Computer Science Journal of Moldova, vol.11, no.2(32), 2003

Lower Bounds and Semi On-line Multiprocessor

Scheduling

T.C. Edwin Cheng, Hans Kellerer, Vladimir Kotov

Abstract

We are given a set of identical machines and a sequence of
jobs from which we know the sum of the job weights in advance.
The jobs have to be assigned on-line to one of the machines and
the objective is to minimize the makespan. An algorithm with
performance ratio 1.6 and a lower bound of 1.5 is presented. This
improves recent results by Azar and Regev who published an al-
gorithm with performance ratio 1.625 for the less general problem
that the optimal makespan is known in advance.

1 Introduction

The on-line version of the classical multiprocessor scheduling problem
is one of the well-investigated problems of the last years. A set of in-
dependent jobs has to be processed on m parallel, identical machines
in order to minimize the makespan. The jobs arrive on-line, i.e. each
job must be immediately and irrevocably assigned to one of the ma-
chines without any knowledge on future jobs. This problem was first
investigated by Graham who showed that the greedy algorithm has a
performance ratio of exactly 2 — 1/m [4, 5]. A long list of improved
algorithms has since been published. The best heuristic is due to Al-
bers [1]. She designed an algorithm with performance ratio 1.923 and

(©2003 by T.C. Edwin Cheng, H.Kellerer, V.Kotov

209

T.C. Edwin Cheng, H.Kellerer, V.Kotov

lower bound 1.852. For a survey on recent results in bin packing prob-
lems we refer to [3].

We investigate a semi on-line version of this on-line multiprocessor
scheduling problem where we assume that the total sum of processing
times is given in advance. In a former paper [6] an algorithm with
performance ratio 4/3 for the problem with known processing times
and two machines was given. Moreover, this bound was best possible.
A less general semi on-line version has been introduced by Azar and
Regev in [2] named as the on-line bin stretching problem. A sequence
of items is given which can be packed into m bins of unit size. The
items have to be assigned on-line to the bins minimizing the stretching
factor of the bins, i.e. to stretch the sizes of the bins as least as possible
such that the items fit into the bins. Thus, the bin stretching problem
can be interpreted as a semi on-line scheduling problem where instead
of the total processing time even the value of the optimal makespan is
known in advance. The motivation for investigating this problem comes
from a file allocation problem as illustrated in [2]. In analogy to Azar
and Regev we call our problem the generalized on-line bin stretching
problem (GOBSP).

For the bin stretching problem a sophisticated and lengthy proof for
an algorithm with stretching factor 1.625 was given in [2]. Moreover,
the authors extended the lower bound of 4/3 on the stretching factor
of any algorithm for two machines to any number of machines m.

In this paper we will present an elementary algorithm with performance
ratio 1.6 for the more general problem (GOBSP). Moreover, we will
show an improved lower bound of 1.5 to m > 6 machines.

210

Strongly polynomial algorithms

2 Exact Problem Definition and Notation

In the (GOSBP) we are given a set M of m identical machines (bins)
of unit size and a sequence I of jobs (items) which have to be assigned
on-line to one of the machines. (For the rest of the paper we will use
only the expressions bins and items.) Each item j has an associated
weight w; > 0 which is often identified with the corresponding item.
The weight of a bin B is defined as the total sum of the weights of
all items assigned to B and denoted by w(B). More exactly, w;(B)
denotes the weight of bin B just before item j is assigned, but most of
the time we will just write w(B) if it is clear from the context. When
we will speak of time j, we mean the state of the system just before
item j is assigned. The total sum of the item weights w([) shall be
given in advance. W.l.o.g. w(I) =m.

The objective of an algorithm for (GOBSP) is to minimize the stretch-
ing factor of the bins, i.e. the maximal weight of the bins after assigning
the items. For a given sequence of items I let a denote the stretching
factor of an on-line algorithm for (GOBSP), and a* denote the stretch-
ing factor of an optimal off-line algorithm, respectively. Of course,
a® > 1. An algorithm is defined to have a stretching ratio p if for any
sequence of items I with total weight m the ratio ov/a* is less than or
equal to p.

