Computer Science Journal of Moldova, vol.12, no.1(34), 2004

Real Time Embedded Moving Objects Detector
— Study and Implementation Within Virtex
FPGA Technology

Messaoud Mostefai, Samira Djebrani, Youssef Chahir

Abstract

This article details the design and the implementation of an
efficient real time moving objects detector in the field of view
of a fixed camera. The developed algorithm allows a robust
motion detection and a considerable reduction in hardware re-
sources, more particularly memory resources, which remains a
powerful criterion in the construction of real time embedded sys-
tems. Moreover, the algorithm maps efficiently into a highly
pipelined architecture, well suited to an implementation in recon-
figurable technology. The algorithm is implemented on a Virtex
FPGA architecture and operates in real time on video in CCIR
format. The obtained experimental results show the effectiveness
and correctness of our approach.

Keywords: image processing, motion detection, fuzzy logic,
real time, virtex technology.

1 Introduction

With the aim to satisfy the real time processing requirements, various
image processing systems proceed to an important data reduction in or-
der to compeunsate the insufficient power of current processors. On the
other hand, in many applications (tracking, surveillance, guidance...)
alone the position and form of objects is necessary, consequently the
alone knowledge of moving edges is sufficient. Computer vision is only
one of the possible approaches to extract moving objects. Other ap-
proaches have been followed based on inductive loops, sound detectors,

(©2004 by M.Mostefai, S.Djebrani, Y.Chahir

25

M.Mostefai, S.Djebrani, Y.Chahir

pneumatic sensors. Nevertheless, none of these sensors is able to ex-
tract information as detailed as computer vision is.

Motion detection requires the analysis of image sequences, in order
to trace the evolving position of single objects. Most approaches are
based on motion extraction from images: on one hand, many analyti-
cal methods of motion analysis have been adopted, like the optical flow
[1, 2] or the matching of moving features [3]. These methods are able
to extract not only moving points, but also information on the mo-
tion direction and velocity. However, these methods are generally very
expensive in terms of computational time. The approach we follow,
extracts moving points from images with simple and efficient image
processing techniques, well suited for a real time implementation with
low cost hardware.

To proceed to a moving edges analysis, we use an operator which
applied to an image sequence, allows to extract from a dynamic scene
the edges of objects in movement. For this purpose, different operators
have been developed [4, 5, 6, 7]. They often use in their processing
classical edges detection techniques, easy to implement but sensitive
to noise. The relative failure of the classical detectors has urged us to
choose another segmentation approach that uses fuzzy tools to perform
a fuzzy edges detection. This approach is actually applied in many
areas (process control, expert system ...), fuzzy logic brings also its
evidence in image processing, segmentation, image enhancement and
edge detection [8, 9, 10, 11].

The system we propose here has been implemented on a low-cost
reconfigurable architecture based on Virtex Field Programmable Gate
Arrays (FPGAs). These architectures are sufficiently flexible to per-
mit the implementation of new algorithms on existing hardware, and
their performance is adequate for real time operation of many image
processing problems.

After a brief introduction to moving detection techniques, we
present the basic principles of the fuzzy approach and its application
in the construction of an edges detector. This detector is validated by
comparison with Canny detector. Software motion detection results are
presented as well as the details of the implementation within a recon-

26

Real Time Embedded Moving Objects Detector . ..

figurable Virtex FPGA architecture for a real time image processing.
A solution based on the search of moving segments instead of mov-
ing pixels is proposed to reduce the effect of noise without eliminating
the true edges points. Finally, real time results are reported and some
counclusions are drawn.

