Computer Science Journal of Moldova, vol.12, no.1(34), 2004

Deductive databases and P systems

Miguel A. Gutiérrez-Naranjo Vladimir Rogozhin

Abstract

In computational processes based on backwards chaining,
a rule of the type A < Bi,...,B, is seen as a procedure
which points that the problem A can be split into the problems
Bi,...,B,. In classical devices, the subproblems By, ..., B,, are
solved sequentially. In this paper we present some questions that
circulated during the Second Brainstorming Week related to the
application of the parallelism of P systems to computation based
on backwards chaining on the example of inferential deductive
process.

Keywords: artificial intelligence, Deductive databases, P systems,
membrane systems, backwards chaining, inferential deductive process

1 Introduction

In computational processes based on backwards chaining, a rule of the
type A < Bi,..., B, is usually seen as a procedure which points that
the problem A can be split into the problems By, ..., B, with the hope
that By, ..., B, are simpler than A. In the case of getting B,..., B,
solved, we also have a solution for A via this rule.

This is the case of pure Prolog [2, 10] where A < Bj,..., B, is a
definite clause and A, By, ..., B,, are positive literals. Prolog uses SLD
resolution to find an answer to the goal A, i.e., Linear resolution for
Definite clauses with Selection function. This selection function con-
siders sequentially the list of current subgoals By, ..., B, and chooses
one of them (in standard Prolog the selection function always takes
the leftmost literal). The process of finding an answer for the chosen

(©2004 by Miguel A. Gutiérrez-Naranjo and Vladimir Rogozhin

80

Deductive databases and P systems

subgoals generates new subgoals, hopefully simpler than the previous
one. The computation ends when trivial subgoals are reached.
The selection mapping is necessary because classic computational
devices work sequentially, so we need to fix an order between the tasks.
In this paper we present some questions that circulated during the
Second Brainstorming Week related to the application of the paral-
lelism of P systems to the computation based on backwards chaining.

2 Logic Programming

Although the computation based on backwards chaining is a general
procedure in Computer Science, we focus our attention on Deductive
Databases and Logic Programming.

The way of representing information in Logic Programming (e.g.
[1, 3, 6, 8, 4]) is via a set of clauses. These sets of clauses are logic
programs. Roughly speaking, a clause is a first-order rule, where both
sides of the rule consist of atoms, i.e, a predicate applied to some
arguments. Formally, a clause is a formula

V.Tl...V.TSAl\/...Ak\/—!Bl\/...\/—!Bn

where z1, ..., x5 are all the variables that occur in the atoms Ay, ..., Ay,
Bi,...,B,. A clause! is a Horn clause if it contains at most one posi-
tive literal (atom) and it is a definite clause if it contains exactly one
positive literal. For example

VXVY daughter(X,Y)V = female(X) V —mother(Y, X)

is a definite clause. This universally quantified formula is usually writ-
ten as
daughter(X,Y) < female(X), mother(Y, X)

The positive literal, i.e. the conclusion of the implication is usually
called the head of the clause. The rest of the literals, the premises, are

!The basic difference between program clauses and database clauses is the use of
types.

81

Miguel A. Gutiérrez-Naranjo, Vladimir Rogozhin

known as the body or the tail of the clause. Definite clauses can consist
of a single positive literal. They can be considered as rules with no tail
or no conditional sentences, as

female(anne) «
mother(mary, anne) <

These clauses are facts. A substitution 0 = {Vi/t1,...,V,/tp} is an
assignment of terms t; to variables V;. If a substitution is applied
to a clause we get an instantiated clause, where all occurrences of the
variable V; are replaced by the term #;. For example, if the substitution
0 = {X/anne} is applied to the clause C:

daughter(X,Y) < female(X), mother(Y, X)
we get the clause C6:

daughter(anne,Y) < female(anne), mother(Y, anne)

A substitution 6 is a unifier of the atoms A and B if A6 = B6.

Logic programs compute through a combination of two mechanisms:
unification and resolution. From any two clauses with complementary
literals A and —A the inference rule of resolution derives a new clause
as consequence. For example, from

daughter(anne,Y) < female(anne), mother(Y, anne)
female(anne) «

we obtain the clause daughter(anne,Y) <— mother(Y,anne). The de-
duction process is a goal driven in the following way. If we have the
program

daughter(X,Y) < female(X), mother(Y, X)
female(anne) <
mother(mary, anne) <

and we want to know if daughter(anne, mary) is true, first we build
the goal
« daughter(anne, mary)

82

Deductive databases and P systems

i.e., the one-literal clause —daughter(anne, mary). The atoms
daughter(anne, mary) and daughter(X,Y’) unify with the substitution
0 = {X/anne,Y/mary}. By using resolution with the first clause of
the program and the unifier 0 we get the new goal

+ female(anne), mother(mary, anne)

As we saw before, this step can be seen in a procedural mode. The
problem of deciding if daughter(anne, mary) is true has been split into
two subproblems: Decide if female(anne) and mother(mary, anne)
are true or not. But they are true because they are claimed by our
program, so daughter(anne, mary) is true.

