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On Estimating Long Range Dependence of
Network Delay

Michael S. Borella

Abstract

We analyse 12 traces of round-trip Internet packet delay. We
find that these traces, when viewed as time series data, often
exhibit Hurst parameter (H) estimates greater than 0.5, indicat-
ing long-range dependence. Several traces, however, are not well
modelled with a constant H. We discuss in detail our analytical
methods and the robustness of empirical estimators of H under
conditions of non-negligible packet loss. We also apply a newly-
developed wavelet estimator of H and find that (1) it explains
why periodogram-based estimators can produce inconclusive re-
sults, and (2) it produces results that can be used to estimate
short range as well as long range dependence. Our overall results
indicate that Internet delay is bursty across multiple time scales,
which implies that end-user quality of service in the Internet is
likely to be impacted by long periods of very large and/or highly
variable delays.
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1 Introduction

It is now widely accepted that network traffic exhibits long-range de-
pendence (LRD). However the practical implications of this discovery
are not yet completely understood and research to date has shown that
most empirical data does not perfectly fit any theoretical model. But it
is known that traditional Poisson models of network traffic cannot cap-
ture the behaviour of LRD traffic. Often LRD data is also self-similar,
indicating that it possesses similar statistical properties on multiple
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time scales. Recently, a large amount of research has focused on the
analysis of self-similar phenomena found in network traffic, as well as
techniques for synthetically generating self-similar data sets for trace-
driven simulation. These studies coincide with a dramatic change in
the focus of Internet architecture and protocol research. The goal of
the next generation Internet will be to seamlessly incorporate the ser-
vices of current telephony and television networks into data networks.
In order to do so efficiently, we must understand the dynamics of not
only data traffic but also that of packet voice and video streams.

Traditionally, three parameters are considered to impact multime-
dia quality of service (QoS): delay, delay variance (jitter) and loss rate.
It is well known that LRD arrival patterns (or any linearly correlated
arrival process with strong low-frequency components) has a deleteri-
ous impact on required buffer lengths as compared to non-correlated
arrivals [1]. However, the overall interaction between delay, jitter, loss,
LRD and QoS is not well understood. Thus, there is a need to evaluate
the accuracy and applicability of LRD models.

In this paper we describe several empirical measurements of speech
transmission over the Internet with parameters not unlike those of
the industry-accepted I'TU recommendation G.723.1. We find that al-
though packet inter-departure times are deterministic, arrivals at the
receiver exhibit LRD in most cases. We focus on obtaining estimates of
the Hurst parameter (H) for delay traces by using the variance-time,
R/S, periodogram, Whittle and wavelet estimators. Our major results
and contributions are summarised as follows:

e Internet packet delay exhibits LRD; however, the degree of LRD,
as indicated by H, varies significantly on both a temporal and
spatial basis.

e Static estimation of LRD is accomplished for our data sets by
using the Whittle estimator to fit a delay time series to Fractional
Gaussian Noise or the wavelet estimator.

e Periodogram-based estimators, including the Whittle estimator,
can produce inconclusive results when the spectral power of the
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observed data set does not scale logarithmically with frequency;
however, the wavelet estimator does not exhibit this problem.

e The wavelet estimator involves a spectral decomposition of net-
work delay that produces two or three distinct frequency scaling
for estimation of H. This indicates different dependency struc-
tures for high frequency and low frequency components and can
be used to model both long range and short range dependence.

e Delays cannot always be well modelled with a constant H over
long periods of time - a significant portion of our experiments find
that H changes dramatically between consecutive 5-15 minute
periods.

e Independent packet losses have a relatively minor impact on the
robustness of the estimators.

This paper is organised as follows. Section 2 discusses the theoret-
ical foundations of LRD, gives examples of LRD stochastic processes,
and describes the LRD estimators in detail. Section 3 introduces the
software used to make the delay measurements and describes the condi-
tions under which each measurement was made. Section 4 describes the
analysis of the delay measurements and our resulting point estimates
of H, as well as situations in which H is not well-modelled as constant.
Section 5 presents an analysis of the robustuness of the LRD estima-
tors in the presence of simulated packet loss. Section 6 introduced
the wavelet estimator and applies it to our measurements. Section 7
presents our conclusions, as well as a discussion of the future directions
of this research.

2 Long Range Dependence

In an LRD time series, the first and second order properties do not
deteriorate when the series is viewed on different time scales. This
phenomenon of scale invariance has been popularised in the study of
visually appealing fractals - geometric shapes which, when magnified,
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display the same or similar patterns as the unmagnified shapes. This
section provides the reader with a summary of the mathematical un-
derpinnings of LRD stochastic processes and some previous results in
the modelling of LRD network traffic.

2.1 Definitions

Let Xy = Y; — Y1 represent a zero-mean, wide-sense stationary
stochastic process. An LRD process exhibits the property

Y, =g t"Y;,0< H <1 (1)

which means that, in a distributional sense, Y scales with ¢, for some
constant H. It is relatively straightforward [2] to show that this implies
that the autocorrelation of the increment process X; at lag k is given
by

1
p(k) = 9
Additionally, it can be shown that limj_, p(k) = H(2H —1)k?1—2
which implies that, for 0.5 < H < 1, > 72, p(k) = oo. This latter
result indicates that a self-similar process has infinite memory if H is
strictly greater than 0.5. For H = 0.5, the process is memoryless, i.e.,
p(k) = 0 for k # 0. Many traditional network traffic models rely on
the assumption of memorylessness, due to the analytical tractability
of Poisson models. Models, which utilise a limited amount of memory,
such as Markov, auto regressive and moving average processes cannot
capture the asymptotic properties of infinite memory processes [3].

[(k + D)2 — 22 4 (J — 1) (2)

2.2 LRD Stochastic Processes

LRD has been observed in many physical systems, from rainfall pat-
terns to coastline dimensions. However, there are few analytical tech-
niques, which can model the behaviour of real-world LRD systems.
Two theoretical models, which exhibit LRD, are Fractional Gaus-
sian Noise (FGN) [4] and Fractional ARIMA(p,d,q) [5], [6] or sim-
ply FARIMA. FGN is a generalisation of traditional Gaussian noise,
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which allows correlation between successive values. FGN exhibits LRD
for 0.5 < H < 1.0 but does not incorporate short-range dependence
(SRD)!. The ARIMA(p, d, q) family of processes [7] are popular SRD
times-series modelling tools, where p is the order of the autoregressive
component, q is the order of the moving average component and d is the
degree of differencing. Fractional ARIMA (p,d, q) processes generalise
this family, and for 0 < d < 1/2 are LRD as well as SRD.

