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Modeling Network Traffic in Wavelet Domain

Sheng Ma, Chuanyi Ji

Abstract

This work discovers that although network traffic has the
complicated short- and long-range temporal dependence, the cor-
responding wavelet coefficients are no longer long-range depen-
dent. Therefore, a “short-range” dependent process can be used
to model network traffic in the wavelet domain. Both indepen-
dent and Markov models are investigated. Theoretical analysis
shows that the independent wavelet model is sufficiently accurate
in terms of the buffer overflow probability for Fractional Gaussian
Noise traffic. Any model, which captures additional correlations
in the wavelet domain, only improves the performance marginally.
The independent wavelet model is then used as a unified approach
to model network traffic including VBR MPEG video and Ether-
net data. The computational complexity is O(NV) for developing
such wavelet models and generating synthesised traffic of length
N, which is among the lowest attained.

1 Introduction

As high speed networks aim at providing integrated services to vari-
ous applications with diverse statistical characteristics and Quality of
Service (QoS) requirements, modeling different types of traffic and gen-
erating synthetic traffic from a model are crucial to network design and
network simulation. In this work, we focus on these important issues.

Two of the key issues [17] of traffic modelling are performance and
computational efficiency. The former addresses the ability of a model
to characterise significant statistical properties in network traffic. The
latter deals with the complexity of a model, the computational com-
plexity needed to develop such a model and generate a large volume of
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synthesised traffic. Both issues are important for simulating high-speed
networks with a low loss probability. Although numerous studies have
been conducted on traffic modelling and performance analysis (see for
example [17], [37], [44], [49], [47] and references therein), new traffic
models are needed to deal with unique properties introduced by data
and video traffic. One of such significant statistical properties is the so-
called long-range dependence (LRD) recently found in Ethernet data
[24] and VBR video traffic [18].

It is characterised by a hyperbolically decaying autocorrelation,
which is different from an exponentially decaying autocorrelation of
Markov-type of models.

The long-range dependence questions [11], [34], [12] the feasibility of
traditional Markov models! especially in such applications as video-on-
demand, broadcast video, and most data communications where delay
requirements are less stringent?. Furthermore, an even more complex
statistical property, the co-existence of long-range dependence (LRD)
and strong short-range dependence [7], [18] has been found in VBR
video traces. This means that the auto-correlation function of video
traffic behaves similarly to that of long-range dependent processes at
the large lags, and to that of short-range dependent processes such as
DAR processes [20] at the small lags [7], [18], [24], [43]. In addition,
periodic statistics have been shown in the standardised Motion Picture
Expert Group (MPEG) encoded sources due to periodic appearances
of different types of frames [41]. All these suggest a complex tempo-
ral behaviour of network traffic, and make accurate traffic modelling
a challenging task. Several models have been developed to capture
long-range dependence in network traffic, such as rational Gaussian

Tt is possible to use a Markov-type of model [3] to model long-range depen-
dent processes. However, it usually results in a complicated model with a complex
structure and too many parameters.

% As shown in [20], [13], a short-range dependent model may be sufficient to model
real-time traffic in terms of a buffer loss rate because of a small relevant critical
time-scale [13]. However, long-range dependent models may be needed for non-real-
time applications. In addition, long-range dependent models may be proven to be
important for estimating other quantities such as a loss pattern in addition to a
buffer loss rate [12].
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Noise (FGN) processes [24], the fractal point processes [42] and meth-
ods based on chaotic maps [14], [13]. Since these models cannot capture
the short-range dependence (SRD) in network traffic, they can hardly
be used to model video traffic.

Models, which can model both long-range and short-range depen-
dence, include FARIMA models [18], a model based on Importance
Sampling [21], scene-based models [22] and the Markov Modulated Pro-
cesses [3], [40].

A common feature of all these methods is that they model both
long-range and short-range dependence in the time domain. Among
these methods, the scene-based modelling [22] and the Markov Mod-
ulated models [3], [40] provide a physically interpretable model to in-
clude both long-range and short-range dependence. However, due to
the dynamic and stochastic nature of network traffic, it is difficult to
accurately define and segment network traffic into different states of a
Markov model. The rest of the methods suffer the computational com-
plexity too high to be used for generating a large volume of synthesised
traffic [18].

A more computationally efficient method based on Fast Fourier
Transform has been proposed [35] to model Ethernet traffic in the fre-
quency domain. Another method based on Markov models has been
proposed to model the frequency components of video traffic [26].

Both methods suggest those interesting properties of either Eth-
ernet or video traffic could be investigated in the Frequency domain.
However, none of the methods are yet able to capture the long-range
and the short-range dependence simultaneously.

Therefore, the question remains open on how to develop a computa-
tionally efficient model, which can capture both long-range and strong
short-range dependence in network traffic. In this work, we tackle this
problem by developing a new method based on wavelets. Instead of
modelling network traffic directly in the time-domain, we model the
statistical properties in the wavelet domain.

Our work is motivated by previous work in the signal processing
community on using the independent wavelet model to represent and
model a Fractional Brownian Motion (FBM) process. Particularly, [4],

277



Sheng Ma, Chuanyi Ji

[5], [27] have established a general framework for multiscale represen-
tations of a random process through the dyadic tree.

[48], [16], [32], [46] have shown that wavelets can provide compact
representations for an FBM process. Moreover, Wornell [48] has proven
that the spectrum of the independent wavelet model of an FBM process
is close to that of 1/f processes. The independent wavelet model has
thus been proposed to rapidly generate FBM or FGN-like synthesised
sample traces.

Although wavelet models have been used widely in various appli-
cations, they have not been applied to modelling heterogeneous traffic
when this work was developed ([29], [30]). Wavelets were also used to
estimate Hurst parameters [2], [1] and [15].

The possibility of using wavelets for modelling network traffic was
mentioned in [36], [12]. Recently, [39], [38] has applied multiplicative
wavelet models to model network traffic.

To model long- and short- range dependent network traffic, we need
to further address (1) whether wavelet domain modelling is suitable
for modelling a mixture of short- and long- range dependence; (2) how
to measure the performance of traffic models for networking related
application; and (3) how to model real network traffic, such as data
traffic and video traffic.

Built on our early work [29], [30], we first demonstrate in this pa-
per that the wavelet coeflicients of a long-range dependent temporal
process are no longer long-range dependent. We then show that the
wavelet coefficients can be modelled by simple statistics corresponding
to the “short-range dependence” alone. We further demonstrate that a
simple wavelet model based on independent assumptions is capable of
capturing both long- and short-range dependence, and thus provides a
parsimonious and unified model of network traffic. In addition, since
computational complexity of wavelet transforms and inverse transforms
are in the order of N with N being the length of synthesised traffic, our
wavelet models can rapidly generate synthesised network traffic with a
computational complexity O(N), and thereby provide one of the most
efficient methods to synthesise high quality network traffic.

Furthermore, because wavelets have a natural link to the time-
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scale (multi-resolution) representation [31], they enable the time-scale
modelling and provide a systematic method for characterising periodic
MPEG video traffic.

The rest of the paper is as follows.

