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Cryptographic primitives based on cellular
transformations

B.V. Izotov

Abstract

Design of cryptographic primitives based on the concept of
cellular automata (CA) is likely to be a promising trend in cryp-
tography. In this paper, the improved method performing data
transformations by using invertible cyclic CAs (CCA) is consid-
ered. Besides, the cellular operations (CO) as a novel CAs ap-
plication in the block ciphers are introduced. Proposed CCAs
and COs, integrated under the name of cellular transformations
(CT), suit well to be used in cryptographic algorithms oriented
to fast software and cheap hardware implementation.

Key words: cryptographic primitive, cellular automata, cellular
operations, block cipher.

1 Introduction

Design of cryptographic primitives is one of the principal problems in
creating effective block ciphers and hash functions. Here we face a
conventional tradeoff between security, speed and implementation cost
of encryption. In this connection, we consider one of the possible ap-
proaches to designing the block ciphers.

The cryptographic primitives are usually performed by (i) table
transformations (substitutions and permutations) or (ii) operations
represented in a set of computer instructions. In the first case, the
complexity of such transformations with large input block forces one
to split them into the small parts (S-boxes). This splitting is usu-
ally inconvenient for primitive implementation, and sometimes defines
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prerequisites to attack the cipher. In the second case, in spite of soft-
ware simplicity of computer instructions, these operations either (i)
become complex in hardware implementation (for example, addition
and multiplication modulo 2") or (ii) perform the weak elementary
transformations (for example, cyclic rotation or bitwise addition and
multiplication modulo 2).

Meanwhile, there exist wide capabilities to create the high-
performance cryptographic primitives operating with whole input block
and having both the operation and table transformation characteris-
tics. In the paper we introduce one of the possible ways to implement
such primitives that are made up using the elementary bitwise opera-
tions. The features of these primitives are: (i) property to perform the
transformations on whole input block at once, (ii) capability to control
the cryptographic characteristics, (iii) and suitability for fast software
and cheap hardware implementation.

2 The Types of Cryptographic Primitives

To begin with, let us recall that each iterative block cipher [1] usually
consists of a sequence of the relatively simple round transformations
(rounds) and evaluates some encryption function Y=E(K*, X), where
K* €¢GF(2)" is an initial secret key, X €GF(2)" and Y €GF(2)" are
input and output binary blocks.

Each round transformation can be presented as the function
X(i+1)=F(K;, X(i)), where ¢ €{0, ..., r-1} is a number of round,
X (i) eGF(2)", X(0)=X, X(r)=Y, and K;=¥(i, K*) €GF(2)™ is an
extended round key received as a result of the key extension procedure.
In this case, the block cipher performs the iterative transformation
Y=F(K, , F(K, o, ..., F(K, F(Ky, X))...) ). So in fact, the
security of such cipher is determined only by the properties of both
the round function F and the procedure ¥ forming the extended round
keys. In this connection, while considering the block ciphers and their
primitives we shall use equation Y=F (K, X) as a generalized round
transformation with some round key K.

To produce effective encryption and decryption, the transforma-
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tion F must be invertible and should have an inverse transformation
X=F !(K,Y) with low complexity and necessary cryptographic prop-
erties. These requirements are reached by special round structure
and peculiarity of the basic primitives. Each key-independent prim-
itive, transforming input block X to output block Y, can be presented
by a wector Boolean function (BF) Y=G(X)=(fo(X), ..., fan-1(X)).
In case of key-dependent primitive, such presentation has the form
Y=G(K, X)=(fo(K, X), ..., fnm1(K, X)) )), where K is an ele-
ment (subkey) of the round key K. The functions forming the output
block Y we shall call generating BF and introduce notation y;=f;(X)
or yi=fi(K, X), where Vi €{0, 1, ..., n-1} y; €¢GF(2). Later on for
all BF, without loss of generality, we shall use only an algebraic nor-
mal form based on two Boolean operations — “@” (XOR) and “&”
(conjunction).

With respect to these operations the cryptographic primitives can
be divided into linear and nonlinear ones, depending on linearity or
nonlinearity of the transformations performed. In this connection, we
shall call the primitive Y=G(X) to be linear if VX, Xo €GF(2)"
G(X;, @ X9)=G(X1)®G(X2). Each component of such primitive is
determined by an affine BF yv = a & agz¢®...Pa, 1%, 1, where
(a, ag, ..., ap_1) €GF(2)"T!. Linear primitives possess a determinate
propagation (diffusion) property to change the output bits in response
of input bits changing (error propagation). As a result, the value of
any affine BF always changes its value after an odd number of input ar-
guments is changed, and doesn’t change output value otherwise. The
particular cases of the linear transformations are permutations, each
of which keeps equal the Hamming weight of output and input blocks.
Usually the linear transformation is performed by means of table trans-
formation or by binary matrix multiplication.

The nonlinear primitives contain the nonlinear generating BFs and
determine complexity of relation between input and output bits (con-
fusion property). These primitives play a prime part in security of
the block ciphers, concerning the differential and linear cryptoanaly-
sis [1]. Concept of nonlinearity is usually characterized by two primi-
tive’s properties: (i) an algebraic nonlinearity (maximum degree of the
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algebraic normal form (algebraic degree) among all generating BF's),
and (ii) a nonlinearity value concerning to the affine BFs (minimum
Hamming distance from the truth table of each linear combination of
the generating BF's to the truth table of each affine BF). Traditionally
the nonlinear primitives are implemented as table transformations or
nonlinear algebraic operations realizable with computer commands.

