
Computer Science Journal of Moldova, vol.12, no.1(34), 2004

Software Development Processes

V. Iacoban

Abstract

For many years now, software process improvement (SPI) has
been recognized as an effective way for companies to improve the
quality of the software they produce and to increase the efficiency
of the development process. Much work has gone into devel-
oping and selling improvement paradigms, assessment methods,
modeling languages, tools and technologies. This paper will list
many of existing processes, frameworks, paradigms, presenting
the advantages and drawbacks of each of them. Synthesizing, a
requirements list will be prepared to define a software process im-
provement approach. Ideally, the approach should be practical,
applicable, efficient, and allowing to integrate existing software
developing technologies.

1 Introduction

Software organizations in the world employ nearly 7 million engineers
and generate annual revenue of more than $600 billion, an amount that
has been growing at an annual rate exceeding 25% for the past three
years. About half of this revenue is generated by the software products
industry, which builds general–purpose software products, and roughly
half is generated by the software service industry, which builds cus-
tomized software products for clients. The software industry today is
viewed as one of the most promising industry segments and one holding
tremendous future potential.

If we consider developing a software product as a project, then
the software industry constantly focuses on project execution. As-
suming that the average software project consumes about 7 person–
years of effort (during which a software product consisting of 20,000 to

c©2004 by V.Iacoban

89

V.Iacoban

80,000 lines of code can be built), then the software industry, with its
more than 7 million engineers, executes in excess of 1 million software
projects per year! Clearly, executing software projects efficiently is of
paramount importance to the software industry as a whole.

The processes used for executing a software project clearly have a
major effect on the quality of the software produced and the productiv-
ity achieved in the project. Consequently, there is a need to evaluate
processes used in an organization for executing software projects and
to improve them.

Software process improvement involves applying defined, system-
atic and repeatable approaches to software development. Few software
development company directors would argue that software process im-
provements would not improve their company’s profitability but, in
most cases, they cannot afford to embark on high-cost, large-scale style
software improvement where tangible improvement may not be seen for
years.

In addition, there are many approaches and technologies for soft-
ware process improvement that have already been developed and
proved to be effective. The approach should allow companies to utilize
for example, ISO 9001, CMM, Trillium, SPICE, or BOOTSTRAP or
any other software process improvement technology if and when they
believe them to be relevant to their improvement goals.

Next sections will describe in more details existing software im-
provement technologies and frameworks presenting its’ advantages and
drawbacks. In conclusion, last section will give a list of requirements
which any manager of a software development company would like to
be implemented in their development process.

Processes describe how things are done – specifically, what should
be done, what is needed to do it, how it should be done and who should
do it. Everyone has processes and everyone naturally does process
improvement, evidenced by the fact that we get faster and better at
doing things we do often and repetitively. Manufacturing has benefited
from explicit process improvement for a long time. The goal now is
for software development to leverage process improvement to increase
quality and productivity. To do this many approaches and technologies

90

Software Development Processes

have been developed. Presented below are just a few approaches that
are central to development of software development processes.

2 Capability Maturity Model (CMM)

One of the most famous approaches to software process improvement
is the Software Engineering Institute’s Capability Maturity Model
(CMM). Originally commissioned by the US Department of Defence
(DoD) as a way to ascertain which software/system providers were ca-
pable of delivering quality software on time and within budget, the cre-
ators of CMM deemed this capability to be directly related to “process
maturity”. That is, how advanced and adhered to are the company’s
software processes? The CMM defines “levels” of maturity to which
maturity groups (e.g. companies, departments, groups) can be certi-
fied. Groups must achieve a specified level of maturity before they can
be considered for DoD contracts (many other software commissioning
groups also use CMM certification to select developers for contracts).
To determine their level of maturity, groups undergo process assess-
ments, in which assessors investigate the process of the group and how
closely they are followed. Each level defines strict criteria to which the
group must adhere in order to gain certification.

2.1 Immature Versus Mature Software Organizations

Setting sensible goals for process improvement requires an understand-
ing of the difference between immature and mature software organi-
zations. In an immature software organization, software processes are
generally improvised by practitioners and their management during
the course of the project. Even if a software process has been speci-
fied, it is not rigorously followed or enforced. The immature software
organization is reactionary, and managers are usually focused on solv-
ing immediate crises (better known as fire fighting). Schedules and
budgets are routinely exceeded because they are not based on realistic
estimates. When hard deadlines are imposed, product functionality
and quality are often compromised to meet the schedule.