2 Motion detection techniques

Two categories of methods are used for the detection of moving objects
in a sequence of images: those that make a comparison of the current
image with a reference image which represents the static model of the
filmed scene [4, 5] and those which compare the current image with the
neighboring images by concentrating directly on zones where changes
are observed [6, 7). The construction of a reference image is an often
difficult task, because variations of lighting within the analyzed se-
quence can make some images incompatible with the reference image.
Haynes and Jain [4] suggest an operator that performs the product of
the absolute difference of two successive images (I,,—; and I,;) with the
gradient of the current image I,,. The expression of this operator is
described by the following formula:

Va,y Rn(x,y) = |I"(x7y) - In71($,y)| * G"('Tuy) (1)

with G, being the gradient of image I, and R,, the result of the
operation which corresponds to the moving edges. This operator does
not perform a coincidence between edges but rather between the gra-
dient of the current image and the absolute value. Another operator
proposed by Stelmaszyk [5], consists in a multiplication between the
gradient of the difference of two successive images (I,—; and I,) and
the gradient of the current image I,,, allowing thus to have a true coin-
cidence between edges. The formulation of this operator is as follows:

Vo,y Ru(z,y) = G(|In(z,y) — In-1(,y)]) * Gn(z,y) (2)

In general, operators that operate only on two consecutive images in-
duce false edges. Indeed, in this case, any visible object on the current

27

M.Mostefai, S.Djebrani, Y.Chahir

image which was not found on the one before is considered as mobile,
even if it concerns an element of the static bottom that was hidden,
and that comes to appear (Figure 1).

Object in movement Static object False detection
) ™ 0
Image 1,_; Image 1, Moving edges

Figure 1. Occultation problem

In order to avoid this problem, the processing must operate on three
consecutive images. Vieren [6] has proposed an operator which makes a
product of the absolute differences of couples (1,1, ;) and (1, Ij,41).
The formulation of this operator is as follows:

Yo,y Bo(z,y) = G([In(2,y) = Lna(z,9)])*
G (| Int1 (2, y) — In(2,9)]) (3)

Another operator using three consecutive images in its processing
was also proposed by Orkisz [7]. This operator allows mobile frontiers in
the current image to be located by comparison of frontiers of the current
image with those of next and preceding images so as to distinguish
mobile elements from static ones. The expression of this operator is as
follows:

V'Tu Y Rn(xu y) = maa:(Gn(a:, y)7 anl(xu y)7 Gn+1 ($7 y))_
—max(Gn,l(x,y),GnH(x,y)) (4)
with Gy, 1, Gy, and G, 41 respective gradients of three consecutive
images I,_1, I, and I, . Figure 2 shows an example of the application

of the Orkisz operator to extract moving objects from three successive
images (with a static object and a moving circle).

28

Real Time Embedded Moving Objects Detector . ..

Image In—] Image In Image In+]

oL
]
]

O O
Gn— 1 Gn Gn+ 1
O

Rn (Moving edges)

Figure 2. Motion detection based on three successive frames

From all known operators that use varying elements between neigh-
bor images, we have chosen the Orkisz operator; it represents the best
compromise between efficiency and simplicity of implementation. In-
deed, compared to other operators (e.g., Vieren operator) which con-
sist in performing products of gradients, Orkisz operator requires only
comparison and subtraction operations; easy to implement and do not
affect the dynamic as does multiplication operation. As all the other
operators, this operator uses a classical edge detection technique, such
as Sobel filtering, Prewitt, Laplacian or Gaussian filtering, the Canny
and Deriche operator, but some common problems of these methods
are a large volume of computation, sensitivity to noise, anisotropy and
thick lines. Russo and Ramponi [8, 9] designed fuzzy rules for edge
detection. Such rules can smooth while sharpening edges, but require
a rather large rule set compared to simpler fuzzy methods presented by

29

M.Mostefai, S.Djebrani, Y.Chahir

Looney in [10]. Neural networks have also been used in [11] to detect
edges, but here we use a special fuzzy classifier for edges that does not
require training.

3 Fuzzy classification

A fuzzy classifier is a system that accepts inputs that are either feature
vectors or vectors of fuzzy truths for the features to belong to vari-
ous fuzzy set membership functions (FSMFs). It outputs fuzzy truths
for the memberships of the input vector in the various classes. The
class assigned to an input feature vector is the one with the maximum
fuzzy truth given by the FSMFs. We usually require the maximum to
exceed the second greatest fuzzy truth by a certain amount in order
to yield a unique class membership. Otherwise we can only say that
the input feature vector belongs to each class with a particular fuzzy
truth. Different types of fuzzy classifiers are used in [12, 13, 14] for
other purposes.

