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Abstract

Measurements of communication traffic from a wide variety
of sources have suggested that correlations persist in such sources
over fairly long time scales. This has called into question the use
of traditional traffic models for the performance analysis of such
networks, and has sparked an interest in studying novel kinds
of traffic models. In particular, a suggestion has been made to
build models based on expanding deterministic dynamical sys-
tems. Deterministic dynamical systems can exhibit chaotic be-
havior, which has many of the features of statistical behavior, and
can indeed be studied rigorously using probabilistic techniques.
We make some remarks regarding the analysis of queues driven
by such traffic models.

Keywords: chaotic dynamics, long-range dependence, queu-
ing systems

1 Introduction

Statistical analyses of measurements of communication traffic from a
wide variety of sources have suggested that correlations persist in such
sources over fairly long time scales; for examples of such measurements,
see [7], [23], and [29]. This has called into question the use of traditional
traffic models for the performance analysis of communication networks,
and has sparked considerable research on the use of ”long-range depen-
dent” traffic models for such performance analysis; for examples see [2],
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[3], [21], [24], [27] and [28]. A feature of most of these works is the ob-
servation that the tail behavior of queues with long-range dependent
inputs decays much slower than exponentially; it is either as a subex-
ponential Weibull law (i.e. like exp (−cxγ) for some 0 < γ < 1) or
it decays algebraically, i.e. according to a power law (like cx−γ for
some γ > 0), depending on the model. The presence of a qualitative
difference in queuing behavior with the traffic measured in [23] as com-
pared to that predicted by conventional models is also supported by
the experimental analysis of [17].

The persistence of long-range dependence in packet traffic even after
it is regulated by simple flow control schemes is demonstrated in [35].
A bibliography of work in this area as of the middle of 1996 is available
in [41].

It should be pointed out that this area is quite active, and the jury
is still out on the interpretation and significance of these results. There
are at least two general grounds for caution. The first has to do with
the very existence of ”long-range dependence” (a nice discussion of a
somewhat analogous earlier controversy in the field of geology is in
[20]).

For instance the analysis of the Ethernet measurements in [23] is
primarily done using the R/S statistic, variance-time plots, and the
periodogram (for an introduction to these statistical techniques see [6]).
The R/S statistic can be highly sensitive to trends in the observations;
for instance, a special case of the main result of [8] is that the sum of
an independent and identically distributed (i.i.d.) sequence of random
variables with finite mean and variance and a deterministic trend that
is vanishingly small and goes to zero asymptotically in time according
to a power law, can result in the appearance of a nontrivial (not equal
to 1/2) Hurst exponent when analyzed using the R/S statistic (for a
precise formal theorem, see [8]).

On the other hand, the behavior of variance-time plots for the Bell-
core measurements of [23] under different kinds of nonstationarity is
discussed in [14], and also in [34] (in the latter it is concluded that the
measurements support the hypothesis of long-range dependence fairly
well). Two interesting works in this direction (which post date the pre-
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liminary presentation of our ideas in [4]) are [1] and [36], where wavelet
based estimators for the parameters of long-range dependence are de-
veloped. [1] pays particular attention to the issue of robustness of such
estimators to the presence of trends, argues that the wavelet based es-
timators are more robust than earlier known estimators in this regard,
and also analyses the data of [23] with this issue in view. In this con-
nection one should mention that a very recently proposed alternative
to understanding long-range dependence is the so-called ”multifractal
models”. These have the advantage of being loosely analogous to the
layered structure by which application layer traffic is handled as it
makes its way from source to destination in the modern Internet. See
the papers [31] and [18] for this approach. This approach seems to
be motivated also by the wavelet based estimators of long-range de-
pendence; similar estimators can be used to determine the necessary
parameters for multifractal modeling of network traffic.

Certainly, the variance-time plots for the AUG89.MB measure-
ments of [23] (plotted in Fig.5 of [23]) would seem to support the ex-
istence of correlation up to a scale of about 100 seconds, under the
hypothesis of stationarity, as a crude back of the envelope calculation
of empirical variances for a stationary process model will show (see the
appendix). This brings us to the second ground for caution, which is
whether traditional traffic models with sufficiently large depth of cor-
relation might already serve adequately for buffer dimensioning and
network design purposes. Recent works that sound this note of caution
include [19] and [37].