91

V.Iacoban

In an immature organization, there is no objective basis for judging
product quality or for solving product or process problems. Therefore,
product quality is difficult to predict. Activities intended to enhance
quality such as reviews and testing are often curtailed or eliminated
when projects fall behind schedule.

On the other hand, a mature software organization possesses an
organization-wide ability for managing software development and main-
tenance processes. The software process is accurately communicated
to both existing staff and new employees, and work activities are car-
ried out according to the planned process. The processes mandated are
usable and consistent with the way the work actually gets done. These
defined processes are updated when necessary, and improvements are
developed through controlled pilot-tests and/or cost benefit analyzes.
Roles and responsibilities within the defined process are clear through-
out the project and across the organization.

In a mature organization, managers monitor the quality of the soft-
ware products and the process that produced them. There is an ob-
jective, quantitative basis for judging product quality and analyzing
problems with the product and process. Schedules and budgets are
based on historical performance and are realistic; the expected results
for cost, schedule, functionality, and quality of the product are usually
achieved. Generally, a disciplined process is consistently followed be-
cause all of the participants understand the value of doing so, and the
necessary infrastructure exists to support the process.

2.2 Fundamental Concepts Underlying Process Matu-
rity

A software process can be defined as a set of activities, methods,
practices, and transformations that people use to develop and main-
tain software and associated products (e.g., project plans, design doc-
uments, code, test cases, and user manuals). As an organization ma-
tures, the software process becomes better defined and more consis-
tently implemented throughout the organization.

Software process capability describes the range of expected re-

92

Software Development Processes

sults that can be achieved by following a software process. The software
process capability of an organization provides one means of predicting
the most likely outcomes to be expected from the next software project
the organization undertakes.

Software process performance represents the actual results
achieved by following a software process. Thus, software process perfor-
mance focuses on the results achieved, while software process capability
focuses on results expected.

Software process maturity is the extent to which a specific pro-
cess is explicitly defined, managed, measured, controlled, and effective.
Maturity implies a potential for growth in capability and indicates both
the richness of an organization’s software process and the consistency
with which it is applied in projects throughout the organization.

As a software organization gains in software process maturity, it
institutionalizes its software process via policies, standards, and or-
ganizational structures. Institutionalization entails building an infras-
tructure and a corporate culture that supports the methods, practices,
and procedures of the business so that they endure after those who
originally defined them have gone.

2.3 The Five Levels of Software Process Maturity

A maturity level is a well-defined evolutionary plateau toward achiev-
ing a mature software process. Each maturity level comprises a set of
process goals that, when satisfied, stabilize an important component of
the software process. Achieving each level of the maturity framework
establishes a different component in the software process, resulting in
an increase in the process capability of the organization.

Maturity Levels 2 through 5 can be characterized through the activ-
ities performed by the organization to establish or improve the software
process, by activities performed on each project, and by the resulting
process capability across projects. A behavioral characterization of
Level 1 is included to establish a base of comparison for process im-
provements at higher maturity levels.

93

V.Iacoban

Level 1 – The Initial Level

At the Initial Level, the organization typically does not provide a sta-
ble environment for developing and maintaining software. Such orga-
nizations frequently have difficulty making commitments that the staff
can meet with an orderly engineering process, resulting in a series of
crises. During a crisis, projects typically abandon planned procedures
and revert to coding and testing. Success depends entirely on having
an exceptional manager and a seasoned and effective software team.
Occasionally, capable and forceful software managers can withstand
the pressures to take shortcuts in the software process; but when they
leave the project, their stabilizing influence leaves with them. Even a
strong engineering process cannot overcome the instability created by
the absence of sound management practices.

In spite of this ad hoc, even chaotic, process, Level 1 organizations
frequently develop products that work, even though they may be over
the budget and schedule. Success in Level 1 organizations depends
on the competence and heroics of the people in the organization and
cannot be repeated unless the same competent individuals are assigned
to the next project. Thus, at Level 1, capability is a characteristic of
the individuals, not of the organization.

Level 2 - The Repeatable Level

At the Repeatable Level, policies for managing a software project and
procedures to implement those policies are established. Planning and
managing new projects is based on experience with similar projects.
Process capability is enhanced by establishing basic process manage-
ment discipline on a project by project basis. An effective process
can be characterized as one which is practiced, documented, enforced,
trained, measured, and able to improve.