The nonlinear transformation is effective if it has both large non-
linearity and high error propagation. Bent functions possess the best
properties of such kind [1, 6], having maximum nonlinearity value
2l=1 _ 9(/2)=1 where [ is a number of the bent function arguments.
So these functions suit well to be used as components of the crypto-
graphic primitives.

To assign the goals of our study let us consider some negative prop-
erties of traditional cryptographic primitives used in the iterative block
ciphers.

In particular, a sequence of small-sized S-boxes (< 8 bits) is not
optimal case concerning to cryptographic properties of the aggregate
transformation on a whole input block.

Other conventional type of the cryptographic primitives is the al-
gebraic operations that also have essential lacks. In particular, the
hardware implementation of such operations requires recursive evalu-
ation of output bits from the least to the most significant bits that
results in essential time delaying or increasing implementation cost.

The pointed negative properties of the traditional linear and non-
linear primitives imply the necessity of looking for new alternative ways
of the block cipher design.

3 Cryptographic primitives designed on the
base of elementary bitwise operations

A promising method of constructing the cryptographic primitives ori-
ented to effective software and hardware implementation is one founded
on the relatively simple transformations using only five elementary bit-
wise operations {®, &, < k, < k,— k}. This basis includes the follow-
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ing elements:

1. Two operations on two vector operands X3, X9 € GF(2)": (i)
an addition (X; & X3) and (ii) a multiplication (X;&Xs = X;X5)
modulo 2.

2. Three operations on one vector operand X € GF(2)": (i) a cyclic
rotation (on the given positions k) to the left (X <F): (ii) a logic shift
to the left (X %), and (iii) a logic shift to the right (X *) (during the
logic shift the released positions are filled by zeroes).

The peculiarities of the bitwise operations are (i) broad availabil-
ity and efficiency of their implementation on any computer platforms,
(ii) low hardware complexity, (iii) and high speed of transformation
performed on all bits of input blocks at once.

The idea to use similar operations as elementary units in cryp-
tographic design has been introduced earlier by S. Wolfram [2] and
successfully used in the block ciphers 3-Way [1], BaseKing, and also
in the cryptochip Subterranean [4]. These algorithms contain elemen-
tary cellular automata (CA) [2] formed on the basis of three bitwise
operations{®, &, < k}.

For further study of our method let us introduce some notation
concerning CAs. In a wide sense, CAs are known as effective tools
generating pseudo-random sequences used in different scientific areas.
The feature of CA Y = G(X) over the field GF(2) during one step of
activity consists in a mapping of each input cell (bit) of n-dimensional
binary input block X € GF(2)" to a corresponding cell of output block
Y € GF(2)", depending on states of input cell and some neighboring
input cells. By our notation, the cells in output block are determined
with the generating BFs Vi € 0,1,...,n —1 y; = fy(X{ & 2)) where
X, 6, 1) — (Tity s Tify 41y - v s Tis e s Titly—1, Titly) and ly, o are left
and right radiuses of CA (0 <l; + Iy < n — 1) that may be dependent
on ¢ (ll = ll(i), ll = lg(’L))

In this design, each generating BF f; includes the different ar-
guments X (1% ©2) also depending on i. However it is more conve-
nient if the structure of this function should be considered irrespective
of 7 with regard to some arguments belonging to an unified vector
Z = (%0,..-,%2p) € GF(2)?, where p < {1 +l. Such BF y = f;i(Z)
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we shall call a prototype of the generating BF y; = fi(X (1% 12)) A
correspondence of the prototype arguments to the arguments of the
generating BF is called a transition mapping o;: Z — X (s, b2),
For example, the prototype corresponding to the generating BF's
Yi = i3 @ Tj 123 D T; D Tip2 @ Ti41Zi42 can be represented by
both the simple BF y = zp @ 2023 ® 21 @ 22 @ 2224 and the transition
mapping o; : (20, 21, 22, 23, 24) = (Ti—3, Ti, Tito, Ti—1, Tit1)-

Since the single prototype can correspond to several generating BF's,
then a number of prototypes in CA can be varied from 1 up to n. Thus,
any CA is determined by a set of the generating BFs {f;(X (1> ©2))})
but at the same time a complexity of CA and its cryptographic proper-
ties are convenient to be considered regarding a set of prototypes and
transition mappings {{fi(Z)}, {oi}}.