3.1 Methodology

Cousider an image I,, having gray levels in the interval [0,G-1]. It is as-
sumed that each processed pixel Iy(x,y) has eight closest neighbors (1;,
i=1,8). The partitioning process consists on computing for each central
pixel Iy the difference luminance set: D = {d;}, with (d; = I; — Iy).
These values will be used as input variables by the fuzzy edges detector
to compute the new central value. The input variable d; can be member
of several classes with membership degrees varying between 0 and 1.
The membership functions can have several forms, however triangular
and trapezoidal forms are the most used, allowing thus to have easy al-
gorithms to implement. In our case three linear membership functions
are used (Figure 3). The data partitioning operation allows to allocate
each input variable to one of the three classes (class0, classl or class2)
by using the function Max(jp, f1g, ptc). Where iy, p1g and i, correspond
to the membership functions of classO, classl, and class2 respectively.
The d; values belonging to the class2 are called dynamic values and
will be arranged in one of the two static classes ”70” or ”1” only if their
two close neighbors belong to the same class 70" or ”1”; otherwise, all

30

Real Time Embedded Moving Objects Detector . ..

configuration including these values is not taken into account, and the
correspondent central pixel is considered as a noisy pixel. After the
data partitioning operation the operator will use the previously gener-
ated fuzzy rules and the input variables allocations to compute the new
central pixel value (mapped to black if the central pixel is considered as
a contour point and mapped to white if not). To elaborate our fuzzy

A
] M, Mg U,

ClassO X, Class2 /X Classl1

0 : : :
—-G+1 d, d, G-1

Figure 3. Used membership functions

rules, we have used the popular IF-THEN approach well described in
[15]. This approach uses a group of N THEN rules (ending to the same
result) and one ELSE rule. The fuzzy rules generation is undertaken
from a 3x3 size binary mask. The eight examined contour types are
presented in figure 4. An operator is used to examine the considered
point neighborhood. In case one of the eight configurations is met, the
considered central point is taken for a contour point, otherwise it is
counsidered as belonging to a uniform zone.

Sl § L=
-l 1

- ClassO - Class1

Figure 4. Examined contour types

31

M.Mostefai, S.Djebrani, Y.Chahir

4 Simulation results

4.1 Fuzzy approach validation

In this study we are interested to real world scenes which have the repu-
tation to be noisily and with weak dynamic. To validate our approach,
the developed fuzzy edges detector is compared with Canny edges de-
tector. All of our results were obtained by using a 3x3 neighborhood
centered in turn on each interior pixel. The center parameters dj, and d;
must be provided to achieve good results. In practice, different people
may look for different details in the same image, so those parameters
should be input by the user to obtain the desired type of edges. For
example, we could put d; = —4, d, = 4. A smaller [d;,d}] interval
yields more sensitivity to edges (and displays more noise), whereas a
larger interval maps more of the weak edges to the background.

To obtain results for the Canny edge detector we used Matlab 6
(Release 12). The results are white edges on black background, so we
take the negative for comparison with our fuzzy operator. The Matlab
command for Canny edge detection is: Output Image = edge(Input
Image ,’Canny’, T, 0); where ”"Output Image” and ”Input Image” are
the respective output edge image and input image. The Canny param-
eters that must be input by the user are the upper threshold T (upper
edge sensitivity) and sigma o (the Gaussian parameter). The default
value is 1.0. We found that a smaller threshold T gives more detail
(and noise). Making o smaller also gives more detail but without the
noise. T is the most sensitive.

Test images presented in Figures 5.a and 5.b are used to compare
the contours detection results of the two operators. The first test figure
shows an outdoor traffic scene with moving vehicles. The sequence is
shot in daylight conditions from a camera placed on a bridge passing
above a highway. The second test figure shows an image of a south girl
acquired in daylight conditions. Test images are 256x256 in size and 8
bits in quantization.