If the bins By, ..., B,, are enumerated in the order when the first time
an item is assigned to a bin, we call bin B; the i-th opened bin. Espe-
cially, the set containing the bins By, ..., B(%] is denoted by B(1,m/2),
and the set with the bins B[%Hl, ..., By, is denoted by B(m/2,m),
respectively.

The items are divided into several classes. Items with weight in]0; 0.6]
are called small, items in]0.6; 0.8] are called medium and items greater
than 0.8 are called large. A more detailed partition is given for the small
and the large items. Altogether, we have the classes |0; 0.3],]0.3; 0.6],

211

T.C. Edwin Cheng, H.Kellerer, V.Kotov

10.6; 0.8],]0.8; 0.9] and]0.9; co[. The corresponding items are called
tiny, little, medium, big, and very big, respectively.

Also some bin classes are introduced. A bin B with no items in it is
called empty. For w(B) €]0; 0.3] it is called tiny, for w(B) €]0.3; 0.6]
it is called little and for w(B) €]0; 0.6] it is called small. If B consists
only of a medium item, B is called medium. If w(B) > 0.8, it is called
large. If B consists only of a big item, it is called big. A bin consisting
only of a very big item is called very big If a bin contains a large item
and small items but has weight not exceeding 1.1, it is called nearly
full. Finally, bins which contain a large item and have weight greater
than 1.1, are called full.

The number of tiny items is denoted by tI, the number of tiny bins is
denoted by tB. The abbreviations for cardinalities of the other classes
of bins are depicted in Table 1.

Types || empty | tiny | little | small | medium
Bins 0B tB | liB sB mB

Types || large nf big | very big full
Bins || faB | nfB | bB vbB fB

Table 1 Abbreviations for bin classes

3 Phase 1 of the Algorithm

Our algorithm with stretching ratio 1.6 is split into two parts. The
first part (called Phase 1) runs (in three of four cases) until there are
no more empty bins. At the end of Phase 1 it is decided, depending on
the structure of the bins, how the algorithm continues with Phase 2.
We will distinguish four different structures, leading to Stages 1, 2, 3
and 4.

212

Strongly polynomial algorithms

During the algorithm we call LB the current lower bound for the
stretching factor of an optimal off-line assignment, starting with LB =
1. In Phase 1 medium items are put alone into bins, big items are
put alone into bins as long as more than m/2 bins are empty. When
the number of empty bins does not exceed m/2, a big item (like all
other large items) is put into the largest small bin in which it fits, i.e.
in which the total weight will not exceed 1.6LB, or otherwise into an
empty bin. Finally, small items are assigned to small bins if the total
weight will not exceed 0.6 or to empty bins. Depending on the four
conditions in the end, it will be decided with which stage we continue.
A formal description of Phase 1 of the algorithm is depicted in Figure 1.

Some simple properties of the bins after Phase 1 are described in the
following lemma:

Lemma 1 During any time of Phase 1 of the algorithm the following
properties hold for any bin B:

(a) If w(B) €]0.6; 0.8], then B is a medium bin. Moreover, all
medium items are alone in bins.

(b) If w(B) > 0.8, then B contains a large item.
(c) tB+nfB <1.
(d) sB =0 orvbB =0.
Proof: The proofs are straightforward. Assertions (a) and (b) are

true by definition of the algorithm. Assertions (c) and (d) follow by
induction. We show (c), assertion (d) is straightforward:

Assume first that there is one tiny bin B, thus no nearly full bin.
Denote the next arriving item by a. If a is tiny, it will be assigned to

213

T.C. Edwin Cheng, H.Kellerer, V.Kotov

Phase 1 of the Algorithm

LB:=1 initialization of the lower bound
Let a denote the current item to be assigned and set LB :=
max{LB,a}.

1. If a > 0.9 orif a is big and) B < m/2, assign a to the largest
bin B with w(B) < 0.6 and w(B)+a < 1.6LB, otherwise to
an empty bin.