2.3 Empirical Estimators

From the previous, we conclude that H is a compact representation of
the LRD of a series. Then, given a series, how do we estimate H? In
general, this is a troublesome and often difficult task. The empirical se-
ries should be asymptotically wide-sense stationary — that is, the mean
and variance are time invariant. The series should also be large, prefer-
ably a few hundred thousand observations or more. Unfortunately,
long-term measurements of real traffic tend to be non-stationary due
to daily patterns of use. Several methods of estimating H have been
evaluated in [8]. We’ve chosen four estimators: variance-time plot, R/S
analysis, periodogram analysis and Whittle’s estimator (See [2] for a
detailed discussion). These tools, along with careful analysis, are shown
to produce reasonable estimates of H. We provide a brief discussion of
each estimator below.

2.3.1 Variance -Time Plot

Cousider the sample mean of n observations of increment process X.

X = Xi= %(Yn -Y) (3)

S|

=1

From Equation 1, X = nf~1(Y; —Yy) = nf~1X;. Therefore
Var [X] = n?7202 where 0? is the variance of X. Taking the loga-
rithm of both sides gives us

L A short-range dependent process exhibits a summable autocorrelation function,
which implies that observations sufficiently distant in time are uncorrelated.
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log(Var|X]) = (2H — 2)log(n) + 2log(o) ~ (2H — 2)log(n)  (4)

For a given time series, we can take a number of non-overlapping
subseries of length n, calculate the sample mean of these series and the
resulting variance of the sample means. As n increases, this variance
should decrease proportionally to Equation 4. Plotting log(Var [X])
versus log(n) allows us to approximate 2H — 2 (and therefore H) with
a least-squares regression. In practice, we find that for small n, points
on the variance-time plot are influenced by short-range dependence.

Likewise, for large n, the points may be noisy if too few subseries
are used. Therefore, we discard the very low and very high ends of
the plot and fit the regression line through the asymptotic slope of the
remaining points.

2.3.2 R/S Analysis
The adjusted range of process Y is defined to be

1

Yiii — 7Y, — min
t+1 A t+k 0<i<k

1

R(t. ) = aunx Yii= Y| )

Intuitively, R(t, k) estimates the variability of the process over k
units of time by relating the amount of time that has passed (i) with
the range of values that the process takes on. In order to compare the
adjusted range of two or more processes, which differ in magnitude, we
define the rescaled adjusted range of Y to be R/S = R(t,k)/S(t,k)
where S(t, k) is the sample standard deviation of Xy, ..., Xy . It has
been shown (see [2] for details) that if X? is stationary and Y exhibits
long-range dependence, then

lim R/S ~ k' (6)

k—oo

Therefore, plotting log(R/S) versus log(k) for reasonably large k
allows us to estimate H. Similar to the case of the variance-time plot,
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we discard the very low and very high ends of the plot due to short-
range dependence and too few samples, respectively, and perform the
regression on the asymptotic slope of the remaining points.

2.3.3 Periodogram Analysis

Based on the discrete Fourier transform, the periodogram is an estimate
of the power spectral density of a discrete process. For a time series of n
observations, the mean squared amplitude of frequency X is estimated
by

2

1< _ :
I _ = L 2miN/n
(V) = 2320 = X)e (7
J=l1
For an LRD process
1 1-H
IN~—==2X (8)

\H

for small \ (this asymptotic identity can, with some effort, be proven
from Equation 2), and H can be estimated by a least squares regres-
sion on log(Z(\)) versus log(A). Since Equation 8 holds only for low
frequencies, it is recommended [8] that the regression line be fit to the
lower 10% of the frequencies in the spectrum. In practice, we have
found that while the periodogram estimator produces reasonable esti-
mates of H for synthetically generated theoretical processes (such as
FGN or FARIMA), for real data (which will almost always be messier)
it tends to produce higher estimates of H than other estimators. Also,
the periodogram technique is certainly not robust on smaller sets (a
few hundred samples) of such real data, as in many cases it estimates
H to be greater than 1.0 when other estimators report H < 1.0.

2.3.4 Whittle’s Estimator

While these heuristic estimators are useful in ”eyeballing” LRD, they
are not statistically rigorous nor do they provide confidence intervals.
The Whittle estimator is an asymptotic estimate of H, and provides a
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confidence interval, but also requires the empirical series to be a Gaus-
sian process and that the underlying form of the series be provided.
This form can be based on Fractional Gaussian Noise [4], which has
long-range, but no short-range dependence, or a Fractional ARIMA
process [5], which has both long-range and short-range dependence.
Using the Whittle estimator, we find the value of z which minimises
the function

I (0
W) = —n [N 2)

where () is the periodogram and f(J; z) is the spectral density at fre-
quency A. For FGN, z = H, while for FARIMA, z is a vector containing
the autoregressive, moving average and back-shift components of the
process. For a detailed discussion, see chapter 5 of [2]. These tools have
been shown to produce reasonable estimates of H; however, one must
be careful during their use and when interpreting their results. In par-
ticular, caution is necessary when using the Whittle estimator. While
it provides an estimate of H and a confidence interval, it also requires
the empirical series to be a Gaussian process and that the underlying
form of the series be provided.

dX 9)

This form can be based on any LRD process, usually FGN or
FARIMA. In order to use the Whittle estimator on processes that
may be non-Gaussian, we note that a long-range dependent process
asymptotically converges to Fractional Gaussian Noise when aggre-
gated. Thus, we can aggregate the original series in non-overlapping
blocks of size m

1
Xz(m) = E(Xtm—m—}-l + Xtm—m+2 +...+ Xtm) (10)

We then determine the Whittle estimator of the series for various X (™).
As m increases, the Whittle estimator should converge to a robust esti-
mate of H, but if X(™) contains fewer than about 100 points, estimates
become noisy and tend to have very large (and therefore less meaning-
ful) confidence intervals.
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Table 1. Details of Internet delay experiments: date, starting time,
means, standard deviation, median, inter-quartile range, and loss rate.
All delay quantities are in millisecond. A date annotated with a* indi-
cates that the experiment was performed either on a weekend or early
morning, times at which Internet load is usually light.