The results obtained with Canny edges detector are shown for both
high and low sensitivity, respectively, in figures 6.a and 6.b for the
traffic image and figures 6.e and 6.f for south girl image with ¢ fixed

32

Real Time Embedded Moving Objects Detector . ..

o

(a) Traffic scene | (b) South girl

Figure 5. Test images

at 0.5. Decreasing o would show more details without increasing the
noise significantly. The results for our fuzzy edges detector for the
lower and higher sensitivity to edges are presented in figures 6.c and
6.d for traffic image and figures 6.g and 6.h for south girl image. In
our judgement, which is a subjective decision, our fuzzy edges detector
yields moderately thin black lines even when the edge in the input
image is diffuse.

4.2 Motion Detection

Three successive images I, 1, I, and I, are used to extract the edges
images Gp—1, G, and G4 using the fuzzy edges detector. These last
are used by the motion detection operator to extract moving edges.
Different results depending on d; and dj, values are presented in figure 7.
A smaller [d;, dp] interval yields more sensitivity to edges and displays
more noise, whereas a larger interval maps more of the weak edges to
the background. In addition, a same scene behaved to different results
in natural light and in artificial light; shade of objects induce wrong
contours, notably for objects in movement. From a theoretical point of
view, this is a correct decision since the motion detection operator is
expected to detect changes that are not due to noise. In a surveillance
system, the detection of shadows is annoying, since it modifies the
coherence of the shape of the object.

33

M.Mostefai, S.Djebrani, Y.Chahir

(d) d=—4,d, =4

R i, TR

(h) dy = —4,d, =4

Figure 6. Simulation results

34

Real Time Embedded Moving Objects Detector . ..

4.3 Moving segments detection

To reduce the shadow and noise effects without eliminating true edges
points we propose to associate to the motion detection operator an intra
image filter based on the search of moving segments instead of moving
pixels. We define a edge segment as a whole of 3 adjacent edge pixels
(figure 8.a). The procedure to extract a moving segment is as follows:
A candidate segment is considered as a edge segment if it only exist
in the current image and not in preceding and following images. An
example of case where a candidate segment is validated as a moving
segment is presented in figure 8.b. As the processing is on 3x3 size
masks, two line delays and six data registers are therefore necessary for
each image gradient, allowing thus a simultaneous access to the nine
data of each processed mask. It is important to note that this operator
cannot be used in case of perfectly rectilinear displacements, which
fortunately, are extremely rare in reality. Figure 9 shows the obtained
results with the two methods on the traffic road sequence.

Frame I,,_ Frame I, Frame I,

LS
1T

(a) dl:—Q, dh:2 (b) dl:—4, dh:4

Figure 7. Moving edges detection

35

M.Mostefai, S.Djebrani, Y.Chahir

B"JE B2

(a) Selected segments

A candidate
edge point

(b) Coincidence operation

Figure 8. Moving segments detection

5 Hardware Implementation

A system designer is constantly faced with a tradeoff between perfor-
mance and generality: a digital system designed to handle different
types of tasks is usually slower than a system tailored to a specific
application. This is the reason why computationally intensive tasks
are handled by dedicated system architectures usually implemented in
Application Specific Integrated Circuits (ASIC’s). Although they of-
fer more than adequate performance, ASIC’s often lack the ability to
adapt themselves to a changing environment. Moreover, ASIC design
has high non-recurring costs and requires large engineering effort. A
new methodology for the implementation of digital logic circuits, based
on Field Programmable Gate Arrays (FPGA), emerged during the mid
80’s.

The basic architecture of a FPGA cousists of a large number of
Configurable Logic Blocks (CLB) and a programmable mesh of inter-

36

Real Time Embedded Moving Objects Detector . ..

g | o

(a) Moving pixels | (b) Moving segments

Figure 9. Moving pixels and segments detection

connections. Both the function performed by the logic blocks and the
interconnection pattern can be specified by the circuit designer. FPGA
allow large-scale parallel processing and pipelining of data flow. Latest
FPGA provide enormous processing resources, significant on-chip RAM
and support very high clock speeds [16, 17, 18]. FPGA are therefore
suitable for implementing real time image processing algorithms.