When the reasoning system solves the goal Q) it gives us an answer.
There are two types of outputs given by the system with respect to the
type of the goal Q:

1. If the goal does not contain variables, we have a decision problem,
and the possible answers are Yes or No. In this case the system
decides if the goal can be or not derived form the program.

2. If the goal contains variables, the system outputs the unifier 6
such that the instantiated goal Q0 can be derived from the prob-
lem. This unifier represents the answer to the question, and obvi-
ously several unifications 6 that make the goal Q0 true can exist.

In our example, we deal with a decision problem. After the first step
the subgoals female(anne) and mother(mary, anne) have to be solved.
This is done sequentially in classical devices with only one processor.
We wonder if it is possible to use P systems for these problems. We
think that it would be very interesting to use the parallelism of P
systems to solve all subgoals in parallel manner.

3 P systems

Now we are going to show some hints about a general representation of a
set of typed definite clauses (Deductive Database) and of the inferential

83

Miguel A. Gutiérrez-Naranjo, Vladimir Rogozhin

deductive process in the frame of hierarchical P systems [9] with active
membranes [5].
Let us consider Deductive Database (DDB)

Q1+~ Pn, Poa, ..., Pip
Qo P, Py, ..., Py
Qn<_ Pn17 Pn?a ey an

We assume for simplicity that we have the same set of parameters
{z1,...,25} € D?® from the same domain D for all literals @Q;, i €
{1,...,n}, Py, i€ {l,...,n}, j € {1,...,m}, and the same order of
parameters (z1,...,z,) for heads of all rules. Literals from tails are
allowed to have any order of parameters.

We can ask goals presented as literals with constant terms and/or
variables in the set of parameters to the inferential deductive machine.
Constants will be denoted by ¢; and variables will be denoted by v;.
We assume that goal have the same order of parameters (z1,...,z,) as
heads of DDB clauses.

Now we will give the general model of logic inferential deductive
machine and some ideas how it can be represented in the frame of P
systems. Consider the DD DB described above and the goal). Logic
inferential deduction process will be performed recursively conform the
following steps:

ALGORITHM: SOLVE
INPUT: Q

PART 1: From the goal to the axioms:

Step 1 Head unification: Unification of () with all heads); from
DDB in parallel. As the result every head); for which the unification
process succeeded will get the set of unifiers 6;.

Step 2 Body unification: For every head @); for which step 1 suc-
ceeded and the tail is not empty, body unification process will be per-
formed with all subgoals P;; in parallel, that is the algorithm SOLV E

84

Deductive databases and P systems

will be launched in parallel for every subgoal P;; with input P;;6;. In
the case of facts (rules with empty tail) the system returns the unifier
0; of the head @);.

PART 2: From the axioms to the goal

Step 3 Atom unification: For every rule for which step 2 succeeded,
the unification of results of all subgoals is performed.

Step 4 Union of the results: Since every particular rule from the
DDB gives us some set of unifiers (solutions), one should consider the
union of all these sets as a solution of ().

OUTPUT: There are possible two cases:

1. The result to be the set of all unifiers © = {§|DDB F (Q6}. In
other words, the result will be the set of all unifiers 6 for which
Q0 could be derived from DDB

2. The result to be Yes in the case © = {0}, Q = Q6 and No in the
case © = ()

In this way we have got two types of parallelism here:

1. For each head (); a process which unifies it with ¢) and which
unifies results of subgoals P;; is created:;

2. For each subgoal P;; of Q; the solving process is created.

In Fig.1 the general scheme of the deduction process and of the
parallel processes interactions is presented. For each process from the
scheme a membrane is created. In this way one can treat the tree of
the processes interaction as a hierarchy of membranes of the P system
solving the problem.

One can define two general types of membranes:

1. Membranes which stay for goals and subgoals representation.
Membranes of this type perform steps 1 and 4. On the Step 1
they create submembranes which stay for the heads of the clauses.
On the Step 4 it collects results of the inferential rules execution.