Whatever side the coin may fall on in this controversy, the mea-
surements and statistical analyses of works such as [7], [23], and [29]
are fascinating, and beg for some kind of physical explanation, whether
it be due to trends, the nature of the underlying protocols, or the ex-
istence of ”true” ”long-range dependence”. At least, such a physical
understanding would aid in the construction of parsimonious and real-
istic traffic models, be they ”traditional” or ”long-range-dependent”.

One attempt at such a physical explanation is in [42], where it is
argued via statistical analysis of the measurements in [23] that they are
consistent with infinite variance of the load at the level of individual
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sources. It is proved in [33] that the superposition of ON/OFF sources
whose ON-periods or OFF-periods have infinite variance results in an
aggregate network traffic that is long-range dependent.

In this note our purpose is to make a couple of remarks in connection
with another intriguing idea for arriving at physical descriptions of
network communication traffic, initially suggested in the networking
context in [16]. This idea is related to a number of mostly numerical
investigations in the physics community that has found surprisingly
long-lived correlations in the evolution of certain chaotic dynamical
systems.

Recall that a stationary dynamical system is called strongly mixing
if for any two events the correlation between one of them and the time
shifted version of the other asymptotically vanishes in the time shift (for
a precise definition, see, for instance, page 57 of [30]). While this im-
plies that the autocorrelation function of an observable asymptotically
vanishes, it does not say anything about the rate at which it vanishes.
It was largely believed that in sufficiently rapidly mixing systems this
rate of decay of correlations would be exponential, for instance this was
believed to be the case for the so called K-automorphisms (see page 62
of [30] for a precise definition; it is known that every K-automorphism
is strongly mixing, see e.g. page 72 of [32]). However simulations of
certain billiard type systems (i.e. dynamical systems describing the
evolution of a particle bouncing off certain scattering surfaces) in [40]
and [5] suggest that such correlation may decay like a subexponential
Weibull law; such a law was earlier proved rigorously to be an upper
bound to the decay of correlations in a large class of billiard systems in
[10]. Even more interesting is the rigorous proof of algebraically decay-
ing correlation’s in an example of a K-automorphism in [26], and the
rigorous proof in [12] of algebraically decaying correlations for certain
(admittedly somewhat pathological) functions on a dynamical system
as basic as that given by scaling transformations on a two dimensional
torus.

Related to the ideas of this paper are also the works [38] and [39],
both of which also post date [4]. [38] studies the evolution of time av-
erages of congestion windows of multiple TCP sessions sharing a link;
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the resulting dynamical system is seen to exhibit many of the features
of chaos, including apparently having a strange attractor with fractal
dimension roughly 1.61 (for details and definitions see that paper). In
[39] it is argued that by virtue of the adaptivity of TCP it is possible
for a single TCP microflow to pick up long range dependent character-
istics from the aggregate flows that it interacts with as it traverses the
network; the latter might be long-range dependent by virtue of being
the superposition of heavy tailed activity processes.

2 Deterministic dynamical systems

The proposal in [16] is to model a communication traffic source (such as
an Ethernet LAN, or a VBR video source) by means of a deterministic
nonlinear transformation xn+1 = S(xn) taking values in some state
space X. The traffic source is modeled as having an activity level that
depends on the current state.

Let us first remark that if X is allowed to be sufficient general, the
restriction to deterministic S is not a big one. Indeed, the theory of
deterministic chaos, see for instance [9] or [22], tells us that quite com-
plicated statistical behaviour can be expressed by such deterministic
maps. For instance, consider the transformation on the unit interval
f : [0, 1] 7→ [0, 1] given by

S(x) =

{
x
p if 0 ≤ x ≤ p

1− x−p
1−p if p ≤ x ≤ 1

Then, starting from Lebesgue almost any initial condition x0, the
empirical distribution of the sequence of iterates {Sn(x0), n ≥ o} will
converge to Lebesgue measure on [0, 1] (in the weak topology of conver-
gence of measures). Thus, there appears to be a stationary situation
in which the state is distributed according to Lebesgue measure.