In Section 2, we provide background knowledge.

In Section 3, we give outlines of our approach.

In Section 4, we investigate statistical properties of wavelet coeffi-
cients, and develop as well as evaluate wavelet models for the long-range
and the short-range dependent Gaussian processes, respectively.

In Section 5, we provide statistical properties of wavelet coefficients,
for real network traffic, and derive our algorithms based on these prop-
erties.

We further discuss our approach in Section 6, and then conclude
the paper.

2 Background

2.1 Long-Range versus Short-Range Dependence

Long-Range Dependence (LRD) can be considered as a phenomenon
that current observations are significantly correlated to the observa-
tions that are farther away in time.

This phenomenon is of particular interest to traffic modeling, since
it has been discovered recently that both Ethernet traffic [24] and video
sources [7] [18] possess long-range dependence.

One formal definition [18] of a long-range dependent stationary pro-
cess can be described as that the sum of its correlation function r(k)
over all lags is infinite?.

This implies that the correlation r(k) decays asymptotically as a
hyperbolic function of &, i.e., r(k) ~ O(k~(?-27) for k > 0.

H(0,5 < H < 1) is the so-called Hurst parameter, which is an
important quantity used to characterize the LRD.

3Please see [24], [18], [8], [8], and [6], for other definitions and properties of the
LRD.
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Examples of such long-range dependent processes include the Frac-
tional Gaussian Noise (FGN) process and the Fractional Auto regres-
sive Integrated Moving Average process (FARIMA).

The nature of these random processes is “self-similar”, i.e., the
statistical properties of these processes are invariant at different time
scales [6] [8].

In particular, FGN is a Gaussian process, and can be completely
specified by three parameters.

FARIMA (p, d, q) is a fractional differentiation of an Auto-Regressive
Moving Average (ARMA (p,q)) process, where p and ¢ represent the
orders of the ARMA (p, q) process and (0 < d < 0.5) is a differentiation
degree. The Hurst parameter H of FARIMA (p,d, q) equals to 0.5 +d.
FARIMA(p,d, q) has p + q + 3 parameters, and is much more flexible
than FGN in terms of simultaneously modeling of both long-range de-
pendence and short-range dependence (SRD) in network traffic. More
details can be found in [6] on FGN and FARIMA processes.

Examples of short-range dependent random processes include Auto-
Regressive (AR) processes and Auto-Regressive-Moving-Average
(ARMA) processes with exponentially decaying correlation functions.
That is, 7(k) ~ p*(—=1 < p < 1).

2.2 Criteria for Measuring the Performance of A Model

Both the auto-correlation function and the buffer loss rate are used
as performance measures for wavelet models? in this work. The auto-
correlation function is an important quantity characterizing the second-
order statistics of a wide-sense-stationary process. If a model is able to
capture both LRD and SRD components in network traffic, it should
be able to match the auto-correlation function of network traffic in a
long range.

The buffer loss rate is chosen as one other criterion to measure
the performance of a model, since one of important goals for traffic

1Because the marginal distribution can be shaped to match original traffic, we
do not consider it as a criterion.
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modelling is to help designing the buffer size of a server® and estimating

the loss rate as a measure for the Quality of Service (QoS).
Therefore, synthesised traffic generated by a good traffic model

should have a similar buffer loss rate to that of the actual traffic.

2.3 Wavelet Transformation

The model we develop on network traffic is based on wavelets.
Wavelets are complete orthonormal bases, which can be used to
represent a signal as a function of time [9].
In L?(R), discrete wavelets can be represented as

P (t) = 27912 (277tm) (1)

where 7 and m are positive integers. j represents the dilation, which
characterizes the function ¢(t) at different time-scales. m represents
the translation in time. Because gi);-”(t) are obtained by dilating and
translating a mother function ¢(¢), they have the same shape as the
mother wavelet and therefore are self-similar to each other.

A discrete-time process z(t) can be represented through its inverse
wavelet transform

2k-1_1

k
z(t) =" > d¢P()+ o, (2)
7j=1 m=0

where 0 < i < 2%, ¢g is equal to the average value of z(t) over t €
[0, 2k — 1]. dgm) are wavelet coefficients and can be obtained through
the wavelet transform

2k_1

dft =Y (t) (). (3)

t=0

The mother wavelet we choose in this work is the Haar wavelet. It
is defined as

%A server can be modeled as a single queue with capacity C and a buffer size B.
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I, if0<1<1/2,
0, otherwise.

J:

Figure 1. Left figure shows the Haar wavelet basis functions. Right figure
illustrates the corresponding tree diagram and two types of operations. The
number in the circle represents the one dimension index of the wavelet basis
functions. For example, the equivalent notation of d is d,. a and 7(a)
represent the one dimension index of wavelet coefficients. y(a is defined to be
the parent node of node a. v(a) is defined to be the left neighbor of node a.

The Haar wavelet bases have been illustrated in the left figure of
Figure 1 for K = 3. The right figure of Figure 1 shows the correspond-
ing tree diagram [5]. In the tree diagram, we define the one-dimension
index of wavelet coeflicients that is used later in the paper. The mo-
tivation for using Haar wavelets is due to simplicity, which results in
computationally efficient methods for the wavelet transform and the
inverse transform.

The computational complexity of the wavelet transform and the in-
verse transform is in the order of O(N) [9], where N = 2K is the length
of the time series. When s(¢) is a random process, which is of the in-
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terest to this work, the corresponding wavelet coeflicients, dj'’s, define
a two-dimensional random processes (see [19], [48], [5] and references
therein for details) in terms of j and m.

Due to the one-to-one correspondence between z(t) and its wavelet
coefficients, the statistical properties of the wavelet coefficients are com-
pletely determined by those of z(¢). Likewise, if the statistical proper-
ties of the wavelet coefficients are well specified, they can be used to
characterise the original random process. This motivates our approach
of using wavelets to model network traffic, i.e., to statistically model
wavelet coefficients d"’s.

3 Outlines of Our Approach

To use wavelets to model network traffic, we investigate the following
issues: (1) Why is it good to use wavelets? (2) What statistical prop-
erties of wavelet coefficients are pertinent to model network traffic? (3)
How to include these important properties into wavelet models? (4)
What is the performance of the wavelet models measured both exper-
imentally and theoretically?

As the first step, we investigate why we should consider wavelet
models, and what statistical properties are important through investi-
gating the correlation structure of wavelet coefficients for well-known
long-range and short-range dependent Gaussian processes. We show
that a key advantage on using wavelets is their ability to reduce the
dependence in the originally temporal process so significantly that the
wavelet coefficients only possess the “short-range” dependence in the
wavelet domain. We then develop algorithms to model wavelet coeffi-
cients using either independent or Markov models. As empirical results
show that statistically independent wavelet coefficients lead to an accu-
rate model in terms of buffer loss rate, we provide theoretical analysis
on the buffer overflow probability for the independent wavelet model
when the workload is FGN.