Projects in Level 2 organizations have installed basic software man-
agement controls. Realistic project commitments are based on the re-
sults observed on previous projects and on the requirements of the
current project. The software managers for a project track software
costs, schedules, and functionality; problems in meeting commitments

94

Software Development Processes

are identified when they arise. Software requirements and the work
products developed to satisfy them are base-lined, and their integrity
is controlled. Software project standards are defined, and the organi-
zation ensures they are faithfully followed. The software project works
with its subcontractors, if any, to establish a customer-supplier rela-
tionship.

Processes may differ between projects in a Level 2 organization.
The organizational requirement for achieving Level 2 is that there are
policies that guide the projects in establishing the appropriate man-
agement processes.

The software process capability of Level 2 organizations can be sum-
marized as disciplined because planning and tracking of the software
project is stable and earlier successes can be repeated. The project’s
process is under the effective control of a project management system,
following realistic plans based on the performance of previous projects.

Level 3 - The Defined Level

At the Defined Level, the standard process for developing and main-
taining software across the organization is documented, including both
software engineering and management processes, and these processes
are integrated into a coherent whole. This standard process is referred
to throughout the CMM as the organization’s standard software pro-
cess. Processes established at Level 3 are used (and changed, as ap-
propriate) to help the software managers and technical staff perform
more effectively. The organization exploits effective software engineer-
ing practices when standardizing its software processes. There is a
group that is responsible for the organization’s software process activ-
ities, e.g., a software engineering process group. An organization-wide
training program is implemented to ensure that the staff and managers
have the knowledge and skills required to fulfill their assigned roles.

Projects tailor the organization’s standard software process to de-
velop their own defined software process, which accounts for the unique
characteristics of the project. This tailored process is referred to in the
CMM as the project’s defined software process. A defined software

95

V.Iacoban

process contains a coherent, integrated set of well-defined software
engineering and management processes. A well-defined process can
be characterized as including readiness criteria, inputs, standards and
procedures for performing the work, verification mechanisms (such as
peer reviews), outputs, and completion criteria. Because the software
process is well defined, management has good insight into technical
progress on all projects.

The software process capability of Level 3 organizations can be sum-
marized as standard and consistent because both software engineering
and management activities are stable and repeatable. Within estab-
lished product lines, cost, schedule, and functionality are under control,
and software quality is tracked. This process capability is based on a
common, organization-wide understanding of the activities, roles, and
responsibilities in a defined software process.

Level 4 - The Managed Level

At the Managed Level, the organization sets quantitative quality goals
for both software products and processes. Productivity and quality are
measured for important software process activities across all projects
as part of an organizational measurement program. An organization-
wide software process database is used to collect and analyze the data
available from the projects’ defined software processes. Software pro-
cesses are instrumented with well-defined and consistent measurements
at Level 4. These measurements establish the quantitative foundation
for evaluation the projects’ software processes and products.

Projects achieve control over their products and processes by nar-
rowing the variation in their process performance to fall within accept-
able quantitative boundaries. Meaningful variations in process perfor-
mance can be distinguished from random variation (noise), particularly
within established product lines. The risks involved in moving up the
learning curve of a new application domain are known and carefully
managed.

The software process capability of Level 4 organizations can be sum-
marized as being quantifiable and predictable because the process is

96

Software Development Processes

measured and operates within measurable limits. This level of process
capability allows an organization to predict trends in process and prod-
uct quality within the quantitative bounds of these limits. Because the
process is both stable and measured, when some exceptional circum-
stance occurs, the “special cause” of the variation can be identified and
addressed. When the known limits of the process are exceeded, action
is taken to correct the situation. Software products are of predictably
high quality.

Level 5 - The Optimizing Level

At the Optimizing Level, the entire organization is focused on continu-
ous process improvement. The organization has the means to identify
weaknesses and strengthen the process pro-actively, with the goal of
preventing the occurrence of defects. Data on the effectiveness of the
software process is used to perform cost benefit analyzes of new tech-
nologies and proposed changes to the organization’s software process.
Innovations that exploit the best software engineering practices are
identified and transferred throughout the organization.

Software project teams in Level 5 organizations analyze defects to
determine their causes. Software processes are evaluated to prevent
known types of defects from recurring, and lessons learned are dissem-
inated to other projects.