Each generating BF is said to perform a local mapping of neighbor-
hood cells to the proper output cell. The aggregated transformation
of input block X to output block Y is known to be a global map-
ping of CA. The properties of the global mapping in many respects
depend on conditions of the local mapping at the boundaries of in-
put block. In this connection, there are two types of CA: (i) a cyclic
CA (CCA), (ii) and CA with initial boundary conditions (ICA). To
the best of our knowledge, nowadays only CCAs have been used in
cryptography. In such CCAs the arguments of the generating BFs
are cyclically rotated on the boundary of input block, i. e. arithmetic
operations on indices are executed modulo n: Vi €{0, 1, ..., n-1}
X lz)z(x(i—ll) mod ns 9 Lis ++ 5 L(i+ly) mod n)

As for ICA, all its neighboring cells, overstepping the boundary of
input block, get the proper values from a fixed binary block X ©) of
initial conditions. It means that only customary arithmetic operations
on indices are executed. Therefore in case 7+ > n, missing arguments
of the ICA generating BFs f; have to be sequentially substituted by
the given components of the block X% (for more details see section
5).

If ;=0 or [9=0, then such CA will be one-sided and we shall call it a
right or a left CA, accordingly. This CA is performed by the generating

BFs yi=fi(zi, ..., zi)=Ffi(XG D) or yi=fi(ziy, ..., 2)=f:(XE D).
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The CA may contain not only one input block X (one-dimensional
CA) but also several input blocks X3, Xo, ..., X €GF(2)" (multi-
dimensional CA). The CA of such kind corresponds to a transfor-
mation Y=G(X;, Xy, ..., Xj) performed by the generating BFs
Vi €40, 1, ..., n-1} y=fi(x (ot B ) x(bntile2) o b tea)y

According to the general definition of the primitive nonlinearity,
the CA is called linear if all its prototypes f;(Z) are affine BFs, and
nonlinear otherwise.

If the prototypes f;(Z) or transition mappings o; are not identical,
then CA is called hybrid or nonuniform. It seems that the greatest
concern in applying to the block cipher is introduced by uniform CA
having both identical prototypes (f;(Z)=f(Z)) and identical transition
mappings (o;=0).

The trivial example of uniform CCA with radius k£ can be presented
by the cyclic rotation of input block on k positions to the left: ¥ =
X<k Such CCA has the elementary generating BFs Yi=T(i+k) mod n
corresponding to the prototype y=zp, and the transition mapping is
set by a substitution zo — Z(i1k) mod n-

It is clear that nonuniform CA likely to be more sophisticated cryp-
tographic primitive than uniform CA. However the last one, being per-
formed in the base of elementary bitwise operations, has the important
capability to be faster due to the transformation of whole input block
at once. At the same time, the principal problem of such primitives
is connected with their bijectivity playing a prime part in the block
ciphers design concerning invertibility and other cryptographic proper-
ties of the round transformation F.

4 Linear primitives on the basis of cellular au-
tomata

For the right (or left) uniform linear CCAs, having the generating BF's
Vi €{0, 1, ..., n-1} yi=aow; ® a17;419. .. ®p 1T (i4n—1) mod n, the
necessary and sufficient conditions for their invertibility have been ob-
tained and a general method of designing invertible CCAs have been
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considered [5]. These conditions are determined by using apparatus
of CA characteristic polynomials and CA state generating functions in
accordance with the technique described below [5].

For the mentioned CCA let us consider a characteristic polyno-
mial over the field GF(2) A(z)=aq @ a12®...®a,_12" !, and let

us set a state gemerating function X (z)=z¢ © z12®...®z, 12"}
for input block X = (z¢, 1, ..., Tn—1). Then for output block
Y = (yo, y1, ---, Yyn—1) we can obtain the following state generat-

ing function Y (2)=yo @ y12®. .. ®y,_12" '= A(2)X(2z) mod (1+2").
The necessary and sufficient condition for such CCA to be invertible
is that LCD(A(z), (142"))=1. Thus, the characteristic polynomial
B(2)=by @ b12®. .. Db, 12" of inverse CCA is evaluated from the ex-
panded Euclidean algorithm by the formula A(z)B(z)+(1+2")C(z)=1
that is equivalent to the equation A(z)B(z)=1 mod (1+2").

The necessary condition for invertibility of uniform linear CCA
over the field GF(2) is that the characteristic polynomial A(z) con-
tains an odd number of terms [5]. Indeed, since for any n the “one” is
a root of the equation (142")=0, then we always obtain its factoriza-
tion in the form (1+2")=(14+2z)D(z), where D(z) is a polynomial of a
degree n-1. Further, if A(z) contains an even number of terms, then
A(1)=0. This implies equation A(z)=(1+z)A’(z). Therefore we have
LCD(A(z), (1+2z™)) = LCD((14+2)A’(2), (14+2)D(z))#1, i. e. the con-
dition of CCA invertibility is failed. Hence the oddness of a number of
terms in A(z) is the necessary condition for the right (or left) uniform
linear CCA to be invertible.

Until recently the uniform linear and nonlinear CCAs were applied
only as the invertible primitives integrated in a classic substitutional-
permutation network (SP-network). The feature of these networks is
that for their invertibility each linear and nonlinear component prim-
itive included in the network should be invertible. As a rule, the SP-
network is usually constructed on the base of the primitives having the
identical dimensions of input blocks. However nowadays design of the
invertible uniform nonlinear CCAs is essentially limited by both the
possible size of input blocks (in particular case n #2*) and the radius
of the generating BFs (1<3). These limitations substantially decrease
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cryptographic properties of CCAs global mapping.