The theoretical results confirm that the wavelet model based on in-
dependent wavelet coefficients is sufficient. Any model, which captures
dependence among wavelet coefficients only, improve the buffer loss
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rate marginally. To model real network traffic, we extend the wavelet
models developed for Gaussian processes to incorporate the marginal
distributions of the wavelet coefficients and the periodic structure of
the (MPEG) video traffic. The performance of our wavelet models is
tested experimentally on three different video traces and one Ethernet
data trace, and compared with that of other models.

4 Wavelet Modeling of Long-Range and Short-
Range Dependent Gaussian Processes

As the first step to investigate the feasibility and advantage of wavelets
to model network traffic, we investigate wavelet model in this section for
well-known long-range and short-range dependent Gaussian processes,
respectively.

4.1 Theoretical Studies on the Correlation Structure of
Wavelet Coefficients

4.1.1 The Correlation Structure of Wavelet Coeflicients of
LRD Processes

The correlation structure of (long-range dependent) FGN process has
been investigated extensively in [23], [48], [16], and can be summarised
as follows.

Theorem 1 (Kaplan and Kuo [23], Flandrin [16]). Let x(t) be
a FGN process with Hurst parameter H(0.5 < H <1). Let d"’s be the
(Haar) wavelet coefficients of z(t). Then

(1) for a given time-scale j, dj"’s are i.i.d. Gaussian random vari-
ables with zero mean and variance 27C7=1(220-7) _1)62 where o2 is
the variance of x(t).

(2) for (my + 1)271 —m9272 large, where ji, jo, m1 and ma are the
dilation and the translation indices of two different wavelet coefficients
respectively, the correlation between two wavelet coefficients is
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E(d)~0 (‘2j1m1 - 2j2m2‘_2(1_H’)> (5)
where H =1 — H.

We recall that the corresponding temporal auto-correlation of Frac-
tional Gaussian Noise decays at a rate O(|k|_2(1_H)), where k is the lag
between two samples and 0.5 < H < 1. This rate leads to a divergent
summation of the auto-correlations. The above theorem indicates that
the wavelet transformation has changed the long-range-dependence in
the time domain so significantly that the summation of the correlation
of wavelet coeflicients converges to a constant.
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Figure 2. Solid Line: Autocorelation coefficients of the original process. Dot-
By drth)

apraqmth .
The left figure is for the AR(1) process. The right figure is for the
FARIMA(0, 0.4, 0) process.

ted line: the normalised auto-corelation of wavelet coefficient, i.e.,
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This is because that the correlation changes from mean revert
(0.5 < H < 1) in time domain to mean avert (0 < H' < 0.5) in
the wavelet domain. Figure 2 illustrates how drastic the reduction
is by comparing the autocorrelation function of the original FARIMA
(0,0.4,0) process to the normalised auto-correlation function® for d7*
and d’ln"'k &

4.1.2 The Correlation Structure of Wavelet Coeflicients of
SRD processes

For short-range dependent processes, we derive the correlation wavelet
coefficients given in a theorem below®

Theorem 2 Let z(t) be a zero mean wide-sense-stationary (discrete)
Gaussian process with the auto-correlation r(k), where (k) = o2p/*l
with |p| < 1, k is an integer and o? is the variance of z(t).

Let d*’s be the (Haar) wavelet coefficients of x(t). Then for a given
time-scale j, dj"’s are Gaussian random variables with a zero mean and
a variance

2p 3p j—1
2 _ 2
’ <1+1—p (1—p)22j1>+0(p )

(2) for m127t — (mg +1)272 > 0,

E (dmdp?) = 9=l | g1tz 02
J2 ) T

J1
—1y\ 2 (6)
: (]. - PQJI ) (1_[)[,)2'0'2

5Tt can be easily shown that the time series dj* for fixing j is stationary in terms
of m. Therefore, the auto-correlation exists.

"FARIMA (0,0.4,0) is an asymptotically self-similar process and is very similar
to a FGN process.

8There exist no previous results on the explicit correlation structure of wavelet
coefficients for discrete processes except the bounds for some of the continuous
random processes [10]
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Figure 3. Log 2 of Variance of d;versus the time scale j.

The sketch of the proof of the theorem can be found in Appendix
A. Details are given in [28]. This theorem shows that the correlation of
wavelet coefficients decays exponentially as |m12j1 = mo27? |, the short-
est distance between supports of two wavelet base functions, and there-
fore remains to be short-range dependent in the wavelet domain (the
rate of decay is even faster than the corresponding correlation in the
time domain.)

Figure 2 compares the (temporal) correlation for a AR(1) process
with that of its wavelet coefficient for j; = jo = 1 to illustrate the rate
of decays.

4.1.3 Implications of the Theorems

One of the implications of the two theorems is that the variances
of wavelet coefficients for a long-range dependent process are very
different from those for a short-range dependent process as indi-
cated by Theorems 1 and 2. To illustrate this, Figure 3 draws the
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variances of wavelet coefficients for a long-range dependent process
FARIMA(0,0.4,0), a mixture of long-range and short-range depen-
dent process FARIMA(1,0.4,0), and a short range dependent process
AR(1). As observed from the figure, the variance of LRD increases
with j exponentially for all j. The variance of SRD increases at an
even faster rate than that of LRD when j is small but saturates when j
is large. For a mixture of LRD and SRD, the variance shows the mixed
properties from both SRD and LRD.

These results indicate that, the variances of wavelets are capable of
distinguishing LRD from SRD for Gaussian processes.

The second indication of the theorems is that the wavelet transform
significantly reduces the temporal dependence so that a complicated
mixture of short- and long-range dependence in the time domain may
be sufficiently modelled by a “short-range” dependent process in the
wavelet domain.

Figure 4. Figure 5. Figure 6.
Correlation Matrix Correlation of Correlation of
“FARIMA(0,0.4,0)” AR(1) “Star Wars ”

4.2 Empirical Studies on the Correlation Structure of
LRD and SRD

What short-range dependence needs to be captured among wavelet
coefficients?
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Unfortunately, an answer to this question cannot be provided by
Theorems 1 and 2, since they only hold for

|(my = 1)27 — my272| large.

Therefore, we plot the correlation matrices of FARIMA (0,0.4,0),
AR(1) and a JPEG encoded video source “Star Wars” (details are given
latter in this paper) in Figures 4, 5 and 6 respectively to visualise the
correlation structure.

A pixel (i,7) in an image represents the correlation between the
i-th and the j-th wavelet coefficients, where i and j are the (node) one
dimension index in the tree diagram (see Figure 1 details). The gray
level is proportional to the magnitude of the correlation. The higher
the magnitude of the correlation, the whiter the pixel in the image.
These figures show that besides the diagonal line? there are 4 pairs of
lines having “visible” correlations'?.

They correspond to the correlation between v*(s) and s, where (s)
represents the parent of the node s (see Figure 1 for explanations on
7(s)), and v¥(s) denotes the parent of the node v*~!(s) with k being
1, 2, 3 and 4 counting from the diagonal line. From the figures, we can
conclude that the most significant correlation is due to the parent-child
relationship. Since the complicated correlation in the time domain
actually concentrates on certain types of correlations in the wavelet
domain, we can use a parsimonious model in the wavelet domain to
represent the original traffic.