2. Assign all medium items and for) B > m/2 also big items to
empty bins.

3. If a is small and there is a tiny bin By or a nearly full bin Bo,
assign a to By if w(B1) +a < 0.6 (or to By if w(B2) +a <
1.6LB). Otherwise, assign small item a to the largest bin B
with w(B) > 0.9 (for)B < m/2 even to the largest bin B
with w(B) > 0.8) and w(B) + a < 1.6LB, or else to the
largest bin B with w(B) + a < 0.6.

Stop, if one of the following four conditions holds:

(a) If 0B =0 and sB = 0, goto Stage 1.

(b) If 0B =0, sB >0 and bB = 0, goto Stage 2.

(c) f@B =0, sB >0 and bB > 0, goto Stage 3.

(d) If 0B > 0 and 2(mB + 0 B) < (iB, goto Stage 4.

Figure 1 Algorithmic description of Phase 1

214

Strongly polynomial algorithms

B since the total weight will not exceed 0.6. If a is little, it can be
assigned to B or to an empty bin, forming a little bin, or to a large bin
or full bin, forming a full bin. If a is large and is assigned to B, we get
either a full bin or B is changed into a nearly full bin. So, in any case
tB+nfB <1 holds.

Now assume that there is one nearly full bin B, thus no tiny bin. If
a fits into B, it is assigned to B and B remains a nearly full bin or
becomes full. If a does not fit into B, we have a > 0.5L B, and the bin
to which a will be assigned, will become either a little bin or a full bin.

L]

The next lemma describes the structure of the bins at the end of Phase 1
depending on which Stage is entered in Phase 2.

Lemma 2 The structure of the bins after Phase 1 at the beginning of
Stages 1 to 4 can be described as follows:

(a) Stage 1: There are full bins, very big bins, big bins, medium bins
plus at most one nearly full bin.

(b) Stage 2: There are full bins, medium bins, little bins and at most
one tiny bin or nearly full bin. Moreover we have

2mB > {iB — 2. (1)
(c) Stage 3: There are full bins, big bins, medium bins, little bins and

at most one tiny or nearly full bin. The bins of B(m/2,m) are
all medium bins and thus

mB > V’;J . 2)

(d) Stage 4: There are full bins, medium bins, little bins, at most one
tiny bin and empty bins. Moreover we have

tiB > 2(mB + 0B) > liB — 2 (3)

215

T.C. Edwin Cheng, H.Kellerer, V.Kotov

Proof: ad (a): The claim follows directly from Lemma 1(a), (b) and
().

ad (b): The structure of the bins is again a consequence of Lemma 1.
Since we do not enter Stage 4, for B > 0 always 2(mB + 0B) > (¢iB
holds. Especially for 0B = 1 we have 2(mB + 1) > ¢iB. By assigning
an item to the last empty bin, the left hand side of the inequality
decreases by at most two and the right hand side can increase by at
most one. Thus, we get inequality (1).

ad (c): The different types of bins which can exist are a direct conse-
quence of Lemma 1. It remains to show that the bins in B(m/2,m) are
all medium bins. Remember that big items are put alone into bins as
long as) B > m/2. After the first bin in B(m/2, m) becomes nonempty,
big items can be combined with small items and vice versa.

It is easy to show by induction for 0B < m/2 a statement similar to
Lemma 1(d) for the big and small items: If) B < m/2 and bB = 0 or
sB =0, then also bB = 0 or sB = 0 must hold for the rest of Phase 1.

It follows, that if bB > 0 and sB > 0 hold at the end of Phase 1,
bB > 0 and sB > 0 must hold already after the last bin in B(1,m/2)
becomes nonempty. After this time large items can be assigned to small
bins and small items to small bins or bins with load greater than 0.8,
none of them to empty bins. Consequently, only medium items can be
elements of B(m/2,m).

ad (d): First note that we do not enter Stage 4 (or any other stage)
before the number of empty bins is less than or equal to m/2. This
means that there is some time when small items are allowed to be
packed with big items and vice versa.