According to such SP-networks structure based on CCAs, not only
elementary nonlinear, but also the simple linear CCAs with non-typical
block-sizes (n #2*) have been used in the known SP-networks. For
example, the cryptochip Subterranean has the block-size n=257 and
based on both the invertible uniform nonlinear CCA with the gener-
ating BFs y;=f (X 2)=2;®z; o®zi1127i42®1 and invertible uniform
linear CCA with the characteristic polynomial A (z)=1®z3®25.

At the same time, to perform the most effective linear transforma-
tion the uniform linear CCA should meet the following conditions:

1. The block-size of CCA input block should be equal to a di-
mension of the block transformed that usually equals to a power of 2
(n =2%).

2. The mutually inverse characteristic polynomials A(z) and B(z)
should have the same amount of terms, which one should equal approx-
imately to n/2.

According to the following statement, in case n =2F each second
characteristic polynomial A(z) is invertible that provides the broad
capabilities to find linear transformations satisfying to the requirements
pointed.

Theorem 1. If dimension of the characteristic polynomial of the
uniform linear CCA over the field GF(2) is n =2F then the oddness of
a number of terms in this polynomial is not only a necessary, but also
a sufficient condition of CCA invertibility.

Proof. The necessary and sufficient condition for the uniform linear
CCA to be invertible is that LCD(A(z), (14+2"))=1, where A(z) is
the CCA characteristic polynomial. As it was mentioned earlier, for
invertibility of such CCA the corresponding characteristic polynomial
A(z) must include an odd number of terms. So factorization of A(z)
on the simple polynomials doesn’t contain the factor (1+z).

While n =2%, the equation (1+2z")=(1+2)" always holds for poly-
nomials over the field GF(2). Indeed, the polynomial (1+2)2" is a prod-
uct of 2% elementary factors (1+z). If these factors would be aggregate
by pairs, a result product would be in the form of 25~ polynomials
(142)%2=(1+22+2?)=(1+2%). On the second step we shall receive prod-
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uct in the form of 2¥=2 polynomials (1422)%=(14+22% +2*)=(1+2") due
to aggregating the factors (1+2z?) by pairs. Having conducted of k such
steps, we obtain the initial polynomial (1+22k). Since a factorization
of the characteristic polynomial with an odd number of terms A,q4(2)
does not contain the factor (14+z), then using previous result we obtain
that the equality LCD(Agga(2), (1+22"))=LCD(Agq(z), (14+2)%")=1
always holds. This completes the proof.

In accordance with definition of the uniform linear CCA, the matrix
of the corresponding linear transformation is circulant. In this matrix
each subsequent string from the initial one, being defined as a gener-
ating string, is cyclically moved on one position to the right (or to the
left). Hence from the theorem 1 it follows:

Corollary 1. Any circulant matriz of the size 28x2F over the field
GF(2) is invertible if and only if its generating string contains an odd
number of ones.

As three examples of the mutually inverse uniform linear CCAs
for n=32, we illustrate the CCAs determined by the following pairs of
characteristic polynomials:

1. A(l)(z)=1@2269,236926®z7®z10®212®216®217®218®
0002010 0:%0 20 231,
B(l)(z)=1@2@24692569,26692769,21269,21369,21869,21969,221@
020 0P 0 0 e 231
2. A(Z)(z):1692269z369z669z769z106921269216692176921869
202020505020,
B(Z)(z):169z69z269z569z769z969z1069z11@zM@zw@zls@
22202 020 05
3. A(3)(z):169z269z369z469z669z869z969
0000000 z28,
BO() = 20000000050

D 220 D 221 D 222 D 225 D 226 D 229 D 230 D 231
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Owing to the structure of the uniform linear CCAs these primi-
tives may easily be performed on the basis of two bitwise operations
{®, <k}. BEach generating string of the circulant matrices (32x32) cor-
responding to the characteristic polynomials A (z), BM (z2), A®)(z),
and B®)(2) contains 17 ones, and each generating string corresponding
to characteristic polynomials A(®)(z) and B®)(2) contains 15 ones. For
example, mutually inverse CCAs for polynomials A (z) and B (z)
have the following representations:

Y=GX)=XaXCoXxCaXox<ogx<ex<g
@X<<16 @ ®X<<17 D X<<18 D X<<20 D X<<22 @ X<<24 @ X<<2569
®X<<26 oy X<<28 @ X<<31

Y=G'X)=XaX XV eXxCoxex<TexP e
®X<<13 D X<<18 D X<<19 D X<<21 @X<<22 D X<<24 e X<<25@
GBX<<27 D X<<30 e X<<31.