4.3 Modeling the Correlation Structure

We propose several models to model partial correlations among wavelet
coefficients, ranging from the simplest to the most complex. The sim-
plest model assumes that wavelet coefficients are statistically indepen-
dent. The most complicated model is a third order Markov model.

Model 1: Independent model, which models the variances of wavelet

In order to have enough gray level to see more subtle details, the diagonal pixels,
which is always 1, is set to 0.5.
We only consider K=>5 which has only 5 level in the tree diagram.
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coefficients!! dj"’s, is modelled as independent Gaussian variables with
a zero mean and a variance o;.

Model 2: The first-order Markov model, which models the corre-
lation between y(s) and s, i.e., the parent-child relationship. Such a
Markov model can be implemented through an AR(1) process as

ds; = ajd’)’(sj) + bjw;, (7)

where a; and b; are the parameters to be determined from data. wj is
Gaussian noise with zero mean and unit variance. This model captures
the diagonal lines as well as the two whitest off-diagonal lines in the
(correlation) graph.

Model 3: The third order Markov model, which models the correla-
tion among y(s), 7*(s), v(s) and s. This model incorporates additional
correlation among node s and its neighbouring nodes. In the (correla-
tion matrix) graph, it is equivalent to matching the first two strongest
lines as well as the (barely visible) line near the diagonal, which repre-
sents the neighbouring relationship.

Please refer to [28] for details on the algorithm. As for the com-
plexity of the aforementioned models, Model 1only needs one parameter
(the variance) o1 at each level j and thus requires log, (V) parameters
in total. Models 2 and 3 have two and four parameters at each level,
respectively.

4.4 An Algorithm on Generating Wavelet Models for
Gaussian Processes

The models on the correlation structure can now be included in an
algorithm to obtain wavelet models for a Gaussian process. Let z(t)
be a trace of length NV from a Gaussian process.

Algorithm 1.

Perform wavelet transform on z () to obtain d}*’s (wavelet coeffi-

cients of z(¢)).

"'"The mean of dJ* is zero for a stationary process.
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Estimate the required parameters in a selected wavelet correlation
model (Section 4.3) from d7"’s.

Generate coefficients d7" from the wavelet correlation model for all
m and j. Do inverse wavelet transform on d}'’s to get the synthesised
traffic in the time domain. To estimate the computational complexity
of the algorithm, we notice that the computational complexity of the
wavelet transform (Step 1) and the inverse transform (Step 4) is O(N).
The computational complexity of Steps 2 and 3 is also O(N)'2. Then
the total computational cost of the algorithm is O(N).

4.5 Experimental Results

In this section, experimental results are provided to evaluate (1) the
performance of three wavelet models discussed in Section 4.3, and (2)
the capability of wavelet models to capture long-range dependence.

For each experiment, five sample paths are generated from either
AR(1) or FARIMA, one of them is used to obtain a wavelet model
through Algorithm 1, while the other four are used to obtain averaged
loss rate and sample auto-correlation for testing the performance of
wavelet models.

To compare the performance of three wavelet models proposed in
Section 4.3, sample paths of length 2! are generated from an AR(1)
process with the parameter to be 0.9. We plot the sample correlation
and buffer respounse in Figures 7 and 8, respectively, for all three wavelet
correlation models.

We observe from the figure that the simplest wavelet model, which
neglects the dependence in the wavelet domain performs reasonably
well. The models, which capture more correlations among wavelets
only improve the performance slightly. To further test the perfor-
mance of the independent wavelet model (Model 1) on capturing long-
range dependence, sample paths with length 2'7 are generated from
FARIMA (0,d,0) (LRD alone) for d = 0.2, 0.3, 0.4, respectively, using
a simulator in SPLUS.

12 Assume that O(1) time is needed to generate one Gaussian random variable
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Three quantities are used to test the performance: the estimated
Hurst parameter, the (sample) auto-correlation function in the time-
domain and the estimated buffer loss probability estimated from the
sample paths.

Table 1 gives the results on the Hurst parameter using the R/S
test and the Variance-Time (V-T) test!3. Each quantity obtained from
Algorithm 1 is averaged over 5 different runs.

The standard deviations are also given in the table. As can be seen,
the Hurst parameters from the wavelet models are very close to those
from the original FARIMA processes.

Algorithm 1. The normalised buffer size (g): 0.1, 0.5, 1, and
10 from the top down. The correlation functions estimated from the
sample paths are plotted in Figure 9. The loss rate is estimated from
the sample path from the original FARIMA process and the wavelet
model, we plot the log of loss rate versus the work load for the nor-
malised buffer size 0.1, 0.5, 1 and 5, respectively. The results show that
the correlation function and the loss rate due to the wavelet model are
very close to those due to the actual FARIMA process.

Figure 7. Sample Correlations. “-7:AR(0.9); “”: Model 3; “.”: Model 2;
“..”: Model 1.

13See d = 0.2, 0.3, 0.4 for details on R/S test and V-T test
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Figure 8. Buffer Response. x-axis: utilization. y-axis: loglO(Loss proba-
bility). “7: AR(0.9); “”: Model 3; “.”: Model 2; “.”: Model 1. The
normalised buffer size (%) is 0.1, 0.5, 10 from top down.

R/S V-T R/S V-T
(FARIMA) | (FARIMA) | (Algorithm 1) | (Algorithm 2)
FARIMA(0,0.2, 0) 0.711 0.703 0.711£0.009 | 0.716£0.018
FARIMA(0, 0.3, 0) 0.801 0.776 0.795+0.018 | 0.755+0.017
FARIMA(0, 0.4, 0) 0.840 0.840 0.852+0.014 | 0.830+0.033

Table 1. Hurst parameters of the FARIMA models and the wavelet
models.

4.6 Analysis on the Buffer Overflow Probability of In-
dependent Wavelet Model

Although empirical results show that the independent wavelet coef-
ficients provide a reasonably good model for a long-range dependent
process, valid buffer loss rates below 10~° are hard to obtain due to
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Figure 9. Autocorrelation functions for FARIMA(O, d, 0) (solid lines) and
Algorithm 1 d = 0.2, 0.3 and 0.4 from the bottom up.

Loss ws. Load ARIMA

-7 . ' ' . .
085 06 0Bs 07 078 08 085 085

Figure 10. The vertical axis: log;, (Loss Rate). The horizontal axis: work-
load. The solid lines: FARIMA(0,0.4,0). Dotted lines:
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the lengthy computational time needed in generating a long sequence
for FARIMA by SPLUS.

Therefore, it is important to further confirm our observation
through analysing the buffer overflow probability. We analyse the
buffer overflow probability of the independent wavelet model for a FGN
process and compare that resulting from the original FGN process. Our
result can be summarised as follows.

Theorem 3 Let and B; and Bt be the buffer sizes at the t-th time slot
due to the synthesised traffic obtained by the independent wavelet model,
and by the FGN process, respectively. Let C represent the capacity of a
single infinity buffer queue. The buffer overflow probability due to the
synthesised (wavelet) traffic x(t) satisfies

Pr(By > B) ~ Pr(By > B),
((C*u)2( b )20t (L i

) —w H
202(1_H)? );

~ exp

(€ = (B0 (Lt
where “~7 represents asymptotically and logarithmically equal. =

2K s the length of the traffic with K being a positive integer. B is
assumed to be

~ exp(

B = (C - /J)2K0a
where Ky is a positive integer for simplicity.