Trace Date Start Mean | Stdev | Median| IQR Loss

UIC -1 | 5/24/97"| 9:3 AM | 20. 28 | 20. 28 | 9. 42 10. 28 | 0. 34 %
UIC -2 | 5/31/97"| 9:3 AM | 22. 14 | 25. 33 | 10. 69 15. 06 | 0. 28 %
UIC -3 | 6/2/97 1:09 PM | 27. 25 | 24. 39 | 17. 75 23. 28 | 0. 46 %
UIC -4 | 6/17/97 | 7:40 PM | 53. 69 | 39.02 44. 90 57.81 | 0. 67%
UCD - | 6/18/97 | 8:46 PM | 105. 33. 02 | 89. 76 39.25 | 1. 70%
1 89

UCD - | 6/19/97"| 1:00 AM | 83. 59 | 15. 23 | 80. 30 4.39 0.24%
2
UCD - | 6/23/97 | 9:38 AM | 93. 56 | 21. 55 | 87. 26 12.33 | 1. 4%
3
UCD - | 6/23/97 | 5:55 PM | 91. 27 | 19. 70 | 86. 78 11. 09 | 0. 49%
4
SIT -1 | 6/24/97 | 1:31 PM | 75. 05 | 28. 77 | 64. 81 29.94 | 1. 41%
SIT -2 | 6/26/97 | 10:50 94. 96 | 36. 66 | 84. 59 61. 84 | 3. 84 %
AM
SIT -3 | 6/27/97 | 1:383 PM | 91. 38 | 36. 72 | 81. 78 54. 54 | 2. 52%
SIT -4 | 6/29/97*| 5:06 PM | 75. 10 | 34. 27 | 59. 86 37.01 | 1. 14%

3 Measurements

3.1 Software

We have developed a set of tools to measure packet delay in the Inter-
net. Our goal was to be able to measure the delay that a real-time,
application-layer service would experience. Thus we wrote a distributed
application layer program consisting of a client and a server to be run
on two different hosts. The client transmits a series of UDP packets
to the server. The application allows the user to specify the interval
between transmissions by the client, and the number of bytes in each
application-layer packet. Each packet contains a sequence number (for
packet loss measurements) and is time-stamped at the moment that
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the data leaves the application layer (¢1). When the server receives a
packet, it adds a time-stamp (¢2) to the data field, and then retrans-
mits the packet back to the client. Upon reception of the retransmitted
packet, the client adds a third time-stamp (¢3) and stores the packet.
Thus, round-trip delay is measured by (3 — 7).

3.2 Experiments

Table 1 describes measurements of Internet delay using our software.
We will refer to each measurement session as a trace. Each trace con-
sists of 64K delay measurements using 80-byte UDP packets with a
fixed 30 ms inter-departure time (thus, each trace lasted about 33 min-
utes).

These parameters are similar? to those of the ITU recommendation
G.723.1 for the encoding and segmentation of a digital voice stream
over packet-switched networks [9]. The transmitting host was always
at DePaul University in Chicago. The server hosts were University
of Illinois, Chicago (UIC), University of California, Davis (UCD) and
Stevens Institute of Technology (SIT) in Hoboken, New Jersey. The
routes from DePaul to UCD and SIT both traverse one or more national
backbone providers. The route from DePaul to ULC uses a single service
provider, CICNET. Thus we are able to analyse the delays exhibited
over both wide-area and metropolitan networks.

First and second order characteristics of our traces are also shown in
Table 1. The results agree quite well with previous research [10]. The
traces to UIC exhibit a much smaller mean and median delay than
the traces to UCD and SIT, presumably due to the close topological
distance between DePaul and UIC.

However, surprisingly, the UCD traces exhibit the lowest standard
deviation and interquartile range (IQR)?, while the SIT traces exhibit
the highest values of these two statistics. The extreme variability of the

2The G.723.1 recommendation specifies a 20-byte or 24-byte payload with 30 ms
inter-departure times.

3The inter-quartile range of a data set is the difference between the values at the
75th and 25th percentiles.
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delays is most evident for the UIC traces, for which the IQR exceeded
the median delay four out of five times. Due to the low delays over
the UIC route, relatively minor changes in traffic patterns or system
loads at the endpoints may have a proportionally large impact on the
second-order statistics of delay.

4 Estimation of LRD

Some preparation of our data sets was necessary before the techniques
discussed in Section 2.3 could be used to estimate H.

First, we performed a log transform of the raw delay values, which
adjusts the marginal distribution of the data so that it is closer to
Gaussian (see Section 2.3), while preserving H [2]. We then checked
the data for a linear trend (there were none that were significant).
Finally, we visually examined a plot of the data for any obvious non-
stationarities, such as long plateaus of very high delays (again, there
were none)?.

However, as discussed in Section 4.4, more rigorous analysis later in-
dicated that several of the traces are not well modelled with a constant
H, which indicates non-stationarity in terms of the LRD structure of
these traces.

Tables 2-4 contain estimates of H for our traces using the four
empirical estimators. Whittle estimates include aggregation and 95%
confidence intervals and were performed using both FGN and FARIMA.
An entry of "NC” indicates that the estimator used in that case did
not converge. We will analyse the results of each type of estimator
separately below.

4.1 Heuristic Estimates

The variance-time, R/S and periodogram estimates were found by fol-
lowing the procedures discussed in Section 2.3.

“In general, determining whether a trace is stationary or not, is not always pos-
sible. In some cases, simple "eyeball” tests will suffice when there is an obvious
non-stationarity. See Chapter 7 of [2] for details.
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Table 2. Estimates of H for UIC traces.