There is chronic waste, in the form of rework, in any system simply
due to random variation. Waste is unacceptable; organized efforts to
remove waste result in changing the system, e.g., improving the process
by changing “common causes” of inefficiency to prevent the waste from
occurring. While this is true of all the maturity levels, it is the focus
of Level 5.

The software process capability of Level 5 organizations can be char-
acterized as continuously improving because Level 5 organizations are
continuously striving to improve the range of their process capability,
thereby improving the process performance of their projects. Improve-
ment occurs both by incremental advancements in the existing process
and by innovations using new technologies and methods. Technology

97

V.Iacoban

and process improvements are planned and managed as ordinary busi-
ness activities.

2.4 Process Capability and the Prediction of Perfor-
mance

These levels are designed to guide the process improvement, but they
do not offer detailed instructions on how to achieve this improvement
(they do not, for example, provide actual process models that can be
adopted). This idea of levels offers a phased approach, but each level
is so comprehensive it often takes groups years to move from level to
level in CMM.

Achieving higher levels of software process maturity is incremental
and requires a long-term commitment to continuous process improve-
ment. Software organizations may take ten years or more to build the
foundation for, and a culture oriented toward, continuous process im-
provement. Although a decade-long process improvement program is
foreign to most companies, this level of effort is required to produce
mature software organizations.

The CMM is not a silver bullet and does not address all of the
issues that are important for successful projects. For example, the
CMM does not currently address expertise in particular application
domains, advocate specific software technologies, or suggest how to
select, hire, motivate, and retain competent people. Although these
issues are crucial to a project’s success, they have not been integrated
into the CMM.

3 Rational Unified Process (RUP)

The Rational Unified Process is a software engineering process. It
provides a disciplined approach to assigning tasks and responsibilities
within a development organization. The Rational Unified Process is
also a process framework that can be adapted and extended to suit
the needs of an adopting organization. The Rational Unified Process

98

Software Development Processes

captures many of the best practices in modern software development in
a form that is suitable for a wide range of projects and organizations.

A process describes who is doing what, how, and when. The Ra-
tional Unified Process is represented using four primary modeling ele-
ments:

Workers – the who;

Activities – the how ;

Artifacts – the what ;

Workflows – the when;

3.1 Workers

The central concept in the process is that of a worker. A worker de-
fines the behavior and responsibilities of an individual or a group of
individuals working together as a team. The behavior is expressed in
terms of activities the worker performs, and each worker is associated
with a set of cohesive activities. “Cohesive” in this meaning defines
those activities best performed by one person. The responsibilities of
each worker are usually expressed in relation to certain artifacts that
the worker creates, modifies, or controls.

It’s helpful to think of a worker as a “hat” that an individual can
wear during the project. One person may wear many hats. This dis-
tinction is important because it is natural to think of a worker as the
individual or the team, but in the Rational Unified Process the term
worker refers to the roles that define how the individuals should do the
work. A worker performs one or more roles and is the owner of a set
of artifacts. Another way to think of a worker is as a part in a play-a
part that can be performed by many actors.

Workers are not individuals; instead, they describe how individuals
should behave in the business and the responsibilities of each individ-
ual. Individual members of the software development organization wear
different hats, or play different parts or roles.

99

V.Iacoban

3.2 Activities

Workers have activities, which define the work they perform. An ac-
tivity is a unit of work that an individual in that role may be asked to
perform, and that produces a meaningful result in the context of the
project. The activity has a clear purpose, usually expressed in terms
of creating or updating artifacts, such as a model, a class, or a plan.
Every activity is assigned to a specific worker.

The granularity of an activity is generally a few hours to a few days.
It usually involves one worker and affects one or only a small number of
artifacts. An activity should be usable as an element of planning and
progress; if it is too small, it will be neglected, and if it is too large,
progress will have to be expressed in terms of the activity’s parts.

Activities may be repeated several times on the same artifact, es-
pecially, from one iteration to another as the system is refined and
expanded. Repeated activities may be performed by the same worker
but not necessarily by the same individual.

In object-oriented terms, the worker is an active object, and the
activities that the worker performs are operations performed by that
object.

3.3 Artifacts

Activities have input and output artifacts. An artifact is a piece of
information that is produced, modified, or used by a process. Artifacts
are the tangible products of the project: the things the project produces
or uses while working toward the final product. Artifacts are used
as input by workers to perform an activity and they are the result
or output of such activities. In object-oriented design terms, just as
activities are operations on an active object (the worker), artifacts are
the parameters of these activities.