The proof of the theorem can be found in Appendix B. We would
like to point out that this theoretical result is limited by two conditions:

1. The buffer size B, is only considered at time ¢ = N instead of
all ¢;, and

2. The buffer full size B is assumed to be 2%0(C — 1) which is only
a subset of all possible values.

In [28], we relax the condition (a) and prove that the conclusion of
the theorem 3 holds for the average buffer overflow probability. Due
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to the complexity of the proof, we only give the weaker version of our
theorems in [28].

This result shows that the simple wavelet model which ignores the
correlations among different wavelet coefficients has the same Weibull
decaying buffer overflow probability as that of FGN. This confirms that
the independent wavelet model is accurate enough for modelling Frac-
tional Gaussian Noise processes, and models which capture additional
correlations only improve the buffer loss rate marginally. In what fol-
lows, we use the independent wavelet model to model real network
traffic.

5 Wavelet Modeling of Network Traffic

5.1 The Traffic Sources

Four network traffic sources are chosen to test our wavelet models:
(1) JPEG coded “Star Wars” [18], (2) multiplexed “Star Wars”, (3)
MPEG-I coded videos, and (4) Ethernet data trace with 10 ms time
interval. The trace “Star Wars” [18] is obtained by applying JPEG-
like encoder to each of 171,000 frames at an interval of % second per
frame of the 2-hour movie of “Star Wars”!'*. This source is used to test
our model, since the source provides rich variations in terms of scene
changes.

Since modelling multiplexed video traffic is of practical importance,
we combine M copies of the VBR trace of “Star Wars” to obtain a
multiplexed source as suggested in [18], where M is chosen to be 100.

Each copy is offset by a random number of frames. Upon reaching
the end of the trace, each copy is wrapped around to the beginning.
Mathematically, since the multiplexed source is a summation of individ-
ual sources, and wavelet transform is a linear operation, multiplexing
video sources in the time domain is equivalent to multiplexing the cor-
responding wavelet coefficients of each source in the wavelet domain.
Therefore, the marginal distribution of wavelet coefficients of the mul-
tiplexed traffic is very close to Gaussian.

“Detailed description on the “Star Wars” trace can be found in [18].
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The third data set is the MPEG coded video source constructed
from MPEG-I encoded video sequences created [41]. We choose a video
called “Jurassic Park”, which has 53332 frames at an interval of 40 ms.
A standard MPEG encoder generates three types of compressed frames:
I, P and B. I frames are compressed using intra-frame coding only,
while P and B frame, in addition to intra-frame coding, allow using
motion compensation techniques. As a result, I frames are the largest
in size, followed by P frames and B frames. In addition, many MPEG
encoders have fixed Group-of-Picture (GOP) pattern. The GOP pat-
tern in “Jurassic Park” consists of 12 frames as IBBPBBPBBPBB. The
fourth data set is an Ethernet traffic trace.

The Ethernet trace obtained from [25]' is one of benchmark data
sets for traffic modelling. This data set is collected on an Ethernet in
Bellcore from 11:25 August 29, 1989, and details can be found in [25].
We choose the time unit for the discrete time queuing model to be 10
ms, which leads to discrete traffic with length 176000'¢ .

5.2 Modeling Network Traffic

5.2.1 Marginal Probability Density Functions at Different
Time-Scales

As Algorithm 1 generates wavelet models for Gaussian processes, a
question to ask is whether wavelet coefficients from the real network
traffic have Gaussian marginals.

The histograms and Q-Q plots'” are given in Figure 11 for the
wavelet coefficients of three video sources at j = 3'8. The figure shows

Y5 This Ethernet trace data can be obtained from
http:\\ita.ee.lbl.gov.html.contrib. BC.html. In this database, we only report
results on the data set collected in August 1989

6 Although a multiplexer of data network works in continuous time, it is conve-
nient to use the discrete time queuing model for simulation [35][17].

"The @ — @ plot is a standard statistical tool to measure the deviation of a
marginal density function from a normal density. The (Q—plots of a process with
a normal marginal is a straight line. The deviation from the line indicates the
deviation from the normal density. See [18] and references therein for more details.

18At GOP level for MPEG-I. Similar behaviors have been observed at the other
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that the estimated marginal density functions of wavelet coefficients for
individual video sources at the given time-scale have a much heavier
tail than the normal distribution, whereas the density function for the
multiplexed source fits the normal distribution well.
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Figure 11. Marginal distribution of dJ* for j = 3. Left: Star Wars. Middle:
“MPEG GOP”. Right: Multiplexed (M=100). Up: Histogram. Down: Quantile-
Quantile plots (horizontal axis: Normal Distribution)

This is due to the fact that marginal density function of wavelet coeffi-

time-scales. Non-Gaussian marginals are observed for Ethernet data trace but omit-
ted here.
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cients for a single source is usually dominated by the nature of the
source itself, and can be different from Gaussian in general. The
marginal of wavelet coefficients of the multiplexed source, which are
sums i.i.d. random variables, is approximately normal when the num-
ber of multiplexed sources is sufficiently large.

5.2.2 Shaping the Marginal Density Functions

To obtain wavelet coefficients d"’s with the same empirical density
functions as that of the network traffic, a transformation is needed
on the wavelet coefficients generated by Algorithm 1 with a Gaussian
marginal density function. Such a transformation can be done easily
through a method described in [21] with little computation.

To illustrate the idea, let X be a random variable with a cumulative
distribution function F'x(z). Let Fy () be the desired cumulative dis-
tribution function. Then the transformation needed to be performed
on X is simply

y = Fy ' (Fx(x). (10)

It can be easily verified that the resulting random variable Y has
the desired cumulative distribution function Fy (y).

In the modelling process, Fx (z) is the cumulative distribution func-
tion for a dj* generated by a Gaussian distribution. Fy(y) is the de-
sired cumulative distribution function, which can be estimated using
the histograms from the data. Then the transformation can be easily
performed to obtain the wavelet coefficients with a desired marginal
density function. Interested readers may see [21] for more details.

5.2.3 An Algorithm on Generating Wavelet Models for Net-
work Traffic

Adding an additional step to shape the marginal, we have Algorithm 2
for the independent wavelet model (Model 1 in Section 4.3) as follows.

Let Z(t) be a traffic trace of length N.
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Algorithm 2

1. Perform wavelet transform on Z(t) to obtain cf;-’“s (wavelet coef-
ficients of Z(t)).

2. Compute variance 6; at the j-th time-scale.

3. Generate wavelet coefficients dj* through a Gaussian random vari-
able with zero mean and variance 6;.

4. Perform the transformation on djaccording to Section 5.2.1.

5. Do the inverse wavelet transform on the generated wavelet coef-
ficients to get the synthesised traffic.

It can be seen that the total parameters needed for this algorithm is
log,(N), where N is the length of synthesis traffic, and the computa-
tional time is in the order of O(N).