After this time small items are assigned to bins with a single large item
in it or to a nearly full bin, before they enter an empty bin. On the other
side, large items are assigned to small bins and assigning a medium
item to an empty bin does not change the inequality 2(mB + (B) >

216

Strongly polynomial algorithms

¢iB. Thus, it is only possible that the left hand side of inequality (3)
becomes true if there are no bins with a single large item in it and no
nearly full bins. The right hand side of inequality (3) follows with an
argumentation analogous to (b). n

4 Phase 2 of the Algorithm

Phase 2 of the algorithm is split into four stages depending on the
structure of the bins after Phase 1. For Stages 1 to 3 we apply a best
fit approach. First, we try to put item a into the largest bin in which
it fits, and if this is not possible, we assign it to the bin with smallest
weight. The formal algorithm for Stages 1 to 3 is depicted in Figure 2.

Phase 2 for Stages 1 to 3 of the Algorithm

Let a denote the current item to be assigned and set LB :=
max{LB,a}. If a is the (m + 1)-st item not smaller than (3, then
set LB := max{LB,23}.

Assign item a to the largest bin B, for which w(B) +a < 1.6LB,
else assign a to the bin with smallest weight.

Figure 2 Algorithmic description of Phase 2 for Stages 1 to 3

If our algorithm for (GOBSP) has stretching ratio greater than 1.6,
there is a failure item zy which shall be the first item being assigned
to a bin B (w(B) < 1) with w(B) + zy > 1.6a*. Then the following
lemma is easy to verify:

217

T.C. Edwin Cheng, H.Kellerer, V.Kotov

Lemma 3 (a) If z; is assigned to bin B, we have zy < o <
%wzf(B) < 2. While there are bins with weight not greater than
0.6, the stretching ratio does not exceed 1.6.

(b) Let arriving item a be assigned to bin B with w(B) < 0.9 and
a* > w(B)+0.6. Then, w(B)+a<1l6a".

Proof: ad (a): The assertion follows directly from w(B) + a* >
w(B) +zy > 1.6a".

ad (b): Asume the assertion does not hold, i.e. a is identical to the
failure item z¢. Then we get from w(B)+z5 > 1.6 a* > 1.6 (w(B)+0.6)
that zy > 0.96 + 0.6w(B). Inserting zy < 2w(B) from Lemma 3(a)
into the preceding inequality we get w(B) > 0.9, a contradiction. m

Before we show that the algorithm works well in Phase 1, we intro-
duce some further notation. Consider the bins at the end of Phase 1.
Then the very big bins are denoted by VBj,...,VB, and the set
{VBy,...,VB;} is called the V-group. Analogously, the big bins are
denoted by BBj,..., BBs, the medium bins by M By,..., M B, and
the small bins by SBi,...,SB,, respectively. The corresponding sets
are called B-group, M-group and S-group, respectively. Recall that
the M-group consists of all medium items assigned to separate bins in
Phase 1. The nearly full bin N shall be contained in the V-group or
B-group, depending on whether w(N) is greater than 0.9 or not.

All bin groups shall be sorted in non-increasing order of weight at the
end of Phase 1, i.e.

w(VBy)>...>w(VB,) >w(BBy)>...>w(BBs) >w(MBy) > ...

W.lo.g. we may assume that these inequalities are strict (by changing
the item weights slightly).

218

Strongly polynomial algorithms

Proposition 1 For Stage 1, the algorithm has stretching ratio 1.6.

Proof: W.lo.g. assume there is a failure item zy. We distinguish
several cases with respect to the item group to which z; is assigned:

a) zy is assigned to bin M By (t' < t) of the M-group: Let my denote
the medium item from Phase 1 in M By and a the first item assigned
to MBt/ aftel" Ty .