Suppose the activity level of the source is

a(x) =

{
a if 0 ≤ x ≤ p
0 if p < x ≤ 1
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If one were to start with the initial state distributed according to
Lebesgue measure, the sequence of iterates {a(xn), n ≥ 0} of the source
values will be a sequence of i.i.d. {0, a} valued Bernoulli random vari-
ables with probability of being a equal to p.

The point just made is that deterministic maps can be used to
model stochastic processes also. Thus, by choosing X and the trans-
formation S appropriately it should be possible to directly model the
traffic generated by fairly complicated protocols and systems, in a di-
rectly tangible and physically meaningful way, while at the same time
retaining the flexibility to incorporate traditional stochastic processes
into the models. Another argument for the potential interest in such
deterministic models is that there appears to be a significant amount of
determinism in the structure of communication traffic - in Fig 1. of [16]
the successive inter-arrival times from the Ethernet measurements of
[23] is plotted, and visual inspection shows what appears to be consid-
erable deterministic structure in this plot. It is also valuable to ponder
the evidently chaotic nature of the plots of vectors of averages of con-
gestion window sizes of flows running the TCP protocol, provided in
[38].

We now proceed to make a couple of remarks about the queuing
behavior of queues driven by such traffic models.

3 Large deviations

We first record a special case of a result of [11], see Thm 3.9 (ii) of that
paper.

Let {an, n ≥ 0} be a stationary and ergodic sequence of nonnegative
real valued random variables, interpreted as the sequence of arrivals
into a single server queue, which can serve an amount c per unit time.
Thus, the queue size evolves according to the equation

qn+1 = (qn + an − c)+

We assume that the stability condition E[an] < c holds. From
the result of [25], we know that the queue has a unique stationary
distribution. Let q∞ be a random variable with this distribution.
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We assume that for any θ, 0 < θ < ∞, the limit

a∗(θ)∆ lim
x→∞

1
n

log E

[
eθ

∑n−1

t=0
at

]
(1)

exists. Let us define

θ∗∆ sup {θ : a∗(θ) < c}

Then the claim of [11] is that we have

lim
u→∞

− log P (q∞ ≥ u)
u

= θ∗

In this result, note that, since θ∗ > 0, the tail probability of the
stationary queue size decreases exponentially.

We next note a special case of a result recorded in [13], see Theorem
6.4.4. and pg. 261 of that book.

Given an RK valued ψ-mixing sequence of random variables
{Yn, n ≥ 0}, the sequence of empirical averages {Sn, n ≥ 0}, where

S0∆0, Sn∆
1
n

n− 1∑

t =0

Yt,

obeys a large deviations principle with good convex rate function Λ∗(·),
which is the Legendre transform of the function

Λ(λ) = lim
n→∞

1
n

log E
[
cn〈λ,Sn〉

]
, (2)

defined for λ ∈ RK , λ = (λ1, · · · , λK)T .
Here 〈λ, Sn〉 denotes the inner product of vectors in RK . In partic-

ular, this result says that the limit in equation (2) exists.
For the definition of ψ-mixing, see the remarks following Assump-

tion H2 on pg. 261 of [13]. It should be clear from this definition that
ψ-mixing sequences are strongly mixing.

Other terminology used in the statement of this result (Legendre
transform; good rate function) is also defined and discussed at length
in [13].
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4 Main remarks

Consider a deterministic dynamical system, given by a map S : X 7→ X,
where (X,F, µ) is a measure space. A priori, the measure µ has noth-
ing to do with the dynamics of S; it serves as a reference measure to
permit talking about densities, and, as is customary, we will assume
that S is measurable, and nonsingular with respect to µ, i.e. the in-
duced measure S∗(µ) (which is also often written µ(S−1)) is absolutely
continuous with respect to µ.