Note that the mentioned earlier cyclic rotation Y=G(X)=X<*,
being a trivial example of uniform linear CCA, has the characteris-
tic polynomial A(z)=z*. From the equation z*B(z)=1 mod (142")
it follows that B(z)=2""*. Therefore the inverse CCA looks like
Y=G }(X)=X<""k,

The main feature of the uniform linear CCAs is the suitabil-
ity for fast software and cheap hardware implementation. In hard-
ware based on schematic cells, each of which has m inputs, such
CCAs are performed with a small critical path defined by formula
tq = (|log,, L] + 1)tg, where | | means the integer part of num-
ber, L is the number of items (X <) in the linear transformation, and
tg is the critical path of elementary bitwise operation “@”. Such CA
has identical critical path of the direct and inverse transformation. In
the mentioned first and second examples, we have tG=>5%g, and in the
third case tg=4tg. For m=4 the critical path of these CCAs decrease
up to 3tg and 2tg, accordingly.
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5 Cellular operations as cryptographic primi-
tives

As we noted earlier, the invertibility of the nonlinear CAs is an enough
sophisticated problem concerning the CAs usage in the block ciphers.
The main difficulties consist (i) in obtaining such transformation to
be one-to-one (bijective) or (ii) in estimating reduction of this prim-
itive output domain. This problem has been studied for elementary
nonlinear CAs by using the apparatus of generating functions [2, 4].
As a result, the conditions of bijectivity for some elementary uniform
CAs, having the limitations on both radius (/) and input block-size
(n), were obtained. But still there exists an opened problem of such
transformations to be bijective for practically significant case n=2%. To
overcome this difficulty we offer to use cellular operations (CO) as new
cryptographic primitives developed on the base of ICA.

The title of these primitives has been formed by analogy with
customary algebraic operations having one or two binary operands.
Such operations can be presented by the formula Y=S(X;, X3), where
X1, X9, Y €GF(2)". Each subsequent value of output bit in nonlinear
algebraic operations of such type depends upon corresponding input bit
and on all previous bits of input block in accordance with the formula

Vi €{0, 1, ..., n-1} yizfi(a:l(]l), e a:z(-l), xéQ), e a:z(?)). Besides, in
detail such function is represented in a recursive form providing difficul-
ties in hardware implementation. In particular, for addition module 2",
which one may be considered as CO starting point [7], each i-th output
bit is recursively determined by the generating BF yizxil)eaa:z(-m@ui,l,
where u; 1 (u_1=0) is a carry bit formed in accordance with recurrence
Uj_1= 332(1,)1 (xz(%)l@ui_g)@xg)lui_g By solving this equation, we obtain
the following probability: P(u; = 1) = (1/2)(1 — (1/2*=1)). Therefore
the carry bit’s probabilistic dependency on previous input bits decrease
expounentially. Thus, from the probabilistic viewpoint each i-th gener-
ating BF essentially depends not on a set of all arguments {z;_; }, where
0 <j <1, but only on the restricted amount of the neighboring about

the left arguments. This property doesn’t yield optimal cryptographic
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effect of the resulting transformation in spite of large time delay while
such operation is being performed in low-cost hardware.

In this connection, the main advantage of CO is the property to
get rid of recursiveness in calculations. So we design the COs in such
manner that the generating BFs and a number of their arguments may
be selected practically arbitrarily. This COs peculiarity allows to verify
cryptographic properties of the transformation as a whole. We form
such one-dimensional CO by the following rules:

1. The CO corresponds to the right (or left) ICA. In par-
ticular, for the right CO each i-th cell of output block Y is de-
termined by the generating BFs Vi €{0, ..., n-1} y=/f;(X® V)=
@i (Tig1, - . .5 Tig) =2;@@;( XL 121 where each ; (a basic BF)
is a variable part of the generating BF.

2. While 4 + 1 > n, according to the definition of
ICA the elements of any given but fixed initial condition
xXO=(,...,0, mgo), a:éo), e a:l(o)) €GF(2)™ are consecutively used as
a missing part of ¢; arguments.

So in fact, input block X is additionally extended on [
fixed bits and is formed by aggregating X and X©: X U
XO) = (zg, ..., Tp_1, mgo), ceey x;o)) €GF(2)"+.

By this notation, CO performs the transformation Y=G(X U
X)) €GF(2)" having the following generating BFs Vi €{0, 1, ..., n-1}
pi= (X U XO)E DY = g @ (X U XO)1, 1=1))

Due to CO design it is clear that each output bit of the proposed
primitives depend on some neighboring input bits only. Besides, these
primitives possess the extra property of generating BF's to become more
complicate while moving from the edge (i=n — 1) to the middle of the
transformed block (i=n —[) within the bounds of radius (/). This CO’s
attribute as against nonlinear uniform CCA brings about a low nonlin-
earity of some initial generating BFs. Remarkably that such property
coincides with similar property of nonlinear algebraic operations. In
our case, we meet a tradeoff between average level of primitive non-
linearity and its output domain reduction. Indeed, as against CCA
our CO slightly loses in average nonlinearity, but obtains important
cryptographic property in accordance with the following statement.
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Theorem 2. Every one-dimensional linear and nonlinear CO'Y =
G(XUX©) e GF(2)" for any n and for arbitrary basic BFs v; always
performs a bijective transformation X — Y (X,Y € GF(2)").