5.1 Implementation details

The complexity of the system dictated the use of modern logic synthesis
tools throughout all design phases. Synopsys FPGA Compiler [19] has
been used for most part of the logic design starting from descriptions
specified in the VHDL hardware description language. Design of FPGA
based computing machines is carried out through the following steps :
1. Definition of data processing resources;

2. Definition of memory resources;

3. Design of the control logic.

The result of the first step depends on a tradeoff between the com-
plexity of the algorithm and the available logic and communication
resources, e.g. the number of FPGA devices, their capacity, and the
number of interconnection lines between programmable devices. The
processing resources required by this application (adders, subtractors,
comparators) are automatically inferred by the synthesis tool from
VHDL code and mapped to elements of the Xilinx XBLOX library.

The basic memory resource required by any FPGA based image

37

M.Mostefai, S.Djebrani, Y.Chahir

processing system operating on pixel neighborhoods is the pixel line
delay, that is usually implemented either with external RAM memory
devices or with FPGA internal memory. The Xilinx Virtex FPGA
architecture, in fact, allows to configure every CLB as a 32 x 1 bit shift
register, and several registers can be cascaded in order to build FIFO
memories of various widths and depths. The integration of the FIFO
on the same piece of silicon does not only mean increased performance
but also a decrease in the number of external components [20, 21, 22].

This application has been validated on a real time image develop-
ment system (figure 10) based on series 150/151 boards, compatible
with the VME bus [23]. FPGAs which are cabled on our specific ap-
plications card (SAC) use various initialization and framing signals in
order to operate in the field of validity of the video signal. The gen-
eral structure of the moving segments detector is presented in figure
11. In order to perform a real time processing on 3x3 size masks, two
delay lines and six data registers are used, allowing thus a simultaneous
access to the nine video data of the processed mask. Three memory
plans (F1, F» and F3) of the frame buffer card (FB) are used in cascade
to store the binary edges images G,,_1, G\, and G, required by the
motion detection operator.

!CCD Camera

Monitor

0

Figure 10. Development system

In order to fit the 2x8 bit wide delay lines in a single Virtex XCV400
device, we had to downsample the CCIR 512 X 512 image by a factor

38

Real Time Embedded Moving Objects Detector . ..

of 2 along the x axis. Due to interlacing, the video decoder sends each
field one at a time, so the system is actually processing 256 x 256 pixel

images.

The fuzzy edges detector module allows to extract binary edges.
The obtained three consecutive binary edges pictures (Gp—1, Gy, Gp+1)
are used to perform the moving segment detection operation. In order
to perform a real time processing on 3x3 size masks, two delay lines
and six data registers are necessary for each output memory plan, al-
lowing thus a simultaneous access to the nine binary edges data of the
processed masks necessary for a moving segment detection.

Frame
buffer

|
o
!

Video input

3x3 size masks

—

8

Delay line
Delay line

Virtex XCV400 9

s
r + P

Moving segments
detector

edges
detector

Binary moving

segments %

Figure 11. Moving segments detector

The fuzzy motion edges detector has been implemented within
FPGA Virtex XCV400. The cost in surface evaluated by the num-
ber of CLBs used depends directly on the input pixels format (Figure

12).

39

M.Mostefai, S.Djebrani, Y.Chahir

Pixels Format | Gray Levels | Surface Cost (Clbs)
6 bits 64 1012
7 bits 128 1346
8 bits 256 1727

Figure 12. Implementation costs

5.2 Real Time tests

Some real time results obtained with our system are presented in figure
13. First tests are carried out on a pendulum (metal part suspended
by a genuine silver wire) (figure 13.a). The use of the pendulum allows
to have a periodic movement in the field of view of the camera (fig-
ure 13.b), and makes adjustment easiest than with walking persons.
Second tests are carried out on a car propelled by a spring (figure
13.¢). It is important to note that the magnitude of the additive noise
is largely linked to the type of chosen lighting. As mentioned before,
shade of objects (figure 13.d) induce wrong contours notably for ob-
jects in movement. A uniform lighting of the scene and a smoothing
operation of acquired images are therefore necessary to obtain noiseless
contours and more representative of objects in movement.