85

Miguel A. Gutiérrez-Naranjo, Vladimir Rogozhin

Goal:

Step 1: h | @ | Step 2: PuiPiz.. Pim
Head Body

“—* unification unification |+ PaPz. Pa
process process

. * Step2: ,__,I:l,_, Step 3: G
Union of Atom

& * unifiers unification " »| PuiPrz.. Pam

N S

‘ Heads: Q; Q § a1 \Qn ‘

Subgoals: P;; P Pi3s Py Pop P;_S PP Pg ‘

‘Heads-axioms: Qilc.....c) Qalc.....c) Qpalc.....c) Qilc.....c)

Figure 1. The general scheme of the deduction process and of the pro-
cesses interaction

2. Membranes which stay for clause’s heads representation. They
perform steps 2 and 3. For this type of membranes there are
possible two cases:

The tail is not empty: membranes complete term unification
of the head and goal, create submembranes which stay for
the subgoals, perform term unification with all subgoals.

The tail is empty: membranes complete term unification.

All these ideas need to be concretized and formalized, of course,
what will be possible in future research of the problem.

86

Deductive databases and P systems

4 Final remarks

In this work-in-progress paper we describe some preliminary ideas born
from discussions about this topic during the Second Brainstorming
Week. This is only the beginning and a lot of work have to be done.
The first step is to fix the backwards chaining formalism that we want
to study in P systems. Function-free clauses, i.e., clauses which con-
tain only variables as terms can be a good starting point, but to handle
relevant information Datalog [11] clauses can be more suitable. Dat-
alog clauses are definite clauses that contain no functions symbols of
non-zero arity. As we have seen, we have a long path to walk.

The preliminary version of this paper one can find in [12].

Acknowledgment

Miguel A. Gutiérrez Naranjo is partially supported by the project
TIC2002-04220-C03-01 of the Ministerio de Ciencia y Tecnologia of
Spain, cofinanced by FEDER funds,

Vladimir Rogozhin is supported by "MolCoNet” project IST-2001-
32008.

References

[1] Apt, K.R.: Logic Programming, Handbook of Theoretical Com-
puter Science. Elsevier Science Publishers B.V., 1990

[2] Bratko, I.. PROLOG Programming for Artificial Intelligence,
Third edition. Addison-Wesley, 2001.

[3] Doets K.: From Logic to Logic Programming. The MIT Press,
1994.

[4] Dzeroski, S. and Lavrac N.: An Introduction to Inductive Logic
Programming in Relational Data Mining, Springer, Berlin 2001.
pp.48-73

87

Miguel A. Gutiérrez-Naranjo, Vladimir Rogozhin

[5]

[6]

7]

[8]
[9]
[10]

[11]

[12]

Krishna S.N., Rama R.: A Variant of P Systems with Active Mem-
branes: Solving NP-Complete Problems. Romanian Journal of In-
formation Science and Technology, 2, 4 (1999), pp.357-367.

Lloyd J.W.: Foundations of Logic Programming. (2nd ed.)
Springer, Berlin, 1987

G. Metakides, A. Nerode: PRINCIPLES OF LOGIC AND LOGIC
PROGRAMMING, Studies in Computer Science and Artificial In-
telligence, 1996.

Nienhuys-Cheng S.H. and de Wolf R.: Foundations of Inductive
Logic Programming, LNAI 1228. Springer 1997

Paun, Gh.: Computing with membranes, Journal of Computer
and System Sciences, 61, 1 (2000), pp.108-143.

Logic Programming: http://www.afm.sbu.ac.uk/logic-prog/

Deductive Databases: The DATALOG Approach:
http://goanna.cs.rmit.edu.au/ zahirt/Teaching/
subj-datalog.html

Miguel A. Gutiérrez-Naranjo, Vladimir Rogozhin: Deductive
databases and P systems, Gh. Paun, A. Riscos-Nunez, A. Romero-
Jimenez, F. Sancho-Caparrini (Eds.): Second Brainstorming Week
on Membrane Computing 2004, TR 01/2004, pp. 258-263, 2004.

Miguel A. Gutiérrez-Naranjo, Vladimir Rogozhin Received May 13, 2004

Miguel A. Gutiérrez-Naranjo

Dpto. de Ciencias de la Computacién e Inteligencia Artificial
E.T.S. Ingenieria Informatica. Universidad de Sevilla

Avda. Reina Mercedes s/n, 41012, Sevilla, Espaiia

E-mail: magutierQus.es

Vladimir Rogozhin

The State University of Moldova
60 Mateevich str., MD-2009
Chiginau, Moldova

E-mail: rv@math.md

88