The proof is trivial and follows from the uniqueness of the solution
of a set of equations from z,, 1 up to 2y by Gaussian reduction:

Tn1 = Yno1 ® Pn_1 ((X U X, z—1)> _

=Yn—1 D ‘;077,—1(3350)’ xg])a CRR 9550))

Tp—92 = Yn—2 D Pn—2 ((X U X(U))(TL—I, l—l)) —

3

=Yn—2D 9071*2(‘/1"”*17 $§0)7 LR «7552)1)7
T1=Y1Dp1 ((X UX(O))(Q’ l_l)) =41 ® p1(z2, 23, ..., @),
o = Yo D o ((X UX(O))(l’ lil)) =% @ po(z1, T2, ..., Tj_1)-

To transform several input blocks at once or to combine the el-
ements of the round key K with input blocks, we propose to make
use a multi-dimensional CO with the global mapping Y=G(X; U

Xfo), Xs, ..., Xj) formed by the local mappings with the gen-
erating BFs yi=f;((X; U X\V)6 1) X, .. Xp)=z; @ (X1 U
XY@+t b= x, . X,), where Y €GF(2)™ and Vj €{1, ..., k}
Xj=(, ..., s ) eGF(2).

It is remarkable that notation of a multi-dimensional CO may be
considered as some extension of a multi-dimensional ICA concept. In-
deed, as against ICA each input block Vj € 2,...,k X; of proposed
CO is presented by a binary vector of any given dimension n;, so that
not only neighboring but any components of this vector can be used as
arguments of the basic BFs ;.

For multi-dimensional CO we shall prove the following cryptograph-
ically important statement:

Theorem 3. Every multi-dimensional CO Y=G((X; U

X X, ..., Xp) (% €{l, ..., k} X; €GF@)",
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Y €GF(2)™) formed by the generating BFs Yi €{1, ..., ni-
1} Yi=; D QDZ((XI U X§0))(i+1’ 1171), X2, ey Xk) and by
fized initial conditions X§0), always performs regular mapping:
(X1, Xo, ..., Xg) = Y(GF(2)mtn2t-tne — GF(2)™). It means that,
while aggregated input block (X1, Xo, ..., Xy) passing all 2" +m2F-+nk
values in domain GF(2)™F72t40%  gytput block Y gets all 2™
different values strictly 2™t times in domain GF(2)™

Proof. The necessary and sufficient condition for any surjective
mapping GF(2)" — GF(2)™ (n > m) to be regular is a balanceness of
each BF having been obtained by an arbitrary linear combination of
the generating BFs [3]. A concept of the balanced function means that
truth table of each such linear combination should contain identical
number of zeroes and ones. In this case, BF gets the values 0 or 1 with
the probability 1/2.

Further, for an arbitrary vector a=(ay, a1, ..., ay,_1) EGF(2)" let
us consider linear combination of CO generating BFs:

Qu(X1,..., X ZO‘Zfz <(X1UX )(Lll)) _
n-l1 i n—1
= Zompi <(X1 U X@)(Hl’ll_l) , X2, ... ,Xk> @ Zaixl(l)
=0 i=1

Suppose k is the minimum value, at which one ai=1; then
Qa:xg) @ Qfl(xg_zl, el W X§0), Xo, ..., Xj). This formula

ni—1°
corresponds to a superposition of random both the xgcl) and the data
Q!,. For this reason, a proper result can be obtained by standard eval-
uation. Since we have the probability P(a:,(cl)zo):P(xg)zl)zlﬂ and

Q!, doesn’t depend on xg), then we have the following probability:

P(Qq =0) = P(Q, = 0/z\" = 0)P(z{" = 0)+
+ P(Q), = /2" = )Pz = 1) = (1/2)(P(Q}, = 02" = 0)+
+P(Q, = 1/2\) = 1)) = (1/2)(P(Q} = 0) + P(Q,, = 1)) = 1/2.
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Thus, each linear combination Q, is a balanced BF. This completes
the proof.

Corollary 2. Suppose we have any multi-dimensional CO
Y=G((X1 U X{"), Xo, ..., (X; U X\"), ..., Xi), where
X; €GF(2)", nj=nq, and Vi €{1, ..., n;-1} yiza:z(-l)@xz(-j)@(pi((Xl U
Xfo))(”l’ h=D)] X5, ..., (XU X](-O))(”l’ 4=1. ..., X}); then as a re-

sult of theorems 2 and 3 the global mapping G is bijective separately
on X; and on X;. From here it follows the way to design the multi-
dimensional CO that one is simultaneously bijective on any input block
X, where n;j=n;.

It seems that uniform COs using only one prototype of the basic
BF's ¢;(Z)=¢(Z) and only identical transition mappings o;=0c are more
suitable for cryptographic applications. These operations possess the
principle property of uniform CCA to transform simultaneously all bits
of input data considered in a vector form. As we shall illustrate in the
further CO example, the feature of such operations is that the cyclic
rotation is substituted by adding (@) the logically shifted (+ k) input
block X to the logically shifted (— k) block of initial conditions X (9.
Thus, uniform CO presented as a vector algebraic normal form of the
generating BF's can be performed on the basis of four vector operations
{®, &, < k, — k}. In hardware such primitives are carried out with
critical path t¢ =~ (|log,, M| + 1)ts, where M is a number of input
variables contained in the given prototype ¢(Z), and m is a number of
inputs in elementary schematic cell [8].

Obviously, the CO is made in such manner that its nonlinearity and
error propagation property can be changed by varying prototype ¢(Z)
and/or transition mapping o.