Estimator | UIC-1 UIC-2 UIC-3 UIC-4
(m)
Variance- 0.7137 0.8823 0.8619 0.6595
time
R/S 0.7503 0.8770 0.8595 0.6578
Periodogram | 0.9208 0.9560 0.9179 0.9524
Wh. FGN 0.9059 £ | 09095 £ | 0.8711 £ | 0.9990
0.0051 0.0052 0.0052 0.0051
Wh. FGN | 0.7475 £ | 0.8572 £ | 0.9376 =+ | 0.5571
(100) 0.0507 0.0514 0.5129 0.0486
Wh. FGN | 0.7224 + | 0.8812 £ | 0.9468 =+ | 0.5928
(200) 0.0715 0.0730 0.0734 0.0709
Wh. FGN | 0.7279 £ | 09358 £ | 0.9074 =+ | 0.6374
(300) 0.0876 0.0898 0.0897 0.0861
Wh. FGN | 0.7259 £ | 09573 £ | 0.9194 + | 0.7106
(400) 0.1013 0.1042 0.1037 0.1010
Wh. FGN | 0.6979 09770 £ | 0.8885 &£ | 0.7604
(500) +0.1124 0.1164 0.1154 0.1136
Wh. FGN | 0.7382 £ | 09595 £ | 0.8805 =+ | 0.8139
(600) 0.1242 0.1274 0.1265 0.1255
Wh. 0.9931 0.9892 0.9459 1.1188
FARIMA
(0,d,0)
Wh. 0.9132 0.9304 0.9850 1.0171
FARIMA
(1,4,1)
Wh. 0.9844 NC NC NC
FARIMA
(2,d,2)
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Table 3. Estimates of H for UCD traces.

Estimator UCD-1 UCD-2 UCD-3 UCD-4
(m)
Variance- 0.7014 0.7417 0.8642 0.6972
time
R/S 0.8448 0.7535 0.7985 0.7416
Periodogram | 0.9083 0.7900 0.8784 0.8143
Wh. FGN 0.9994 0.8189 + | 0.8782 0.7986
0.0051 0.0051 0.0052 +0.0051
Wh. FGN | 0.8957 0.7192 + | 0.8767 0.6967
(100) 0.0516 0.0505 0.0515 0.0503
Wh. FGB | 0.7627 0.7436 £ | 0.9156 0.6854
(200) 0.0719 0.0717 0.0732 0.0710
Wh. FGN | 0.7239 0.7311 + | 0.9582 0.6708
(300) 0.0876 0.0876 0.0901 0.0867
Wh. FGN | 0.7359 0.7431 + | 0.9504 0.6602
(400) 0.1015 0.1016 0.1040 0.1001
Wh. FGN | 0.6857 0.7358 =+ | 0.9803 0.6559
(500) 0.1122 0.1133 0.1164 0.1119
Wh. FGN | 0.7263 0.7997 =+ | 0.9696 0.6525
(600) 0.1239 0.1252 0.1275 0.1222
‘Wh. 1.1181 0.8904 0.9568 0.8623
FARIMA
(0,d,0)
‘Wh. 0.9192 0.9145 0.9530 0.8931
FARIMA
(14.1)
‘Wh. NC 0.8060 0.8618 0.7889
FARIMA
(2,d, 2)
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Table 4. Estimates of H for SIT traces.

Estimator SIT-1 SIT-2 SIT-3 SIT-4
(m)
Variance- 0.7909 0.7617 0.7469 0.8033
time
R/S 0.8271 0.7504 0.7501 0.9108
Periodogram | 0.9333 0.8764 0.8787 0.9646
Wh. FGN 0.9959 £ | 0.9475 £ | 0.9996 =+ | 0.9816
0.0052 0.0052 0.0051 0.0051
Wh. FGN | 0.8637 £ | 0.7675 £ | 0.7318 =+ | 0.8436
(100) 0.0515 0.0508 0.0506 0.0514
Wh. FGN | 0.8174 + | 0.7492 + | 0.7842 + | 0.8761
(200) 0.0725 0.0717 0.0722 0.0729
Wh. FGN | 0.8586 £ | 0.7670 £ | 0.8228 + | 0.8382
(300) 0.0892 0.0881 0.0889 0.0890
Wh. FGN | 0.8708 £ | 0.7429 + | 0.8233 + | 0.8310
(400) 0.1003 0.1016 0.1027 0.1028
Wh. FGN | 0.8631 £ | 0.8289 + | 0.8323 + | 0.7802
(500) 0.1151 0.1147 0.1147 0.1140
Wh. FGN | 0.8690 £ | 0.7726 £ | 0.8878 =+ | 0.8223
(600) 0.1263 0.1248 0.1266 0.1256
Wh. 1.0955 1.0395 1.1286 1.0769
FARIMA
(0.d,0)
Wh. 0.9914 0.9116 0.8970 0.9876
FARIMA
(14.1)
Wh. 0.9982 0.7988 0.7426 NC
FARIMA
(2,d,2)
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In general, we find that the variance-time and R/S techniques agree
quite well. These estimators were within 0.01 of one another for half of
the traces. However, the periodogram estimates were 0.03-0.30 greater
than those given by the variance-time and R/S procedures. The dif-
ficulty with the periodogram seems to be the rather arbitrary choice
in fitting the regression line through the lowest 10% of the frequen-
cies. Although this '10% rule’ has been used often (see [3] and [§],
among others), we noted that the spectral densities of our traces were
often non-linear on a log-log plot, which increases the sensitivity of the
estimator to the number of frequencies used.