Artifacts can also be composed of other artifacts. For example, the
design model contains many classes; the software development plan
contains several other plans: a staffing plan, a phase plan, a metrics
plan, iteration plans, and so on.

100

Software Development Processes

Artifacts are very likely to be subject to version control and config-
uration management. Sometimes, this can be achieved only by version-
ing the container artifact when it is not possible to do it for the elemen-
tary, contained artifacts. For example, you may control the versions
of a whole design model or design package and not of the individual
classes they contain.

Typically, artifacts are not documents. Many processes place an
excessive focus on documents and in particular on paper documents.
The Rational Unified Process discourages the systematic production
of paper documents. The most efficient and pragmatic approach to
managing project artifacts is to maintain the artifacts within the ap-
propriate tool used to create and manage them. When necessary, you
can generate documents (snapshots) from these tools on a just-in-time
basis.

Artifacts are the responsibility of a single worker, to promote the
idea that every piece of information must be the responsibility of a
specific person. Even though one person may “own” the artifact, many
people may use this artifact, perhaps even updating it if they have been
given permission.

3.4 Workflows

A mere enumeration of all workers, activities, and artifacts does not
quite constitute a process. We need a way to describe meaningful
sequences of activities that produce some valuable result and to show
interactions between workers. A workflow is a sequence of activities
that produces a result of observable value. In UML terms, a workflow
can be expressed as a sequence diagram, a collaboration diagram, or
an activity diagram.

3.5 Phases

From a management perspective, the software lifecycle of the Rational
Unified Process (RUP) is decomposed over time into four sequential
phases, each concluded by a major milestone; each phase is essentially a

101

V.Iacoban

span of time between two major milestones. All phases are not identical
in terms of schedule and effort.

Phase: Inception

The overriding goal of the inception phase is to achieve concurrence
among all stakeholders on the lifecycle objectives for the project. The
inception phase is of significance primarily for new development efforts,
in which there is significant business and requirement’s risks, which
must be addressed before the project can proceed. For projects focused
on enhancements to an existing system, the inception phase is shorter,
but is still focused on ensuring that the project is both worth doing
and possible to be done.

At the end of the inception phase comes the first major project
milestone or Lifecycle Objectives Milestone. At this point, the
lifecycle objectives of the project are examined, and it is decided wether
to proceed with the project or to cancel it.

Phase: Elaboration

The goal of the elaboration phase is to baseline the architecture of the
system to provide a stable basis for the bulk of the design and imple-
mentation effort in the construction phase. The architecture evolves
out of a consideration of the most significant requirements (those that
have a great impact on the architecture of the system) and an assess-
ment of risk. The stability of the architecture is evaluated through one
or more architectural prototypes.

At the end of the elaboration phase comes the second important
project milestone, the Lifecycle Architecture Milestone. At this
point, the detailed system objectives and scope, the choice of architec-
ture, and the resolution of the major risks are examined.

Phase: Construction

The goal of the construction phase is to clarify the remaining require-
ments and complete the development of the system based upon the

102

Software Development Processes

base-lined architecture. The construction phase is, in some sense,
a manufacturing process, where emphasis is placed on managing re-
sources and controlling operations to optimize costs, schedules, and
quality. In this sense the management mindset undergoes a transi-
tion from the development of intellectual property during inception
and elaboration, to the development of deploy-able products during
construction and transition.

At the Initial Operational Capability Milestone, the product
is ready to be handed over to the Transition Team. All functionality
has been developed and all alpha testing (if any) has been completed.
In addition to the software, a user manual has been developed, and
there is a description of the current release.

Phase: Transition

The focus of the Transition Phase is to ensure that software is available
for its end users. The Transition Phase can span several iterations, and
includes testing the product in preparation for release, and making mi-
nor adjustments based on user feedback. At this point in the lifecycle,
user feedback should focus mainly on fine-tuning the product, config-
uring, installing and usability issues, all the major structural issues
should have been worked out much earlier in the project lifecycle.

By the end of the Transition Phase lifecycle objectives should have
been met and the project should be in a position to be closed out. In
some cases, the end of the current life cycle may coincide with the start
of another lifecycle on the same product, leading to the next generation
or version of the product. For other projects, the end of Transition may
coincide with a complete delivery of the artifacts to a third party who
may be responsible for operations, maintenance and enhancements of
the delivered system.