Figure 12. MPEG traffic with Gop pattern IBPB and its relationship with
basis function. I: Intracoded frame. P: Predicted frame. B: bidirectional
frame.
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5.3 Modeling MPEG-coded Video Traffic

To deal with the periodic structure of MPEG-coded video (see Figure
12 for illustration), Algorithm 2 can be further modified for MPEG
traffic by taking the advantage of wavelet modelling applicable at dif-
ferent time-scales. To do so, we note that as the interframe redundancy
is reduced by using P and B frames: I, P, B frames have

R/S V-T R/S V-T
(Video trace) | (Video trace) (Alg. 2) (Alg. 2)
Multiplexed 0.869 0.824 0.842 £+ 0.0267 | 0.839 £ 0.012
(M = 100)
(Single) 0.815 0.774 0.811 £0.009 | 0.779 £ 0.017
Star Wars

Table 2. Hurst parameters

significantly different statistical characteristics. Therefore, I, P, and B
frames, should be distinguished from one another at the frame level for
modelling, whereas no such distinction is needed from the GOP level?°.
Therefore, we can apply Algorithm 2 directly to model the MPEG video
traffic above the GOP level. Below the GOP level!?, we treat wavelet
coefficients with the same relative position in a GOP pattern as a group
with the same statistical properties. For example, the variances and
the correlation (graph) of the parent-child relationship are the same
for every wavelet coefficient in the same group. We can then model
different groups of wavelet coefficients with different parameters.

5.3.1 Experimental Results

To evaluate both the performance and the computational efficiency of
the wavelet models (Algorithm 2), we apply the algorithm to obtain
wavelet models for all four sources, and to generate synthesized traffic.

FARIMA models are used to model the sources as well for compar-
ison.

19We assume the GOP pattern is periodic as in most cases. If the length of GOP
pattern is not a power of 2, we add zero size frames to the end of each GOP to make
it a power of 2.
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In particular, FARIMA models are chosen to have 25 AR terms and
20 MA terms.

A maximum-likelihood algorithm provided by SPLUS [45] is used
to determine all 45 parameters for the FARIMA models using the trace.
Furthermore, the Gaussian marginal distribution of the FARIMA pro-
cess is shaped to be the same as that of trace data by the same method
described in Section 5.2.2.

Synthesized traffic from both wavelet and FARIMA models are used
to obtain sample auto-correlation functions and the buffer loss rate.
Since FARIMA model cannot deal with (periodic) MPEG source easily,
the results are absent in corresponding figures.

Star Wars

Autocorrelation

0 100 200 =00 400 500 600 700 800 500 1000
Lag

Figure 13. “”:Autocorelation of “Star Wars”; “-”: FARIMA(25,d,20); “..”:
Algoritm 2

The auto-correlation functions of FARIMA(25,d,20), and of the
wavelet model are plotted in Figures 13, 15, 17 and 19 for the single
“Star Wars” source, multiplexed “Star Wars” source and the “Ether-
net” trace, respectively. As can been seen, the wavelet models have
consistently a better match to the auto-correlation functions than the
FARIMA models, especially for single sources. The reason is possibly
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due to that the wavelet model can match the marginal distribution at
different time scales. Hurst parameters for “Star Wars” and “Multi-
plexed” traffic are also reported in Table 2 for comparison. The results
of the loss rate of a single buffer due to each source are given in Figures
14, 16, 18 and 20, respectively.

-4.5}

i

03 035 04 045 05 055 0B 0B5 07 075 08

Figure 14. Vertical axis: logjo(Loss Rate); horizontal axis: workload. -
7. the single video source; “..”: FARIMA(25,d,20); “-”Algorithm 2. The
normalized buffer size (%): 0.1, 1, 10, 30 and 300 from the top down.

medium and large buffer sizes?.

To compare the complexity of the wavelet and FARIMA models,
we note that FARIMA has 45 parameters but the independent wavelet
model has only 15 ~ 17 parameters. As for the computational time,
it takes more than 5 -hour CPU time on a SunSPARC 5 workstation
for an FARIMA(25,d,20) model to estimate its parameters from the
data and to generate synthesised video traffic of length 171,000. It
only takes 3 minutes on the same machine for Algorithm 2 to complete
the same task. The computational complexity to generate synthesised
traffic of length N is O(N?) for an FARIMA model, and only O(N)
for a wavelet model.

20At a very small buffer size (an extreme case is a bufferless queue), the buffer
loss rate is dominated by the marginal distribution. Because both algorithms are
shaped to have the same marginal distribution as that of traces, both algorithms
give very good buffer loss estimation
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6 Discussions

6.1 Discussions on Wavelet-Domain Modeling

Why do wavelet models work so well?

As conjectured in [35] that wavelets might be feasible to model self-
similar data traffic, the complicated mixture of long-range and short-
range dependence in traffic can be naturally embedded in the self-
similar structure of wavelets.

Since the self-similar structure of wavelets has “absorbed” the long-
range and short-range dependence in different time-scales, the wavelet
coefficients correspond to a “short-range dependent” process in the
wavelet domain. This results in fast decaying correlation in the wavelet
domain and makes it possible to model wavelet coefficients as indepen-
dent or Markov-dependent random variables. The resulting algorithins
for generating wavelet coefficients are therefore simple.

i Multiplexed

0.9
06
=07t
W06
gn.s- ;
Sod "N
Saar T
! R e N
A N SR
0

0 100 200 300 400 EIjD GO0 700 800 900 1000
ag

Figure 15. “” Autocorrelation of Multiplexed Source (M=100);
“”:FARIMA(25,d,20); “..” Algorithm 2

In addition, since there exist fast algorithms for both transforms

and inverse transforms [9], our method for developing the models and
generating synthesised traffic has been able to achieve the lowest com-
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Iogm(Lossjl w5, Load

D90 091 092 093 094 0595 05 0597 055 099

Figure 16. Vertical axis: logjo(Loss Rate); horizontal axis: work load.
“7: the multiplexed source; “..”: FARIMA(25,d,20); “-”Algorithm 2. The
normalised buffer size from top down
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Figure 17. Autocorrelation. “-”: “Jurasic Park”; “+”: Wavelet model
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B T TR e T e
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Figure 18. Buffer response. X-axis: utilization. Y-axis: logio(Loss Probabil-
ity). “-7: “Jurasic Park”; “-”: Wavelet Model. The normalised buffer size:
0.1,0.5,1,10,30,100 from the top down.

0.9k
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Figure 19. Sample Autocorrelation. X-axis.Lag. y-axis: Sample Autocorre-
lation. “-7: “Data Trace”; “-”: wavelet Model; “..”: FARIMA Model.
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Figure 20. Buffer response. “”: Data Trace; “~7: Wavelet Model;
“.”FARIMA. Normalised buffer size B/C: 0.1,1,10,30 and 100 from the top
down.

plexity, which is O(N) for a time-series of length N. Another appealing
property of wavelets is that wavelet basis are defined by a scaled and
shifted mother wavelet with a finite support, and thereby can be nat-
urally linked to the time-scale analysis. This makes it easy for wavelet
models to handle the periodic structure in MPEG video. Furthermore,
since (Harr) wavelets are simple, it is possible to use the model for
theoretical analysis as shown in Section 4.6.