4.2 FGN Whittle Estimates

Using the Whittle estimator requires some care. In Section 2.3 we
noted that the FGN Whittle estimator assumes that the data it oper-
ates upon has a Gaussian marginal distribution. In practice we find
that many real-world data sets are non-Gaussian. In order to derive
accurate point estimates of H with the FGN Whittle estimator, we
aggregate our traces for levels of m = 100, 200, 300, 400, 500, 600. At
m = 600 we discontinue aggregation because the number of points in
X(690) i about 100. Point estimates of H are found by following the
heuristic described in [1]; that is, as m increases, the Whittle estimator
may initially fluctuate, but will eventually converge. The earliest point
of this convergence and its associated confidence interval are used as
point estimates. From Tables 2-4, we note that the estimates of H
produced by running the FGN Whittle estimator on the unaggregated
traces are, in most cases, significantly different from the value that
the Whittle estimator converges to when the traces are aggregated.
For UIC-4, the Whittle estimator did not converge. For m = 100 it
indicates that the trace exhibits little, if any, LRD. However, as m in-
creases, so do the estimates of H. Further analysis (see Section 4.4)
indicates that the trace is well modelled with H =~ 0.55. As of the time
of this writing, we have no explanation for the anomalous behaviour of
this trace. By observation, we have found that that marginal distribu-
tion of Internet delays exhibits a light lower tail, but heavy upper tail.
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For m = 1, the marginal distribution of delay in the traces is quite far
from Gaussian. As m increases, the marginal distribution approaches
a Gaussian distribution. Naturally, we should make sure that the dis-
tribution is ”close enough” to Gaussian so that the Whittle estimator
is accurate. For UCD-2, the aggregated Whittle estimator converges to
H =~ 0.74 while the variance-time and R/S estimates are H = 0.7417
and H = 0.7535, respectively. Although the marginal distribution is
not exactly Gaussian it is ”close enough” in the case of UCD-2 to agree
with estimators that do not require Gaussian marginal distributions.
Since the marginal distributions of the rest of our traces at the level
of aggregation chosen for the point estimate of H are no less Gaus-
sian (as visually determined by a quantile-quantile plot) than UCD-2
for m = 300, we conclude that the Whittle estimator is a reasonable
estimator of H for our traces, despite their deviations from a purely
Gaussian distribution.

Table 5. FGN Whittle point estimates with 95% confidence intervals
compared to heuristic estimators.

Trace FGN Whittle & CI Var-time R/S Periodogram
UIC-1 0.7224 £ 0.0715 Yes Yes No
UIC-2 0.9358 + 0.0898 Yes Yes Yes
UIC-3 0.9074 £ 0.0897 Yes Yes Yes
UIC-4 0.5571 + 0.0486 No No No
UCD-1 | 0.7239 % 0.0876 Yes No No
UCD-2 | 0.7436 £ 0.0717 Yes Yes Yes
UCD-3 | 0.9582 +. 0901 No No Yes
UCD-4 | 0.6708 £ 0.0867 Yes Yes No
SIT-1 0.8586 + 0.0892 Yes Yes Yes
SIT-2 0.7492 + 0.0717 Yes Yes No
SIT-3 0.8228 + 0.0889 Yes Yes Yes
SIT-4 0.8382 + 0.0890 Yes Yes No

Table 5 compares point estimates of H using the FGN Whittle
estimator to estimates resulting from the heuristic estimators. The
Whittle estimates are shown with 95% confidence intervals. For each
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heuristic estimate, we indicate (with ”Yes” or ”No”) whether or not it
fell within the Whittle estimator’s confidence intervals. The variance-
time estimator fell within the confidence interval for 10 of 12 traces
while the R/S estimator fell within the confidence interval for 9 of
12 traces. The periodogram estimator only fell within the confidence
intervals for 6 of 12 traces. Given these results, we recommend that
if the heuristic estimators produce estimates of H which are outside of
the 95% confidence interval of Whittle’s estimator, the data should be
more carefully analysed for non-stationarities. This is pursued further
in Section 4.4.

4.3 FARIMA Whittle Estimates

The FARIMA Whittle estimates of Tables 2-4, seem to indicate that
Internet delay will not easily fit a FARIMA model. In particular, we
find that many of our (0, d, 0) estimates are greater than 1.0 and all but
2 are greater than 0.9. Similar, though less extreme, results were ob-
tained for (1,d, 1) estimates. These results are not surprising given that
the marginal distributions of the traces were non-Gaussian. FARIMA
(2,d,2) models converged for only 7 out of the 12 traces, and 5 of these
were within, or at least very close to, the 95% confidence interval of the
FGN Whittle estimator. We also attempted to model the traces using
(1,d,2) and (2,d, 1) processes (not shown), but the H estimates were
always very close to those of FARIMA (1,d,1). Although FARIMA
processes are more powerful modelling tools than FGN because they
contain SRD as well as LRD, our experience indicates that they tend
to provide aggressive estimates of H. We may not have found the opti-
mal combination of aggregation and parameters, but we know no better
technique to find such a combination other than exhaustive search.

4.4 Testing for Stationary H

For some traces, the variation of the H estimates is quite large. In
[12] it is shown that for stationary time series, H(1%0) has the same
asymptotic distribution as H(1%): thus, in cases where the entire trace

is well-modelled with a constant H, we expect that H190) ~ f(100),
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Given the anomalous case of UIC-4 and the high (> 0.9) Whittle
estimates for UIC-2, UIC-3, and UCD-3, we turn our attention towards
determining how the estimates of H for an entire trace compare to
estimates of H for disjoint subsets of that trace. We divide X (100)
for each trace into five subsets of 128 points each, and run the FGN
Whittle estimator on each subset.

Table 6 shows HZ-UOO), 1 <4 < 5 for each subset, along with H100) —

%Z?:l Hi(wo) and the estimate of H from the entire trace.

Table 6. FGN Whittle estimates for 5 disjoint subsets of 128 points, for
X(lUO).

Trace Hl(loo) H2(100) H?Eloo) Hiloo) H5(100) 7 (100) H

UIC-1 0.7954 | 0.8027 | 0.76661 | 0.6457 | 0.6731 | 0.7366 | 0.7475
UIC-2 0.5642 | 0.6471 | 0.6461 0.6164 | 0.9107 | 0.6769 | 0.8572
UIC-3 0.7129 | 0.9411 | 0.7297 | 0.8877 | 0.9702 | 0.8483 | 0.9376
UIC-4 0.5620 | 0.5000 | 0.5982 | 0.5465 | 0.5975 | 0.5608 | 0.5571
UCD-1 | 0.9350 | 0.8158 | 0.8560 | 0.8973 | 0.8480 | 0.8704 | 0.8957
UCD-2 | 0.7398 | 0.7396 | 0.7205 | 0.5446 | 0.5217 | 0.6532 | 0.7192
UCD-3 | 0.8064 | 0.7552 | 0.5852 | 0.8309 | 0.9130 | 0.7782 | 0.8767
UCD-4 | 0.6705 | 0.7252 | 0.7206 | 0.7364 | 0.6248 | 0.6955 | 0.6967
SIT-1 0.9017 | 0.8582 | 0.8674 | 0.8180 | 0.8529 | 0.8596 | 0.8637
SIT-2 0.7321 0.7522 | 0.8831 0.7585 | 0.6632 | 0.7578 | 0.7675
SIT-3 0.6784 | 0.7322 | 0.6479 | 0.7392 | 0.7072 | 0.7072 | 0.7318
SIT-4 0.8211 0.8548 | 0.9114 | 0.8285 | 0.6427 | 0.8117 | 0.8436