If a # z¢, then we get w,(MBy) +a < 1 and by w(my) > 0.6 also
a < 0.4. Thus, all bins besides M By 1,..., M B; have weight at least
1.2. Since zy is not assigned to M By (t" > t'), we have w,, (M By) >
w;(MBy) for t" > t" and the last item assigned to M By before z;
must be greater than 0.6 (otherwise it would be assigned to M By).
Thus, also the bins M By44,...,MB; have load at least 1.2 and the
total weight of the items w(I) would exceed m.

If a = zf, due to myr < my for t” > t an item b must have been assigned
to M By which did not fit into M By, i.e. b+ w(MBy) > 1.6LB. At
that time LB > 1.2 holds. Therefore, b > 1.6-1.2—my > 1.92—0.8 =
1.12. Thus, at time z; there are m + 1 items not smaller than my
and we conclude a* > 2my > w,, (M By) + 0.6. Lemma 3(b) with
w;, (M By) < 0.8 contradicts the assumption that zy is assigned to a
bin of the M-group.

b) zy is assigned to bin BBy (s’ < s) of the B-group: Let by denote
the big item from Phase 1 in BBy and a the first item assigned to
BBy in Phase 1. If a # zy, we can argue in a similar way to (a) for
showing that the total weight of the items w(I) would exceed m.

So assume a = zy. Because of w(BBy) > w(MB;) for i =1,...,t at
the end of Phase 1, an item b must have been assigned to each M B;
which did not fit into BBy. From LB > 1.2, we get b > 1.6 - 1.2 —
w(BBy) > 1.92—0.9 = 1.02. Thus , item b is very big and zy is at least
the (m + 1)-st large item. Thus at time z; even LB > 1.6 holds and

219

T.C. Edwin Cheng, H.Kellerer, V.Kotov

we conclude w,,(BBy) + zy > 1.6 - 1.6 = 2.56. From Lemma 3(a) we
get zp < %wz ;(BBy), which gives with the preceding inequality that
w;,(BBy) > 2.56/(1 +5/3) = 0.96, a contradiction to the fact that
w;,(BBy) < 0.9.

c) zy is assigned to bin VB, (' < r) of the V-group: Since at the
end of Phase 1 the weight of each bin of the B-group and the M-group
is smaller than w(V B,/), at time 2y to each of these bins an item b has
been assigned which did not fit into V B,. Similar to a) and b) we get
b>1.6-1.2—w, (VBy) >192—1=0.92, that means at time z; each
bin of the B-group, the M-group and the V-group contains a very big
item.

If there are no full bins containing big items at the end of Phase 1,
the B-group contains all big items which exist at the end of Phase 1.
Therefore, z; is at least the (m + 1)-st very big item. Hence, a* >
0.9+ 0.9 = 1.8, contradicting Lemma 3(a).

If there is a full bin B with a big item b at the end of Phase 1, it contains
also some small items. Let s denote the first small item assigned to bin
B. Then at time s all bins with very big items but one are full (and
one is at least nearly full). Otherwise s would have been assigned to
one of these bins. (Note that very big bins with items greater than 1
would increase LB, so any small item fits into these bins.)

If b is the first item assigned to B, due to the definition of Phase 1,
at time s all bins of B(1,m/2) are non-empty. Consequently, all bins
except one of B(1,m/2) with very big items are full.

If s is the first item assigned to B, then no item greater than 0.6 is
assigned to B for @B > m/2. Hence, B remains small while 0 B > m,/2.
Because of Lemma 1(a) also in this case all bins but one of B(1,m/2)
with very big items are full.

We conclude that all bins, besides bins with very big items of
B(m/2,m) (and at most one further bin) are full at the end of

220

Strongly polynomial algorithms

Phase 2. At time z; the total item weight is then greater than
1.1[m/2] + 0.9]m/2 — 0.3], an obvious contradiction to w(I) = m.
n

Let G be a group of bins. If at least one item has been assigned to
each bin of G in Phase 2 (Stages 1 to 3), group G is called filled. The
following lemma is simple but very useful:

Lemma 4 Let G be a filled group of bins each having weight greater
than w at the end of Phase 1. Then all bins but one have weight greater
than (0.8 +w/2). Moreover, the average weight of the bins is greater
than (0.8 + w/2) if G contains at least two bins.