Other tests are made with daylight scene involving humans walking
naturally in a straight line (figure 13.e). Some best snapshot results
obtained with different people are presented in figure 13.f. The mov-
ing segment detection method gives good results, because even if the
human is walking in a straight line, the body movement is not.

6 Migration Towards a fully

embedded system
In order to have an autonomous system (principal embedded systems
characteristic), it is necessary to re-examine the application compo-

nents in terms of memory and I/O resources which remains integral
part of the real time development system. Indeed, acquisition and dis-

40

Real Time Embedded Moving Objects Detector . ..

(a) Real time snapshot frames (pendulum scene)

(b) Real time snapshot moving edges

e

(c) Real time snapshot frames (car scene)

CE e

(d) Real time snapshot moving edges

Figure 13. Real time tracking results
41

M.Mostefai, S.Djebrani, Y.Chahir

(e) Real time snapshot frames (humans walking)

o
@

- [

L

-

(f) Real time snapshot moving edges

Figure 13. Real time tracking results (continuation)

play is assumed by the ADI card, while storage of binary edges images
is made by the Frame Buffer card (FB). However, even the significant
on-chip RAM provided in Xilinx Virtex FPGAs [21] (81920 bits in the
case of XCV400) is not sufficient to support a useful level of internal
RAM frame buffering in the object detection application described.

For the first fully embedded prototype system, we have used for
video acquisition and display the high speed A/D-D/A converter (UVC
3130) from ITT Semiconductor [24]. Four high speed dual ports memo-
ries (256x256x1bit) [25] are used to store binary edges images required
by the moving segments detector. The necessary control logic used to
manage the UVC 3130 and memories is mapped on the Virtex XCV400.

42

Real Time Embedded Moving Objects Detector . ..

7 Conclusion and perspectives

In this paper we have presented the design and implementation of a
real time fuzzy moving objects detector within a Virtex FPGA. This
detector is based on the integrated use of both spatial and temporal
information of the video sequence. Experimental results indicate that
the proposed fuzzy operator and refinement based on moving segments
detection significantly reduce the noise effect without eliminating the
true moving edges. The reconfigurable aspect of FPGA circuits offers a
great flexibility in the adjustment of the architecture and the algorithm
to implement. Technology advances in the area of embedded memory
on FPGAs is particularly attractive to video and image processing ap-
plications. Indeed, the new features offered by Virtex-II Pro in term of
capacity of integration, and diversity of implemented modules (ADC,
DAC, memory banks etc) enables us to implement the whole appli-
cation on the same chip. We are currently working on the migration
towards this new family. Finally, we can say that the development of
robust motion detectors can not be validated ounly by software. Real
time tests with real dynamic scenes must be done. FPGA technol-
ogy allowed us to make a quick prototyping to validate our approach
and can even support the final application in case where the migration
toward ASICs is not envisaged.

References

[1] K. Nakajima, A. Osa, T. Maekawa, H. Mike, Evaluation of body
motion by optical flow analysis, Japanese Journal of Applied
Physics, Part 1, 36 (5A), pp. 2929-2937, 1997.

[2] Beauchemin. S, Barron. J, The computation of optical flow, ACM
Computing Surveys, 27(3), pp. 433-466, 1995.

[3] S. Smith, J. Brady, Real time motion segmentation and shape
tracking, IEEE Trans PAMI, 17(8), pp. 814-820, 1995.

[4] S. Haynes, R. Jain, Detection of moving edges, Computer Graphics
Image Process, Vol 21, pp. 345-367, 1983.