6.2 Comparison among Different Traffic Models

To further illustrate the strength (and possible weakness) of wavelet
models, we summarize in Table 3 strength/weakness of different mod-
els for network traffic. In the first column, “SRD/LRD” represents a
model’s capability to capture both the short-range and the long-range
dependence. In the second column, we characterise the complexity
of a modelling algorithm from two perspectives: the computational
complexity on generating synthesised traffic of length N, and the im-
plementation complexity, which refers to the amount

307



Sheng Ma, Chuanyi Ji

Computational Time-Scale
SRD/LRD Complexity Analysis
/Implementational Modeling
Complexity
TES [33] Yes O(N)/High Difficult No
DAR [20] Only SRD O(N)/Low Yes No
Scene-Based [22] Yes O(N)/High Yes Yes
Importance Yes O(N?)/Low No No
Sampling [21]
Wavelet Yes O(N)/Low Yes Yes
Modeling
FARIMA [24] Yes O(N?)/High No No

Table 3. Comparison on Traffic Models

of efforts involved in developing an accurate model, which may involve
tuning different parameters.

In the Table 3, we also include the feasibility of a model for theo-
retical analysis (“Analysis”), and the flexibility of the method in terms
of modeling at different time scales.

7 Conclusions

An important discovery from this work is that wavelet coefficients of
network traffic with complicated short - and long-range temporal de-
pendence are no longer long-range dependent.

Therefore, the “short —range” dependent process can be used to
model traffic in the wavelet domain. This opens up new possibilities
for modeling, analyzing and controlling long-range dependent network
traffic. In this work, we have developed wavelet models for network
traffic including both video and data traffic.

A good performance of the model has been obtained through exten-
sive tests on three video sources and one Ethernet data trace using both
the auto-correlation and the buffer loss rate as performance measures.

The buffer loss rate of the wavelet model has shown analytically to
be similar to that of the FGN process for a FGN workload, and thereby
demonstrates the capability and the performance of the independent
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wavelet models. Since the self-similar structure of wavelets naturally
matches the statistical self-similarity in network traffic, the resulting
wavelet models are parsimonious and have much fewer parameters than
FARIMA models. The computational complexity for developing such a
wavelet model and for synthesizing a large volume of traffic has shown
to be O(N), which is the lowest attained.

In our future work, we will further investigate the capability of
independent wavelet models, and extend the analysis to non- Gaussian
traffic in order to make up for insufficient the network data at low loss
rate. We will also investigate other performance measures to account
for effects of long-range dependence on loss patterns.
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Appendix A: Proof of Theorem 2

Proof: Since the proof of 2(2) is similar to that of 2(1), in this
appendix, we only sketch the proof of 2(1).

Since z(t) is stationary and dj* is obtained through the wavelet
transform, which is linear, dj* is stationary in terms of m. Without
loss of generality, we only need to consider d?. From definition of Haar
wavelet coeflicients, we have

2T 27 -1
Var(d?) = 27E( x(t) — Z z(t))?
t=0 t=2i—1
2Tl 21
= 277E] (@(t) =)+ (Y (x(t) —p)* -
t=0 t=2i—1
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20-1-1 2i-1

— > Y 2x(ty) — p)((tz) — )] (11)

t1=0 gy=2i—1

Through straightforward algebraic manipulations (see [28] for de-
tails), we can compute the two term of Equation (12), and thereby
prove the theorem.

Appendix B: Proof of Theorem 3.

To prove Theorem 3, we first define the averaged aggregate-process,
and establish its wavelet representation with independent wavelet co-
efficients generated by Algorithm 1. We then develop three lemmas
needed for proving the main theorem. Using the lemmas, we obtain an
upper and a lower bound for the buffer loss rate, and then show that
bounds are of the same order.

Definitions

An Averaged Aggregate-Process
The averaged aggregate-process X (s) of the synthesized process
x(t) generated by a wavelet model at time ¢ is defined as

S

1 .
X(s) = —Z z(to — 1), (13)
5ic1
for 1 < s < ty. X(s) represents the average value of z(t) over
[to — s,to — 1]. To facilitate the analysis, we consider a special case
that to =N.

A Wavelet Representation of the Averaged Aggregate-
Process

Replacing z(t) by its wavelet representation given in Equation (2),
the wavelet representation of X (s) can be easily obtained as

1 K
X(s) = EZ a;(s)w;d;, (14)
=1

for 1 < 57 < K, where w; = 2705 is a weighting factor. d; is a
wavelet coefficient at the j- th time-scale obtained by Algorithm 1 for
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independent wavelet coefficients?!.

Je|l1|2|3|4|6|6|T|8|9|1W0]|11)12]13|14] 15|16
1 1jojrjaojrjoj1yojrjojrjofjrfoll|ao
2 ij2j1rjojrj2|1(ofrj2j1jofjrfz]1]a0
3 1j213aj4j3j2|1(oj1j2j|3jaladfz|11]a
4 11213456787 6|5 4]3]2]|1]0
5 11213456 |7(8]¢|1W|11]12]13|14]15] 16
b 11213456 |7(8]¢|1W|11]12]13|14]15] 16
7 11213456 |7(8]¢|W|11]12]13|14]156] 16

Table 4. The values of a;(s). s increases from 1 to 16 horizontally and j
increases from 1 to 7 vertically

When used to model the FGN process with a zero mean, the vari-
ance of d; is given in [48], [16] as

Var(d;) = 2770721)(220-H) _1)52(1 — 0(2720-1K))  (15)

a;(s) is a weighting factor, which depends on the aggregation length s,
where

(16)

aj(s) = T for eith'er ?”j — Tjs'—lj 1
’ 2t s otherwise,

with rf = s — |s277] %27, and | -] represents the largest integer smaller
than s.

Examples of such a;(s) are given in Table 4. As can be seen from
the table, a;(s) is periodic with a period 2J. Furthermore, some of the

21 Strictly speaking d; = d;"j, where m; is an index on m which depends on j.
However, since there is only one such d;-”j at a particular time scale j, we drop
the superscript m; for simplicity.
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properties of a;(s) can be derived directly from the Equation (16) as
given below.

Properties of a;(s)
For any positive integer satisfying s = 21082(s)] a;(s) can be rep-
resented as

) S if § > logy(s) +1
a;(s) = { 0 otherwise, (17)

2. For any positive integer s > 21198:(5)]  we define s’ = 2Ulog:2(s)]+1
and s' =s —s. Then s’ > s > 2008:(9)] and " > 0 and 0 < SS—’,’ < 0.5.
For example, when s =3 (s’ =4 and s” = 1), we have 4 >3 >2 > 1
and Ss—',' = %.

3. For s, s, s" defined in Property 2, a;(s) can be expressed as

a;(s) = |a;(s") = a;(s")|, (18)
where |z| represents absolute value of z. This can be verified using
Equation (16).