We also assume given a partition of X into K measurable subsets
I1, . . . , IK , real numbers a1, . . . , aK , (which need not be distinct), and
define the function a : X 7→ {a1, . . . , aK} by

a(x) =
K∑

k=1

ak1Ik
(x)

where 1Ik
(x) is the indicator function of Ik.

Suppose we start the dynamical system with a distribution that is
absolutely continuous with respect to µ and can therefore be written
as fµ for some density f ∈ L1(µ) (i.e. f ≥ 0 and

∫
xf(x)µ(dx) = 1).

Then the next state will also have a distribution that is absolutely
continuous with respect to µ (because S is nonsingular with respect to
µ), so there is an operator P on L1(µ) such that P (f) is the density of
this next state with respect to µ. P is called the Frobenius – Perron
operator of the transformation.

Under a wide range of conditions it is known that, for arbitrary
initial density f , the sequence of iterates {Pn(f), n ≥ 0} will converge
to a limit f∗ such that P (f∗) = f∗. For details regarding the sense in
which convergence takes place, and situations in which it is known to
take place, see [9] and [22].

There is a vast literature on this topic, with conditions known that
cover several nonlinear maps with quite nontrivial behavior. For maps
of the unit interval [0, 1], for instance, a commonly cited example of
such a result is recorded in Theorem 6.2.1 of [22].

Thus, the state of the dynamical system appears to converge, in
some appropriate sense, to a random state with distribution f∗µ. If
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one starts the dynamical system with this distribution, then the se-
quence of arrivals {an, n ≥ 0} will be a stationary ergodic process. It
is certainly the case that under a wide range of conditions, this process
will be ψ-mixing. Indeed, the underlying dynamical system itself can
be shown to be strong mixing in many cases; for instance, exactness of
the transformation, which is often quite easy to see, implies mixing.

Combining these observations with the results stated in the pre-
ceding section leads to our first remark : If one constructs such an
expanding discrete dynamical system model, and an arrival process
derived from such a model, then, in the (non-pathological) situation
where a stationary distribution exists for the dynamical system, one
should typically expect exponential decay of the tails of the stationary
queue size in queues driven by the arrivals.

It suffices to apply the second result of section 3 to the sequence of
RK valued random variables

{(1I1(xn), . . . , 1IK
(xn)), n ≥ 0}

to conclude the existence of the limit in equation (1).
We next observe that positive recurrent discrete time finite state

Markov chain arrivals are quite easily constructed along the lines of
the general scheme we are discussing. To get a stationary sequence
{an, n ≥ 0} taking values in {a1, . . . , aK} with stationary distribution
(πk, 1 ≤ k ≤ K) and transition probability matrix (pij , 1 ≤ i, j ≤ K),
take X to be the unit interval [0, 1], F to be the Borel σ-field, and µ
to be Lebesgue measure. Take I1, . . . , IK to be intervals of lengths
π1, . . . , πK respectively, and further partition each Ik into intervals
Ikl, 1 ≤ l ≤ K, of lengths πkpk1 respectively.

Consider the deterministic transformation

S : [0, 1] 7→ [0, 1]

which is piecewise linear and maps the interval Ikl onto the interval I1

(so that it has slope π1
πkpkl

on this interval).

Except for the quibble that a state of the Markov chain may lead
to another state of the chain with probability 1, which situation can
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also be easily handled, this is an example of a piecewise linear (ex-
panding) Markov transformation, in the sense of Chapter 9 of [9],
because the slopes are all strictly bigger than 1; it is easily seen to
leave Lebesgue measure invariant (so the invariant density is 1). The
sequence of arrivals {an, n ≥ 0}, when we start the dynamical system
with Lebesgue measure, will be a Markov chain with initial distribution
(πk, 1 ≤ k ≤ K) and transition probability matrix (pij , 1 ≤ i, j ≤ K).