Considering Table 6, we find that in cases where the H, 1-(100) ’s do not

fluctuate dramatically, this property holds quite well. In particular, we
conclude that UIC-1, UIC-4, UCD-4, SIT-1, and SIT-2 are reasonably
well modelled with constant H as determined by the FGN Whittle esti-
mator on the entire trace. The other seven traces are not well modelled
with constant H, and UIC-2, UIC-3, and UCD-3 are particularly patho-
logical. Also note that these three traces all exhibit H estimates greater
than 0.9. For the seven traces with significantly non-homogeneous H,
the Whittle estimator over the entire trace gives us an overly generous
estimate of H, possibly due to these non-stationarities. Regardless of
the test used, it is clear that in some cases H may change dramati-
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cally over relatively small (5 minute) periods of time, while in others
H may be well-modelled as constant for 15 minutes or more. While
this result suggests that our traces may contain non-stationarities, it
also indicates that the appropriate time scale over which to analyse
network delays is not clear. Our analysis tools are most robust when
analysing stationary data, and by reducing the time scale of our analy-
sis (analysing smaller time periods) our data may exhibit stationarity.
However, current LRD estimators require a relatively large number of
samples, and our sampling rate is limited by hardware clock resolution.

4.5 Network Load and H

Previous research regarding LRD network traffic has concluded that H
is correlated with network load. For example, in [3], Ethernet traffic
is found to have a higher H during busy periods, and in [13], VBR
video is found to exhibit higher H during high-activity scenes. Given
these results, we had expected to find a clear correlation between the
magnitude of delay for a trace (as an indicator of network load) and H.
However, when comparing the mean and median delay of each trace
from Table 1 to the point estimates of H from Table 6, we found that,
in both cases, H was negatively correlated with delay (-0.14 and -0.15,
respectively)! Packet loss rate was positively correlated with H, but
not significantly so (0.06). We also compared the H(100)
Table 5.

values from

We found that for these values, mean and median delays were pos-
itively correlated with H (0.16 and 0.10, respectively). However, if we
disregard the traces for with H fluctuated the most (UIC-2, UIC-3,
UCD-2, UCD-3, SIT-3 and SIT-4), we find that mean and median de-
lays were much more highly correlated with our point estimates of H
(0.35 and 0.30, respectively). Thus, we can conclude that the magni-
tude of H does seem to be correlated with network load for traces with
stationary H.
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5 Estimator Robustness and Loss

When evaluating an estimator of H on our traces, we ignored all packet
loss events. Although our traces do not exhibit packet loss rates greater
than 4%, there is evidence that loss rate of 10% - 20% and higher may
be common on some Internet paths [14]. It is unclear what effect this
packet loss has on the estimation of H. When such censored data
is converted into the frequency domain, some spectral leakage would
be expected. However, the impact of leakage on periodogram-based
estimates of H (including the Whittle estimator) is not certain. A
robust analysis must be able to compensate for ”gaps” in the data.

Table 7. Estimates of H for FGN (H = 0.7) series with varying loss
rates.

Estimator No loss | 5% 10% 20% 33% 50%
loss loss loss loss loss
Variance-time 0.6700 0.6752 0.6662 0.6659 0.6678 0.6507
R/S 0.7006 0.7035 0.7030 0.6950 0.6876 0.6708
Periodogram 0.6997 0.7032 0.6937 0.6904 0.6813 0.6747
Weighted  Peri- | 0.6991 0.6964 0.6947 0.6894 0.6806 0.6636
odogram
Whittle 0.7015 0.6965 0.6926 0.6842 0.6706 0.6528

Table 8. Estimates of H for UIC-4 series with varying loss rates.

Estimator Unmodified| 5% 10% 20% 38% 50%
loss loss loss loss loss
Variance-time | 0.6595 0.6801 0.6832 0.6713 0.6682 0.6712
R/S 0.6578 0.6682 0.6595 0.6437 0.6336 0.6797
Periodogram 0.9524 0.9517 0.9452 0.9345 0.9068 0.8647
Weighted Pe- | 0.5533 0.5506 0.5559 0.5449 0.6029 0.6586
riodogram
Whittle 0.5571 0.5571 0.5571 0.5571 0.5571 0.5571

We introduce a weighted periodogram, which has been shown to
be robust [15] when applied to unevenly sampled data. Consider our
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Table 9. Estimates of H for UCD-4 series with varying loss series.

Estimator Unmodified| 5% 10% 20% 38% 50%
loss loss loss loss loss
Variance-time | 0.6972 0.6574 0.6405 0.6427 0.6538 0.6328
R/S 0.7416 0.6790 0.6768 0.6770 0.6806 0.6646
Periodogram 0.8143 0.8103 0.8205 0.8082 0.7861 0.7087
Weighted Pe- | 0.6276 0.6606 0.6512 0.6378 0.6122 0.6264
riodogram
Whittle 0.6708 0.6708 0.6708 0.6708 0.6708 0.6708

Table 10. Estimator of H for SIT-1 series with varying loss rates.