Proof: It is sufficient to show that there is always at most one bin B
of group G to which items have been assigned in Phase 2, but which
has weight not exceeding (0.8 +w/2). Let a be the new arriving item.
Assume a does not fit into B but into a bin B’ with smaller weight but
no items added. Then, w(B')+a >w+ 1.6 — (0.8 —w/2) = 0.8 +w/2.
The claim follows. L]

We show now that the algorithm works well for Stages 2 and 3.
Proposition 2 For Stage 2, the algorithm has stretching ratio 1.6.

Proof: Recall from Lemma 2(b) that we have at the beginning of
Phase 2, full bins, an M-group of bins, an S-group, and at most one
extra bin (nearly full or tiny). Recall also that as long as there are
bins with weight smaller or equal to 0.6, especially the S-group is not
filled, by Lemma 3(a) any item a of arbitrary weight can be assigned
to a small bin B without getting w(B) + a > 1.6a*. We distinguish
two cases with respect to the item group which is filled first:

221

T.C. Edwin Cheng, H.Kellerer, V.Kotov

a) The M-group is filled before the S-group: Then also the S-group
is filled before item z; is assigned. By Lemma 4 all bins but one of
the S-group have weight greater than 0.95 (the last one having weight
at least 0.8) and all bins but one of the M-group have weight greater
than 1.1 (the last one having also weight at least 0.8). According to
inequality (1) we have m >t +u > 3u — 1 and hence u < 2(m + 1).
Thus the total weight of the items can be estimated as follows:

w() > 11(t—-1)+095(u—1)+08-2+1.1(m —t—u)+ 2y =
= 1.1Im —0.15u —0.45 + 2y > m — 0.55 + 2y,

a contradiction to w(I) = m.

b) The S-group is filled before the M-group: Then the first item
in Phase 2 assigned to each bin of the S-group is a big item, since
items smaller than 0.8 are assigned to a bin of the M-group or to a
bin of the S-group to which already a big item has been assigned in
Phase 2. Thus, the failure item z; must be assigned to a bin M By
of the M-group. Like in Proposition 1 it is easy to see that z; is the
first item assigned to M By in Phase 2, otherwise the total weight of
the items would exceed m. Also the first items assigned in Phase 2 to
bins M By 41, ..., MB; are big, otherwise these items would have been
put into M By. Thus, at time z; there are m + 1 items not smaller
than my and we conclude o > 2my > w,, (M By) + 0.6. Lemma 3(b)
contradicts the assumption that zy is assigned to a bin of the M-group.

L]

Proposition 3 For Stage 3, the algorithm has stretching ratio 1.6.

Proof: The proof for Stage 3 is similar to the proof for Stage 2. We
have at the beginning of Phase 2 full bins, an M-group of bins, an
S-group, at most one extra bin (nearly full or tiny) and additionally

222

Strongly polynomial algorithms

a B-group. Again we do a case distinction with respect to the group
which is filled first.

a) The B-group is filled before the other groups: We can continue as
in the proof for Proposition 2, noting that inequality (1) is replaced by
inequality (2).

b) The M-group is filled before the other groups: Then the first items
assigned in Phase 2 to bins of the M-group are all greater than 0.7 since
otherwise they could be assigned to a bin of the B-group. Thus, each
bin of the M-group has weight greater than 1.3. By Lemma 3(a) the S-
group must be filled before the failure item can arrive and by Lemma 4
all bins but one of the S-group have weight greater than 0.95. Even
the smallest bin of the S-group must have weight greater than 0.65.
Adding the weights of the items after z; yields with inequality (1) that

w(l) > [m/2]1.34+ ([m/2] —1) 0.8+ 0.65+ zf > m,

a contradiction to w(I) = m.