43

M.Mostefai, S.Djebrani, Y.Chahir

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

P. Stelmaszyk, P. Bonnet, J.G. Postaire, Analyse de scenes dy-
namiques par recherche des contours en mouvement, congres Re-
connaissance de Formes et Intelligence Artificielle AFCET / ADI
/ INRIA, Grenoble (France), pp. 1181-1189, 1985.

Ch. Vieren, J.G. Postaire, P. Bonnet, P. Deparis, Detection du
contour exterieur d’objets en mouvement sur fond non uniforme,

Colloque GRETSI Traitement du Signal et ses applications, Juan
les pains, pp. 621-624, juin 1989.

M. Orkisz, Localisation d’objets mobiles dans des scenes filmées
par une caméra fixe, Revue traitement du Signal, Volume 9, N 4,
pp. 325-346, 1992.

F. Russo, A user-friendly research tool for image processing with
fuzzy rules, Proc. First IEEE Int. Conf. Fuzzy Systems, San Diego,
pp. 561-568, 1992.

F. Russo, G. Ramponi, Fuzzy operator for sharpening of noisy
images, IEE Electronic. Letters, 28, pp. 1715-1717, 1992.

C. G. Looney, Nonlinear rule-based convolution for refocusing,
Real-Time Imaging 6, pp. 29-37, 2000.

C. Anagnostopoulos, J. Anagnostopoulos, D. Vergados, E.
Kayafas, V. Loumos, V. Stassinopoulos, A neural network and
fuzzy logic system for face detection on RGB images, Proc. ISCA
Int. Conf. Computers and Their Applications, pp. 233-236, 2001.

L. R. Liang, E. Basallo, C. G. Looney, Image edge detection with
fuzzy classifier, Proc Of the ISCA 14’h International Conference,
Las Vegas, pp. 279-283, 2000.

T. L. Huntsgerger, C. L. Jacobs, R. L. Cannon, Iterative Fuzzy
Image Segmentation, Pattern recognition, Vol 18, N2, pp. 131-138,
1985.

H. M. Lozoya, D. M. Rodriguez, F. J. Romero, H. Tawfik, Handoff
algorithms based on fuzzy classifiers, IEEE Trans. Vehicular Tech,
vol. 49, no. 6, pp. 2286 -2294, 2000.

F. Russo, A New Class of Fuzzy Operators for Image Processing,

Design and Implementation, Proc Of Intl Conf on Fuzzy Systems,
San Francisco, pp. 494-501, 1993.

44

Real Time Embedded Moving Objects Detector . ..

[16] A. Dehon, The Density advantage of configurable computing,
IEEE on computer, pp. 41- 49, 2000.

[17] J. Valls, M. Kuhlmann, K. K. Parhi, Efficient mapping of CORDIC
algorithms on FPGA, Proc of the 2000 IEEE Workshop on Signal
Processing Systems (SiPS) Design and Implementation, Lafayette,
LA, pp. 336-345, 2000.

[18] L. Nozal, G. Aranguren, J. Martin, J. Ezquerra, Moving images
time gradient implementation using RAM based FPGA, SPIE Pro-
ceedings, Vol. 3028, San Jos, California, pp. 108-116, 1997.

[19] Synopsys, FPGA Compiler User Guide v3.5, Mountain View, CA,
1996.

[20] Xilinx Data Book, 2001.

[21] Xilinx XAPP 151 (v1.5),September, 2000.

[22] Sawyer. N, Self addressing fifo, XAPP 291 (v 1.1), 2002.

[23] Imaging Technology Series 150/151 Boards, 1990.

[24] UVC 3130 Converter, ITT Semiconductors Data Book, 1990.

[25] Cypress Data Book, San Jose, 1996.

Messaoud Mostefai, Samira Djebrani, Youssef Chahir Received November 25, 2003

Messaoud Mostefai,

Computer Science Department,
UFR Setif, Algeria

E-mail: bbamosQuwissal.dz

Samira Djebrani

Computer Science Department,
UFR Setif, Algeria

E-mail: samirad76Qyahoo.fr

Youssef Chahir

University of Caen,

BP 5186, 14032, France

E-mail: chahirQinfo.unicaen.fr

45