Estimator Unmodified| 5% 10% 20% 38% 50%
loss loss loss loss loss
Variance-time | 0. 7909 0.8024 0.7949 0.7947 0.7942 0.7699
R/S 0.8271 0.8288 0.8254 0.8257 0.8167 0.8745
Periodogram 0.9333 0.9166 0.9106 0.8969 0.8892 0.8764
Weighted Pe- | 0.8612 0.9412 0.9289 0.8975 0.8683 0.8557
riodogram
‘Whittle 0.8586 0.8586 0.8586 0.8586 0.8586 0.8586

measurement process, described in Section 3. Although we schedule
each packet transmission individually, CPU load at the transmitting
host or media-access delays at the network-interface card may cause our
transmission to be slightly delayed. And, as discussed above, packet
losses put gaps in our delay time series. Our goal is to use this robust
periodogram to prove one of two possibilities:

(a) The unweighted periodogram, and possibly some or all of the
other estimators, are biased under packet loss and should be used with
caution in these circumstances, or

(b) Our current set of LRD estimators do a reasonable job of es-
timating H when packets are lost, are therefore may be used with
confidence in situations where packet loss is significant.

The weighted periodogram is defined as follows for a time series in
which the jth sample occurs at time ¢; and the sampled value is X
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In order to evaluate the robustness of the LRD estimators under
varying levels of packet loss, we synthetically generate series of 64K
FGN® points with H = 0.7. We calculate Husing each estimator for
packet loss rates of 5% - 50%. Our loss model is very simple. To sim-
ulate a loss rate of 0 < p < 1, we iterated through an FGN trace and
discarded each point with probability p. Thus, losses were modelled as
independent Bernoulli trials, and the length of loss bursts were geomet-
rically distributed. Empirical studies of Internet packet loss have not
settled on a model for loss characteristics, though there is evidence that
UDP packet loss rates are not independent for closely spaced transmis-
sions [17]. However, for our purposes of understanding how the LRD
estimators respond to censored data, this model is sufficient.

Table 7 shows the results for synthetic FGN data sets generated
with H = 0.7. The first column (No loss) shows the estimate of H
determined by each estimator for the original data set (64K samples).
Successive columns show estimates of H generated for the subsets of
this data derived by randomly removing 5%, 10%, 20%, 33% and 50%
of the data points. As data loss increases, there is a general trend
away from the lossless H value, as might be expected. However, all
estimators are reasonably robust, with the maximum variation being
only 8% between the 0% and 50% loss estimates across all estimators.

°To generate FGN, we used the fgn tool presented in [16], which is available at
http://www.acm.org/sigcomm /ITA /.
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Although this is an encouraging result, we must keep in mind that
FGN is an idealised process. We expect real network traffic to be messy.
Tables 8- 10 show the same experiments performed on three of the more
well-behaved traces (in terms of stationarity of H): UIC-4, UCD-4 and
SIT-1. Since the original traces already exhibited a small amount of
packet loss, we do not have a lossless control case to compare against.
Also, since we tested the unaggregated traces, the Whittle estimator
could not be trusted to produce an accurate result (see Section 4.2).
Instead, we use the Whittle point estimate for each trace from Table
5.

For all three traces, the robustness of the variance-time estimator
degraded somewhat with loss, and the R/S and the two periodogram
estimators produced noisy, but reasonable estimates of H, even when
50% of the packets were lost. Thus, we will conclude that the LRD
estimators are reasonably robust under loss. An interesting trend that
can be seen in Tables 9 and 10 is that as the loss rate increases, the
unweighted periodogram produces estimates of H closer to the Whittle
point estimate. We hypothesize that our loss model preserved most of
the low-frequency components of the traces, while perhaps eliminating
many of the high-frequency components.

Finally, we note that for the unmodified UIC-4 trace, the weighted
periodogram agrees very closely with the Whittle point estimate, while
the other heuristic estimators do not. Recall that in Section 4.2 we
noted that the Whittle estimator did not converge for this trace, though
further analysis (see Section 4.4) indicated that the trace was well mod-
elled with constant H = 0.55.

6 Wavelet Analysis

Wavelet analysis is a tool for simultaneously measuring the spectral
and temporal components of a signal or time series. Not unlike Fourier
analysis, wavelet analysis involves transforms. The continuous wavelet
transform of a signal z(¢) is given by
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', ) (7, s) = %T,s (t - T) dt (13)

where 7 is called the translation of the signal and s is called the scale
of the signal. The function v is called the basis function or mother
wavelet, and must be in the function space L? (L? contains all func-
tions f(¢) that are square integrable; i.e., [ f? (t)dt < c0). Computing
C(z,)(1,s) for particular values of 7 and s is equivalent to applying
1, shifted in time by 7 and scaled in size by s, to the signal. For
a constant s, a wavelet transform is not unlike a short-term Fourier
transform, where 1 is the window function. As s increases, the size
(in time) of 9 grows. Thus, for small and large s, high frequency and
low frequency components of the signal can be efficiently identified,
respectively.

The continuous wavelet transform produces an overcomplete planar
representation of the signal. Let n be the number of coefficients of the
transform when s = 1. By sampling the coefficients of the continuous
wavelet transform at the points

Doy (in§) = Cloy (127,27)  0<j <[logyn], 0<i<n/2l (14)

on this plane, we obtain a discrete representation of the coeflicients
without losing information [18]. This representation, called the discrete
wavelet transform, allows us to determine a finite, yet complete, set of
coefficients of the wavelet transform. This approach analyses x(t) by
logarithmically scaling 1) based on the octaves j.

6.1 A Discrete Wavelet Estimator

A technique for estimating H with the discrete wavelet transform was
discussed in [19]. The mean-square power around octave j is given by

1 ..
=5 ‘D(:v,w)(zuj)

Thus, given that the power around frequency A of an LRD process
scales with the inverse of A raised to the H (see Section 2.3.3), we

2
P |

(15)

347



M.S. Borella

can estimate H by plotting j versus log, P; and taking a least-squares
regression through the resulting points. Since there are logarithmically
fewer coefficients in each successive octave, we weight the point at
octave j by the number of coefficients in this octave (i.e., n/2/) when
performing the regression. The slope, «, of the fitted line is the basis of
the estimate of H; that is, H = (a+1)/2. In [19] this estimator is shown
to be asymptotically unbiased. Furthermore, it does not suffer from the
limitation of the Whittle estimator; that is, the data set being analysed
does not have to be Gaussian. Thus, aggregation is not necessary.
Finally, it is possible to infer the strength of the dependence structure
between different frequency ranges.