c¢) The S-group is filled before the other groups: Then the first items
assigned in Phase 2 to bins of the S-group are all greater than 0.8
since otherwise they could be assigned to a bin of the M-group. Thus,
each bin of the S-group has weight greater than 1.1 (with the possible
exception of one bin having weight at least 0.8). Analogously, to part b)
of the proof for Proposition 2 we can exclude that the failure item is
assigned to a bin of the M-group. Consequently, zy must be assigned
to a bin of the B-group and the M-group must be filled before the
B-group. Then, the first items assigned in Phase 2 to bins of the M-
group are all greater than 0.7 since otherwise they could be assigned
to a bin of the B-group. Again, adding all the item weights gives a
contradiction to w(I) = m. "

It remains to present the algorithm of Phase 2 for Stage 4. In this case
instead of a best fit approach the bins are collected in batches of three

223

T.C. Edwin Cheng, H.Kellerer, V.Kotov

bins each depending on their type after the end of Phase 1. A set of
three bins By, Bs, Bs forms a 3-batch, if is generated from two little bins
and one empty bin or one medium. If only small items are assigned
to a 3-batch, it is called small 3-batch, if only items greater 0.6 are
assigned to a 3-batch, it is called large 3-batch. At the time, when a 3-
batch is opened, the “counted” number of little bins, medium bins and
empty bins, is reduced appropriately. At the first time when a small
item does not fit into a small 3-batch or an item with weight greater
than 0.6 does not fit into a large 3-batch, we close the corresponding
3-batch, i.e. no more items are assigned to it. Phase 2 for Stage 4 is
depicted in detail in Figure 3.

Lemma 5 Any closed 3-batch has total weight greater than 3.

Proof: a) The assertion is trivially true for small 3-batches, since
small items are not greater than 0.6.

b) Now consider a large 3-batch which consists of two little bins By,
By and one medium bin Bs. When opened, this batch has weight at
least 2-0.3 4 0.6 = 1.2. In this case the algorithm assigns the items to
the largest bins in which they fit. If an item can be assigned to Bj3, then
at least three items with weight greater than 0.6 can be assigned to the
3-batch. The total weight is then greater than 1.2 +3-0.6 = 3. If no
item can be assigned to Bs, we have a; > max{0.8, 1.6 —w(B3)} for the
items a; (¢ = 1,2) assigned to By or Ba, respectively. Thus, the total
weight of the 3-batch exceeds (1.6 — w(B3)) + w(Bs3) + +0.8+ 0.6 > 3.

c) Finally, consider a large 3-batch which consists of two little bins
Bi, By and one empty bin Bjs. If the first item a; to be assigned is
medium, we can continue like in b). Assume a; is large. Then, a;
is assigned to By or By. The following item ag (at least medium) is
assigned to the empty bin Bs. If the next item a3 can be assigned to
Bs, at least four items with weight greater than 0.6 are assigned to

224

Strongly polynomial algorithms

Phase 2 for Stage 4 of the Algorithm
Let a denote the current item to be assigned.

1. If a does not fit into the corresponding small 3-batch (large
3-batch), close the batch and open a new small 3-batch (large
3-batch) if possible. If this is not possible, goto 2.

1.1 aissmall: Assign a to the largest bin of the small 3-batch
in which it fits. Goto 1.

1.2 a is medium: Assign a to an empty bin of the large 3-
batch, or otherwise to the largest bin in which it fits.
Goto 1.

1.3 ais large: If the large 3-batch contains an empty bin and
one large item which has been already assigned to this
batch, assign a to the empty bin. Otherwise, assign it to
the largest bin in which it fits. Goto 1.

2. Use best fit, to assign the remaining items into the current
open 3-batch and the remaining bins not in batches.

Figure 3 Algorithmic description of Phase 2 for Stage 4

225

T.C. Edwin Cheng, H.Kellerer, V.Kotov

the 3-batch, yielding a total weight greater than 3. If a3z cannot be
assigned to Bs, it is put into the remaining small bin, yielding total
weight greater than (1.6 — w(Bs)) + 0.8 + w(B3) + 0.6 > 3. "

Now we are ready to show that the algorithm works well for Stage 4.
Proposition 4 For Stage 4, the algorithm has stretching ratio 1.6.