At the end of the transition phase comes the fourth important
project milestone, the Product Release Milestone. At this point, it
is decided if the objectives were met, and if another development cycle
should be started. In some cases this milestone may coincide with the
end of the inception phase for the next cycle.

103

V.Iacoban

At the Product Release Milestone, the product is in production and
the post-release maintenance cycle begins. This may involve starting a
new cycle, or some additional maintenance release.

Looking from the practical point of view, the Rational Unified Pro-
cess was designed as a development process to complement object-
oriented development using Unified Modeling Language. Currently of-
fered as an electronic (web-based) guide RUP incorporates “best prac-
tice” lessons from object-oriented development projects. It does not
define an improvement paradigm other than purchase, install and use
the RUP. The RUP can be valuable for companies engaging in object-
oriented style development but it does have the following drawbacks:

1. It defines a process rather than an improvement paradigm i.e. it
does not define how the process should be introduced, monitored
and evolved to obtain maximum benefit;

2. It is a predefined process which may or may not “fit” a company’s
culture;

3. It is a predefined process which is being used by many companies,
so after it has been installed and followed, there is little scope for
evolving it to gain maximum competitive advantage.

One of the more recent examples is Extreme Programming (XP)
which specifies very short, iterative cycles of development consisting
of requirements definition, design and implementation (along with re-
work). Adopting a development method is sure to improve your pro-
cess, however they tend to be focused on requirements, design and im-
plementation issues, not necessarily management, documentation and
quality processes that can have a large effect on productivity and qual-
ity. They also do not offer an improvement paradigm to install, monitor
and improve the process.

4 Conclusion

There are many standards for software development that can be ap-
plied to effectively improve software processes. Generally, they fall into

104

Software Development Processes

two categories. Firstly, the CMM style improvement paradigms such
as SPICE, Bootstrap and Tickit. These approaches meet the same
problems as CMM when applied to small scale software development.
Secondly, comprehensive standards for all or particular parts of the
development process such as ISO 9000 / 9001 or IEEE. These kinds of
standards can be very helpful in defining a process, but do not provide
improvement paradigms.

As well as improvement paradigms and process standards or meth-
ods, many technologies to support process improvement have been de-
veloped. These include languages and tools for documenting, simu-
lating, communicating and executing processes, methods for carrying
out process assessments to determine process maturity of companies
and process measures for monitoring improvement in projects. Many
of these technologies are well advanced and should be utilized fully in
any software process improvement paradigm.

To sum up, the problem for software developing companies is how
to use all of this technology, experience and knowledge to effect process
improvement in their particular organizations. Obviously, a different
paradigm for improvement is needed to that of the large scale maturity
based approaches. The important requirements for this paradigm are
that it should:

1. Be effective and produce good results (e.g. shorter cycle times,
earlier error detection, less post-release defects, good return on
investment etc.)

2. Be incremental so that it can be initialized with a relatively small
investment and then incrementally extended. Increments should
be short and ideally match project cycles.

3. Give fast, tangible results so that its continuation can be justified.

4. Utilize existing technologies such as those outlined above to get
maximum advantage from the work that has already been done
in this field.

Having such a process improvement mechanism in place would help

105

V.Iacoban

to take full advantage of existing technologies for software development
processes.

References

[1] Pankaj Jalote, “CMM in Practice”, Addison-Wesley Pub Co; 1st
edition (October 22, 1999) .

[2] L. Scott, R. Jeffery, L. Carvalho, J. D’Ambra and P. Ruther-
ford, “Practical Software Process Improvement - The IMPACT
Approach”, Proceedings 2001, Australian Software Engineering
Conference, pp. 182–189, IEEE Computer Society Press, 2001.

[3] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, Charles V. Weber,
“The Capability Maturity Model for Software”, Software Engineer-
ing Institute.

[4] Mark C. Paulk, “Extreme Programming from a CMM Perspec-
tive”, IEEE Software, November/December 2001.

[5] Gary Pollice, “Using the Rational Unified Process for Small
Projects: Expanding Upon eXtreme Programming”, A Rational
Software Whitepaper.

[6] Scott W. Ambler, Larry C. Constantine, “Best Practices in Im-
plementing Unified Process”, CMP Books.

Victor Iacoban, Received December 25, 2003

Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova,
str.Academiei,5, Chisinau, MD 2028,
Republic of Moldova.
E–mail: victor iacoban@yahoo.com

106