This allows us to compare the strength of both long and short-range
dependence.

o
=
[
-
=
g
.

Figure 1. Wavelet estimator applied to FGN with H = 0.7

An example of the wavelet estimator®, is shown in Figure 1 for
a synthetically generated set of 64K observations of FGN with H =

SThroughout this paper we used the wavelet Daubechies-3 [20].
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0.7. The logarithmically-transformed mean-squared power (logy P;) is
plotted for each octave (j) with confidence intervals”. The weighted
regression is taken over octaves 1 to 9. In general, we find that as j
increases, the power estimates become noisy due to increasingly smaller
sets of coeflicients. When performing the regression, we only consider
octaves for which the fitted line intersects the confidence intervals. The
resulting estimate of H = 0.71 is consistent throughout both low (large
j) and high (small j) frequencies.

6.2 Estimation of LRD and SRD of Network Delay

=

| |
[
| |
A A
i [ o
&
it »
*18 f
[/
{7

Figure 2. The Wavelet estimator applied to SIT-2.

We used the wavelet estimator on all 12 of our delay traces. We
found that none of our traces are well modelled with H consistent
throughout all frequency ranges. In particular, 10 out of 12 traces
exhibited two distinct octave ranges (scalings) from which different

"The upper and lower confidence intervals are not always equidistant due to the
logarithm scaling of the graphs. These confidence intervals are computed per [19].
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Figure 3. The Wavelet estimator applied to UIC-4

values of H were estimated, while the remaining 2 traces exhibited
three such scalings. Similar non-linearity’s have been seen in wavelet-
based analyses of traffic volume [21].

Figure 2 shows the wavelet estimator applied to trace SIT-2. Two
regressions are performed: for j =2...5 and j = 6...13. For low fre-
quencies (j = 6...13), H is estimated to be 0.7664, which is consistent
with the Whittle estimate of 0.7492. For high frequencies j = (2...5),
H is estimated to be 1.0881. At these high frequencies (low octaves) the
H estimate no longer indicates LRD, but does imply a more localised
dependency structure.

The wavelet estimator also provides a visual explanation for some
of the difficulties we experienced when using the Whittle estimator. In
Section 4.4 we found that the Whittle estimate of H for trace UIC-
4 varied dramatically with the level of aggregation. Figure 3 shows
the wavelet estimator applied to trace UIC-4. As the octaves that
we examine increase, we find that the H estimate is high (1.1333) for
j=2...7, but low (0.5208) for j =9...13. For even greater octaves,
the H estimate increases again. Recall that the Whittle estimator
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Table 11. Wavelet estimates of H for various scalings.

Trace Scalings H In Whittle CI?

UIC-1 (1, 5) 1.0272 yes
(6, 13) 0.7799

UIC-2 (1, 3) 1.1009 yes
(4, 12) 0.8791

UIC-3 (3, 5) 1.1548 yes
(6,13) 0.8256

UIC-4 2,7 1.1333 yes
(9,13) 0.5208

UCD-1 (3, 5) 1.0137 yes
(6, 8) 0.9849
(9,13) 0.6448

UCD-2 (1, 3) 0.8064 yes
(4, 12) 0.7593

UCD-3 (1, 4) 1.0059 yes
(8,13) 0.9389

UCD-4 (2, 6) 0.9565 yes
(7, 13) 0.7045

STT-1 (2, 4) 1.0821 yes
(5, 7) 0.8747
(8,13) 0.7819

SIT-2 (2, 5) 1.0881 yes
(6, 13) 0.7664

SIT-3 (2, 5) 11731 1o
(6, 11) 0.7046

SIT-4 (3, 6) 1.0358 yes
(7,10) 0.8728
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is periodogram-based. The frequency decomposition produced by the
wavelet transform gives us an intuitive explanation of why the Whittle
estimator behaves the way that it does. Loosely speaking, a spectral
LRD estimator expects that the spectral power of the observed process
increases logarithmically with octave. Trace UIC-4 exhibits a flatness
of spectral power localised to a few particular octaves that causes the
periodogram-based estimators to produce inconclusive results.

Table 11 shows wavelet estimates of H for each scaling of our 12
traces. We found that the low frequency scalings exhibited H estimates
within the confidence interval of the Whittle estimator in 11 of the
traces. For all traces, the high frequency scalings exhibited a stronger
dependence structure than the low frequency scalings.

This latter result implies that characterising the dependence of net-
work traffic with just the H parameter may be misleading. A more
promising approach is to incorporate the H estimates for each scaling,
thus preserving both the long range and short range dependence of the
observed traffic.

Such a characterisation can also be used to synthetically generate
realistic traffic of network delays. Given the power in each octave of
the discrete wavelet transform, we can use an inverse wavelet transform
[18] to construct a time series with a similar long range and short range
dependence structure.

As in Section 4.4, we found that wavelet estimates of H change
over the length of the observed time series. Recent research in [22]
introduces a wavelet-based method for characterising the dynamics of
LRD. As of the time of this writing we are still examining this method.

7 Conclusions

The main contribution of this paper is the result that in the majority
of the cases that we have studied, there is strong statistical evidence
that Internet packet delay is long-range dependent.

However the degree of this dependence may change dramatically
over relatively small periods of time, which indicates that the appro-
priate time scale over which to analyse Internet delay is not clear.

352



On Estimating Long Range Dependence of ...

Stochastic modelling of delay, as LRD is a non-trivial task and
the tools at our command may not be sufficient for describing our
observations. For example, we do not know whether fluctuations of
H imply that a process is truly changing its character. We found
that with the help of wavelet analysis, we can estimate both the long
range and short range dependence structure of empirical network de-
lay traces. By examining the power of different frequency octaves, we
found that periodogram-based LRD estimators can produce confusing
results when the observed power spectrum is not well modelled as log-
arithmically decaying with frequency. As a result we advocate the use
of the wavelet estimator and wavelet analysis in general as an impor-
tant tool for measurement and analysis of the dependence structure of
network traffic. Our future research includes methods of synthetically
generating realistic traces of network delays. The ability to generate
these traces has many important uses, including the building of simu-
lation environments for testing the ) o .S of real-time audio and video
tools.
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