (8)-
(10) in the conditions (4)-(7). Analogously to the antecedent reasoning,
using the definition of the efficient solution, it follows that there exists
the available solution X? of this model and corresponding 72, for which
the following inequalities are true:

Z17(1)2(2) < Zlq(ﬂ‘)l{l) and 227(32{2) < 22;)1(1)
or (12)

Z1(X? 0. % Za(X?2 Za(X1!
1;2 ) 1;1 ) and 2;2 ) < 2;1 )

where 72 < T1, 7' >0, 7% > 0.
1
Multiplying inequalities (12) by T and supposing k = %, we ob-
tain that the following inequalities are true:

<
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k‘Zl(X2) < Zl(Xl) and ]{JZQ(X2) < Z2(X1)
or (13)
kZy(X?) < Z1(X1Y) and kZo(X?) < Zo(XY)

where T2 < T', T' >0, T? > 0.
As it is obvious that £ > 1, from (13) we conclude that for the
solution X2 the following inequalities are true:

Zl(X2) < Zl(Xl) and ZQ(X2) < Z2(X1)
or (14)
Z1(X?) < Z1(X1) and Zy(X?) < Zy(X1)

where T2 < T', T' >0, T? > 0,
that contradicts (11).

It can be proved analogously that each efficient solution of the
model (8)-(10) is also an efficient solution for the model (1)-(7).

The theorem is proved.

Generalizing this idea for the model with multiple number of frac-
tional criteria with the "bottleneck” constraining criterion, we conclude
that it may be reduced to the model (15) in order to find the set of its
efficient basic solutions, that is defined as follows:

m n
minzlzg E czljxij

i=1 j=1
m n
. _ 2

min zg = CiiTij

i=1 j=1
(15)

m n

min z, = g g CijTij
i=1 j=1

min z,41 = maXi,j{tz’ﬂ@j > 0}
in conditions (4)-(7)

Values ij, k=1,..,r,1=1,....,m, 7 =1,...,n correspond to the
concrete interpretation of the respective criteria.
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If there are some criteria of "max” type among the set of criteria
from the model (15), it is not difficult to reduce this case to the initial
one. It is obvious that the model (8)-(10) is a particular case of the
model (15), and so the algorithm to solve the model (15) in conditions
(4)-(7) can be used to solve the model (8)-(10).

The truthfulness of the above theorem for the model (15) is proved
similarly.

The algorithm of finding the set of the efficient basic solutions for
the model (15) is an interactive one. Initially we consider at least (m +
n —1) cells from the tables C*, k = 1,2,...,r, in order to find the first
efficient basic solution of model (15). The indexes’ order is maintained
the same as in the table 71", where the cells are numbered according to
the respective time values well arranged in the increasing order. Each
iteration supposes a deep levels’ exploration and a completion of the
multitude of efficient basic solutions for a new unblocked stochastic
time-variable.

The exploration procedure of each time instant chain is finite in
depth and ends on every branch, in the case when the same solutions
have been found at upper level of other branch or when all possibilities
of improvement have been spent at this level.

At the time when the solution of a certain configuration detains
the form recorded in another link, which has been investigated earlier,
its depth exploration has no justification, that is why it is eventually
stopped.

We propose the logic scheme to construct the algorithm for solving
the multiple criteria transportation models of ”bottleneck” type with
a finite number of criteria, which is presented at Fig.1, where A;; =
(ui +vj) — ¢ij, ny < p (p is defined by the dimension of the problem,
n; is an index of ordering the cells by data from the table T).

The logical blocks are to be verified before every logical ramification
according to Fig.1.

ALGORITHM

1. Table T" with the increasing order of time values which uses the
k index is being well arranged. The index order is maintained for the
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/ I 3, ,i.‘A"’j >0 /
1=0

| The set of efficient basic solutions |

Figure 1.

respective cells from the tables C*, k =1,..., 7.

2. The adoption of an initial, basic solution in the first p = (m+n—
1) cells from the table C is performed. The other cells are considered
to be blocked.

3. All configurations of basic solutions can be recorded at the level
! = 0, using only the non-blocked cells and providing the dozing in all
those cells with (4, j|z;; > 0), for which the relation A;; > 0 to be true
at least for one criterion.

Each configuration of the solution is iteratively investigated, ob-
taining in such a way the following records at the next level: [ = [+ 1.

If a certain level of a basic solution, which was previously obtained,
is found, the latter won’t be further studied. Since the problem covers
a finite dimension, the multitude, consequently, of all basic solutions
for the unblocked cells will be obtained by exploring a finite number of
levels in depth.

4. If p < m=n, the following p = p+1 cell is unblocked, and for this
purpose the exploration of the basic solutions is revived, then we start
with the level 0. The 4th step will be repeated until we get p = m *x n.

The basic efficient solutions set is selected out of the multitude of
the basic solutions.
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Theorem 2. The set of all efficient basic solutions for the multiple
criteria transportation problem of ”bottleneck” type is found by applying
the above algorithm.

Proof. Let L be a list of efficient basic solutions of model (15) being
found by applying the above algorithm. We suppose, that the efficient
basic solution S7, that was not found using the above algorithm exists
and Sy ¢ L. Let S; corresponds to T;. We will fix it on the branch that
corresponds to the 77 beginning with the level 0, when corresponding
cells from table T' are cleared. Wide exploration of the fixed branch
leads to the registration of all basic solutions of branch 7. So, all the
basic solutions that correspond to time 7 are contained in this set. We
will separate from the set L7, the efficient basic solutions corresponding
to time 7). It is obvious that Ly, C L. As a result, if S; € Ly, then
S1 is a basic efficient solution found by applying the above algorithm
or if §1 ¢ Lp,, then S; is not a basic solution and moreover it is not
a basic efficient solution. So, iether Sy is not a basic solution or it is
contained in list L. The theorem is proved.

Example

Counsider the following 3-criteria problem.

Time, Supply, Demand=
10 | 95 | 73 | 52 8
68 | 66 | 30 | 21 | 19
3716319 23| 17
11| 3 | 14 | 16 | bjla;

Cost 1,2=
1 2 7 7
4 4 3 4
1 9 3 4
) 8 9 10
8 9 4 6
6 2 5 1

Using the above proposed algorithm we have found the following
11 efficient basic solutions:
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S1=(176,207,68); S2=(164,276,68); S3=(178,203,68);
S4=(172,213,68); S5=(158,283,68); S6=(208,167,73);
S7=(202,173,73); S8=(156,200,95); S9=(176,175,95);
S10=(143,265,95); S11=(186,171,95).

The authors of the article [1], using their own algorithm for this

example, have obtained 9 efficient extreme solutions.
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