4. For s, s', s" defined in Property 2, a;(s") and a;(s") can be
related as

aj(s)a;(s") = a?(s')—, (19)
This can be obtained using Property 1 or Equation (16).

Lemmas

Three lemmas need to be developed in order to prove the main
theorem.

Let X (s) represent the averaged aggregate-process of Z(t). Let V(s)
and V(s) denote the variances of X(s) and X (s), respectively. V(s)
can be computed directly through Equation (14) and Equation (15) as

K
V(s) = %Zaﬁs)rﬂ?f?m(z?(l*ﬂ) —1)o*(1 - 02 *KU=M)) (20)
%
J=1
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V(s) has been shown in [34] as

Ly

V(s) = 5550

- (21)

The following lemmas relate V(s) with V (s). In particular, Lemma
1 shows that V(s) < V(s) for s = 2F, where k =0,1,2,3,... . Lemma
3 shows that V(s) < V(s) for other positive integer s. Lemma 2 is used
by Lemma 3.

Lemma 1 For s = 2“03;2(5”,

V(s) <V(s) (22)

Proof: By inserting the expression of a;(s) (Property 1) into Equa-
tion (20), we have

V(s) =
K
_ i2 ST sPomi@R2H) 20 _1)52(1 — 027207 IDEY) = (23)
Jj=log,(s)+1

< g 200 H) 52 (25)

From the definition of V(s) (Equation 21), we have V(s) < V(s)
for s = 2loga(s)],

Lemma 2 Define g(«) to be
g(@) =1+ a* =20 — (1 — a)*” (26)
then g(a) < 0, for a € (0,0.5) and H € (0.5,1).
Proof: It can be verified easily that ¢(0) = ¢(0.5) = 0, and second
derivation of g(a) is

g"() = 2H)(2H — 1){a'72 — (1 - 0)?'~2} (27)
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For 0.5 < H <1 and 0 < a < 0.5, ¢"(a) > 0. Therefore, g(a) < 0
for a € (0,0.5).

Lemma 3 For s > 2|log,(s)],
Vi(s) < V(s) (28)

ie.,

K
s> 3" a2 (s)20(22) (20 H) ) (29)
j=1

Proof: We use induction for the proof. We start by first proving
the inductive hypothesis. We then show the conclusion holds for s = 3
as well (The cases for s = 1,2 have been included in Lemma 1.)

Inductive hypothesis: We assume Lemma 3 holds for any posi-
tive integer n satisfying 3 < n < s, i.e.

K
n? > 3" a3 (n)2 72 (220 H) ),
7j=1

Now we prove the lemma holds for s.
Using the expression for a;(s) given by Equation (29), we have

K
Z 2 j2 2H)(22(1 H) 1) (30)

K
= (a;(s") —aj(s")*(2* 1 1)

=1
K
221 H) Z "o~ j(2—2H)
K
221 H) Z2a] $" 2 j(2— 2H)_|_
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K

— (22(17H) 1 _ 2 Z 2 j 2 2H)+

K
(220-H) Z §'")2(2-2H) (32)

where the Equation (32) is obtained by applying Property 4 and by
combining the first two terms of Equation (31). To upper bound Equa-
tion (32), we notice the first term can be upper bounded by s’QH(1—2554,/)
due to Lemma 1 for s’ = 21108:()1+1 (true by the definition of ).

The second term of Equation (32) is bounded by 5”2 due to either
the inductive hypothesis for s” # 2U108:6")] or Lemma 1 for " =
2llog, (")) Therefore, we have

Za 2 j2 2H)(22(1 H) 1) (33)
"
< S/2H + S”2H . 25/2H‘Z_/ (34)

S”

Since % = « and « € (0,0.5) due to Property 2, using Lemma 2
we can further obtain

i 2 j(2— 2H)(22(1 H) 1) (35)
j=1
< (14 o —20) (36)
< SI2H(1 — a)2H (37)
= 521 (38)

Therefore, the inductive hypothesis holds for all positive integer
s> 3 and s # 2log2(9)]
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For s = 3, s = 4 and s” = 1. Since both s’ and s” satisfy the
condition of Lemma 1, the proof follows what given from Equations
(33) through (38). Then for all 3 < s < K, the hypothesis holds.

QED

Proof of the Main Theorem

Proof: Two steps are needed to prove the main theorem. First,
we prove an upper bound using the lemmas.

We then obtain a lower bound with a Weibull-decay, and show that
the two bounds are of the same order.

Proof of the Upper Bound

The proof of the upper bound, P(By > B) < P(By > B), is based
on the lemmas developed in the previous section. First, we note that
a sufficient condition for this to hold is

P(X(s) >v) < P(X(s)>v) (39)
for any integer s(1 < s < N) and v bigger than the mean of X(s).
Since for every ¢, z(t) and Z(t) are Gaussian random variables,
X (s) and X (s) are Gaussian as well with the same mean but different
variances. Therefore, to show the inequality, we only need to show that
the variance of X (s) is no bigger than that of X (s) for all s € [0, N — 1],
ie.,

V(s) < V(s). (40)

This is true due to Lemmas 1 and 3. Therefore, we complete our
proof for the upper bound.

Proof of the Lower Bound

To obtain a lower bound, we use a similar method to that in [34]
but different quantities from the synthesized traffic due to independent
wavelet coefficients. As in [34], the probability P(By < B) can be
lower bounded as

K

P(By > B) >supP(X(2F) > (C —p) +27%B). (41)
k=1
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Here we consider only s = 2 with k being an integer (1 < k < K).
Define

P} p(x(@")(c— u) + B27F). (42)

Since the (independent) wavelet coefficients generated by Algorithm
1 are Gaussian random variables, X (2¥) is a Gaussian random variable
with a zero mean and a variance 22=D0-H)52(1 — O(Nz(llfH)K)) for
1 <k < K as given by Equation 15. Then we can obtain

(C =) f(k)

o

P> Q( ), (43)

12—k L Too 2
where f(k) = m&, and Q(.T) = f \/T—Fexp Tdt
X
Let k* be the critical time-scale, which indicates that the loss
is more likely to happen at the 2*° time interval. We have k* =
arg miny, f(k), where k* = ko +logy({27), with B as given in Equation
(¥
9), and f(k*) = 20~ "7
Then P} > Q(%) Furthermore, using the approximation

Q(z) ~ exp (—”32—2) for x large, and sup;, (P}f) > P}f*, we have

O w2 B \2-H) ¢ gN\2H
P(By > B) > exp il (22;‘23_1{)2( i) . (49)

The bound obtained above has a similar form to the buffer overflow
probability for the continuous-time FGN process [34].

Combining the Lower and The Upper Bound
Since it has been shown in [34] that

c-w ()" " ()
202 (1 — H)?

P(BN>B) > exp
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as B tends to infinity, the upper and the lower bounds for P (By > B)
are of the same order when K — k* is large.
Hence, we have

O 2 (B 20-H) ) p\2H
P(By > B) > exp _©-w (22;’(‘1)_}1)2( i) (45)

or P(By > B) ZP(BN>B).
QED
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