For example, we shall consider the practical construction
of CO Y=G(X U X©) €GF@©2)" having the following gen-
erating BFs:  y=f((X U X0 MN= gop((X U XO)0+L 6=
TiBL;11L54-3DLi42%i4+5DBLi+6Tit7PLi41T5+2Ti+6 With initial condi-
tion XO=(, ..., 0, 2, ..., 2¥) €GF@".  Here the
unique prototype @(Z) is determined by the bent function
Y=2023P2124PB2225D2021 22, and the transition mapping o is set by the
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substitution (Zo, Z1y B2y R34y R4, 25) — ($i+17 Tij4+25 Li+6y Lj435 Li+5; $i+7)-
This bijective nonlinear primitive has the following representation
on the basis of four vector operations{®, &, < k, — k}:

Y=GWX)=Xo X exO02)(x3 e x0e
D (X(—Q @X(U)—)E))(X(—E) D X(O)—)Q) D (X(—G D X(U)—)l)(X<—7 D X(U))@
@ (X(—l @ X(O)—)G)(X(—Q @ X(U)—)E))(X(—G @ X(O)—)l)
Using initial condition X(® = (0, ..., 0, 1, 1, 1, 1, 1, 1, 1) and
modified input block X=X @ E, where E=(1, 1, ..., 1), it is possible

to counstruct more simple bijective CO on the basis of only three vector
operations {®, &, «+ k}:

Y=GX@E) =X0E X "'0E)(XTaoE e X 0E)
(XToE) (X SR (X ToE) (X TIoE) (X ToE) (X SeR).

In case X = (0,...,0), CO has even more simple implementation
on the basis of the same vector operations {®, &, + k}:

Y=GX)=Xp X' XTPa XX TPCpXTXxTg
D X(—1X<—2X<—6.

6 Iterative block ciphers based on the cellular
transformations

The different CAs, including their new class — cellular operations, may
be generalized as cellular transformations (CT). These cryptographic
primitives can be effectively used as components of the iterative block
ciphers and hash functions. While the invertible uniform linear CCAs
can be applied as universal elements of any cryptoschemes, the uniform
linear and nonlinear COs possess some features imposing limitations on
their usage in the block ciphers. It is connected with high complexity
of CO’s inverse transformation, which one usually corresponds to a
nonuniform CO. The given circumstance allows using CO only in the
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special block cipher cryptoschemes that don’t require invertibility of
this primitive for decryption. As an example of such cryptoschemes,
let us consider the well-known Feistel scheme to be widely applied in
the block cipher design.

We recall that round transformation F formed with traditional
Feistel scheme [6] has the left and the right transformation branches.
For all rounds except the last one this transformation is determined
by the following equations: Y, = f(K,X;) & X and Y = X,
where (i) f(K,Xy) is a round function, (i) Xz, Xp €GF(2)"/? are
left and right halves (subblocks) of input block X €GF(2)", (iii)
and Yz, Yr €GF(2)"? are left and right subblocks of output block
Y €GF(2)". On the last round the transformation F corresponds to
the equations Yrp=f(K, X1) & Xg and Y.=X;, i. e. as against the
main rounds the swapping of subblocks Y7, and Yy is not fulfilled here.
The principle feature of this scheme is that for invertibility of the round
transformation F' the round function f is not required to be invertible.
Meanwhile, to provide more secure encryption it is desirable for this
function to be bijective [1]. During decryption inverse round transfor-
mation F~! is performed under the same scheme as the direct trans-
formation F. For all decryption procedure it means that (i) subblocks
Yy, Yg are considered as input subblocks, (ii) and the round keys are
used in the reverse order.

As examples of the round functions belonging to the round transfor-
mations Y=F (K, X) of the multi-purpose block cipher Y=E(K*, X)
based on CTs, we introduce the following functions f(K, X ) (see
Fig. 1) having convenient software and cheap hardware representation:

1. f=G3{Ga[(G1 (K X.) U X))« ux ("]},
2. £=Gy[(G1(Gs{KaX, Jux V) <n y x[0),
3. £=Gy[G3{G (KoX,)<M uxPnuxlY),
4. F=G3{(Gi((KaX,)<M ux{M)},

5. £=G1((Gs{KaX})<M UXY), where

- G is the right, and Go is the left uniform nonlinear CO; Vi=1, 2

each G; has both the unique prototype of the basic BFs ¢()(Z) and
the unique transition mapping o® (see section 5);

286



Cryptographic primitives based on ...

- X §0)’ Xéo) are the blocks of initial conditions, which ones may be
the functions of both the round key K and the round number j(see
section 5);

- G is the uniform linear CCA formed by the proper characteristic
polynomial A;(z) (see section 4);

- AM1=A1(J, K) is an elementary integer function dependent on both
the round number 0<j <r —1 (0<A;<(n/2) — 1) and elements K of
the round key K;

el t i—m
X K JL 'j(_l 0 l_ ...... I;/_<.;1_1 ______ oo  |xg

Figure 1. Example of traditional Feistel scheme using the cellular trans-
formations only

To improve the cryptographic properties and to optimize the hard-
ware implementation of the traditional block cipher, we shall con-
sider a modified Feistel scheme. For this reason, we make the round
transformation to be more complicated, but coordinated by critical
path of the round primitives. In particular, such transformation F
on all rounds except the last one can be defined by two equations:
YL:fg(Kg, (fl(Kl, XL) (&} fQ(KQ, Xg, XL)), XL) and Yr=X, where
(i) K1, K9, K3 are the round subkeys being the different components of
the round key K, (ii) f is a transformation corresponding to the round
function f of the traditional Feistel scheme, (iii) fy, f3 are transforma-
tions convertible on Xp and Xj=f1@®f, respectively. In this scheme
both the function f9 and f3 can be considered as the transformations
of subblocks X and X}, dependent on input subblock X, or as the
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transformations controlled by subblock X7,.