Proof: Consider the bins to which items are assigned in Step 2 of
Stage 4. By Lemma 2(d) there can be two little bins and (at most) one
tiny bin which could not be assigned to 3-batches. Moreover, we have
three bins (two of them at least little) from the current open 3-batch.
Then it can be easily seen that at time z; the total weight of the four
former little bins is greater than 4 - 0.95 = 3.8 and the total weight of
the two other bins exceeds 1.6. By Lemma 5 the bins in batches have
average weight 1. Therefore, zy < 6 — (3.8 + 1.6) = 0.4, contradicting

that zy is a failure item. m

We summarize our results in the following theorem:

Theorem 5 The presented algorithm has stretching ratio 1.6. More-
over, the stretching ratio of any deterministic on-line algorithm for
(GOBSP) is at least 1.5 for any number m > 6 of machines.

Proof: We get the claimed stretching ratio as combination of Propo-
sitions 1, 2, 3 and 4. The lower bound can be obtained from an easy
example:

Send m items of weight 0.75. If the algorithm puts two of them to the
same bin, then send m items of weight 0.25. We would get a = 1.5 and
o = 1. Thus, the algorithm must distribute the m items of weight
0.75 on different bins. The final item will have now weight 1.5. We get
a =225 and o* = 1.5. [

226

Strongly polynomial algorithms

5 Conclusions

In this paper we have presented a relatively simple algorithm with
stretching ratio 1.6 for the (GOBSP). Note that the proof of the al-
gorithm could be shortened substantially if we apply our algorithm to
the on-line bin stretching problem by Azar and Regev. There are still
some further interesting open problems: We believe that our algorithm
for (GOBSP) can be further improved. Is it possible to adapt our al-
gorithm so that we get a stretching factor of at most 1.5 for the on-line
bin stretching problem? The two lower bounds for (GOBSP) and for
the on-line bin stretching problem are very simple. An improvement of
these bounds is not obvious. Specific algorithms for a small number of
machines could be developed. For m < 5, there is still only the lower

bound 4.3 for (GOBSP) known.

References

[1] S.Albers, Better bounds for on-line scheduling problems. In: Proc.
29th ACM Symp. on Theory of Computing, pp. 130-139, 1997.

[2] Y.Azar, O.Regev, On-line bin-stretching, Theoretical Computer
Science, 268, pp. 17-41, 2001.

[3] E.G.Coffman, J.Csirik, G.Woeginger, Approximate solutions to
bin packing problems, In: P.M. Pardalos, M.G.C. Resende (ed.),
Handbook of Applied Optimization, Oxford University Press, 2002.

[4] R.L.Graham, Bounds for certain multiprocessor anomalies, Bell
System Technical Journal, 45, pp. 1563-1581, 1966.

[5] R.L.Graham, Bounds on multiprocessing timing anomalies, SIAM
J. Appl. Math., 17, pp. 263-269, 1969.

227

T.C. Edwin Cheng, H.Kellerer, V.Kotov

[6] H. Kellerer, V. Kotov, M.G. Speranza and Z. Tuza, Semi on-line
algorithms for the partition problem, Operations Research Letters,
21, pp. 235242, 1997.

T.C. Edwin Cheng, Hans Kellerer, Vladimir Kotov, Received Mai 6, 2003

T.C. Edwin Cheng,

Department of Management,

The Hong Kong Polytecnic University,
Kowloon, Hong Kong,
E—mail:mscheng@inet.polyu.edu.hk

Hans Kellerer,

Institut fiir Statistik und Operations Research,
Universitat Graz,

Universitatsstrafie 15, A-8010 Graz, Austria,
E—mail:hans.kellererQuni — graz.at

Vladimir Kotov,

Belarusian State University,

Faculty of Applied Mathematics and Computer Science,
Belarusian State University,

Skarina ave. 4, Minsk, 220050, Belarus

E-mail:kotov@ fpm.bsu.unibel.by

228