Our second remark is the following: Suppose we are given any piece-
wise expanding transformation of the interval (for the definition, see
page 85 of [9]). These are among the most studied transformations in
the literature, and for maps of the interval an expanding condition is
required for most results regarding the existence of a stationary distri-
bution. Then one can approximate the transformation by a piecewise
linear (expanding) Markov transformation. The arrival process cor-
responding to this approximation, in stationarity, is a function of a
stationary finite state Markov chain. The limit of equation (1) can
now be explicitly written down in terms of the slopes of the approxi-
mation to the transformation. This is a basic result that goes back to
the seminal works of Donsker and Varadhan for the large deviations
of the empirical distribution of Markov processes; for a convenient ref-
erence for such results, see [15]. Thus, according to the result of [11],
the tail probabilities of a single server queue driven by such an arrival
process will decay exponentially (assuming stability), and the rate of
decay of the tail can be explicitly computed in terms of the parameters
of the approximating Markov transformation.

Note that our second remark can be generalized to transformations
of spaces other than the interval - all one needs is that it should be
possible to construct a finite state symbolic dynamical scheme that
approximates the given transformation.

5 Conclusion

Deterministic dynamical systems offer a promising (or at least sug-
gestive!) modeling paradigm for the communication traffic processes
generated by systems executing complex protocols, which might also be
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composed of several interacting components. It is important to realize
that one has not lost modeling flexibility by restricting to deterministic
transformations, because stochastic processes can also be modeled by
this paradigm. What one appears to gain is a direct physical approach
to building models based on an explicit description of the underlying
system dynamics.

We have pointed out that when we consider a queue fed by ar-
rivals derived from such a system, we should typically expect to see
exponentially decaying tails for the stationary queue size. Further, by
choosing suitable approximations for the transformation describing the
system, we can write explicit formulas for the rate of decay of the tail
probabilities of the stationary queue size.

The developments in the physics community studying the rate of
decay of correlation’s in chaotic dynamical systems, particularly their
attempts to come to grips with the empirically observed subexponen-
tial decay of correlations in systems of interest to them, prompted the
writing of this note, since it seems plausible that the empirically ob-
served long-range dependence of communication network traffic has a
similar underlying mechanism, at least in part.
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Appendix
Let X1, . . . , XN be a sequence of conditionally independent Poisson

random samples, conditioned on means µ1, . . . , µN respectively.
Assume µn = λ + γn, 1 ≤ n ≤ N . This is a simple model for a

sequence of packet or byte counts with fluctuating mean.
The samples are aggregated at level m to get

X̄
(m)
j =

1
m

(X(j−1)m+1 + . . . + Xjm), 1 ≤ j ≤ M,

where 1 ≤ n ≤ N , m divides N , and M denotes N/m. The variance
time plot is the plot of the logarithm of the empirical variance of the
m-aggregated sequence X̄

(m)
1 , . . . , X̄

(m)
M against log m.

Slightly at variance with the usual definition on Section 4.4. on
page 94 of [6], let us define this as
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1
M

M∑

j=1

(
X̄

(m)
j − X̄(m)

)2
,

where X̄(m) denotes the empirical mean at granularity m :

X̄(m) =
1
M

M∑

j=1

X̄
(m)
j .

Write Γn for
∑n

t=1 γt. The conditional expectation of the empirical
variance of the m-aggregated sequence is then seen to be

λ + ΓN/N

m
− λ + ΓN/N

N
+

1
Nm

M∑

j=1

(Γjm − Γ(j−1)m)2 − Γ2
N

N2

Deriving this is a standard calculation using only the formula α2+α
for the second moment of a Poisson random variable of mean α.

Thus, loosely speaking, if ΓN = o(N), and, for most j,
(Γjm − Γ(j−1)m)2 ∼ m2H over the range N ε ≤ m ≤ N1−ε, then the
variance time plot will exhibit a slope of 2 − 2H over this range, i.e.
over c log N ≤ log m ≤ (1− c) log N .

On the basis of this crude calculation the variance time plot of
Fig. 5(b) of [23] for the AUG89.MB measurements described there,
which shows a slope of about −0.40 corresponding to roughly H =
0.80 over roughly the range 1 ≤ log10 m ≤ 1 from a sample of size
N = 360, 000 observations taken every 10 msec, could be taken to
indicate correlations on the scale of about 100 seconds, i.e. 104 × 10
msec, but do not necessarily indicate correlation’s on longer time scales
than this.
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