Inverse round transformation F~! of the modified Feistel scheme
has the following form: Xp=f,'(Ky, (f1(K1, Yr)®f; (K3, Y1, YR))
and X; = Ypg. Similarly to the traditional Feistel scheme, the trans-
position of the left and the right subblocks on the last round of both
the direct and the inverse transformations is not applied here.

For the block ciphers constructed with the given modified Feistel
scheme the following example of the primitives consisting in the j-th
round transformations can be offered (see Fig. 2):

f1=f(K; & X ), where f is a function corresponding to the round
function of the traditional Feistel scheme;

fo=GL{ (K2 ® Xp) <}

f3:G’3{K3, f(K1 D XL) D fQ(KQ ® Xg, XL)}<</\3, where

- Gf, and G, are invertible uniform linear CCAs determined by the
characteristic polynomials Ay(z) and Aj(z) (for inverse functions f,*
and f3 ! the uniform linear CCAs G'{l and G'{l are determined by
the corresponding characteristic polynomials Bo(z) B3(z));

- M=MXao(j, X1, K3) and A\3=X3(j, X, K9) are elementary integer
functions, where Vm=2, 3 0 < \,, < (n/2)—1 (for inverse f;* and 3!
we have )\Igz(n/2)—)\3(j, YL, KQ) and )\'3=(n/2)—)\2(j, YL, Kg))

X, éXR
Kz > ) _<<4,

K, fL £, (CCA)
T U > fi =<>

f; (CCA)

D

K; —»EB\“<</13

Y, l><¢YR

Figure 2. Example of modified Feistel scheme using the cellular trans-
formations only
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As a result, the cryptographic properties and flexi-
bility of the proposed block ciphers depend on a set of
the following parameters: {eM(2), ¢?(2z), oW, & O,
Ai(z), As(2), As(2), A1, A9, A, X§0), Xéo), r}.  The structure
of these parameters and the methods for their optimization (in
accordance with a cryptographic security) are out of the scope of our
paper and should be the matter of further theoretical and experimental
study.

Besides of the parameters pointed, a quality of the block cipher
directly depends on the key extension procedure K ;=V(j, K*) forming
round keys on the base of the secret key K* (0<j <r —1). Such
procedures are intended to provide the appropriate statistic properties
of round keys irrespectively of the secret key. It yields the necessary
foundation (i) to ensure the ability for security estimations of the block
cipher, (ii) and to complicate searching the cipher’s weak keys.

The practice shows that the key extension procedure is rationally to
be formed as iterative one using elements of the round transformation.
In this case, input data of the current iteration may be obtained by
usage of the special constants, the elements of the secret key, and the
previously defined round keys. Such approach provides high profitabil-
ity for software and hardware implementations of the block ciphers.

As two examples of such procedure for the mentioned cipher
(see Fig. 2), it is possible to offer a way of the round keys

sz(Kfj), Kéj), K?Ej)) to be obtained on the base of the secret key
K*=(Q, Q2, Q3) €GF(2)>/2. These keys can be formed by the fol-
lowing recurrences containing elements of round functions f introduced
before:

1L KUY = Ga{Ga[((Gy(KY

U X!
Ky = Gu{Gal(Gu(ky u X)) @ k) U Xy,
K§T = Gy{Ga[(Gr(KY U x|
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2. KUY = Gy{(Ga(KY U X!
K = Guf(Ga(ky U Xy @ k),
K§T = Gy{(Ga(K( U X

where K|”=(G2((Q1 @ Ri) U X{V)<0/2-1 KV—(Ga((Q2 @
Ry) U X(V) <21 K0 —(Ga((Qs & Rs) U X|))<(/21 and
R, Ry, R3 EGF(2)”/ 2 are the binary constants having the uniform
probability distribution of zeros and ones. For example, such constants
can be selected as a sequence of n bits contained in a binary represen-
tation of the well-known irrational numbers 7, e, etc.

7 Conclusion

The method of the block ciphers and other cryptographic algorithms
design introduced on the base of CTs only may be considered as one
of the promising directions in constructing the effective cryptographic
systems. The necessary properties of such systems can be reached by
combining the different CCAs and COs as new cryptographic primi-
tives.

In some cases, the CTs can be applied instead of table linear trans-
formations, S-blocks, and algebraic operations conventionally used in
cryptography. The limitations on the COs usage are connected with
the difficulty to perform inverse CO, which one have usually to be the
nonuniform CO. At the same time, this feature of COs can play a
positive part in designing secure hash functions.

The proposed principle schemes of the block ciphers based on CTs
only and defined by a set of parameters may be considered as a baseline
for further study and elaboration of the fast cryptographic algorithms
having necessary cryptographic properties and suitable for universal
implementation.
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