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Quasi-stability of a vector trajectorial problem

with non-linear partial criteria ∗

Vladimir A. Emelichev Kirill E. Kovalenko

Abstract

Multi-objective (vector) combinatorial problem of finding the
Pareto set with four kinds of non-linear partial criteria is consid-
ered. Necessary and sufficient conditions of that kind of stability
of the problem (quasi-stability) are obtained. The problem is a
discrete analogue of the lower semicontinuity by Hausdorff of the
optimal mapping.
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The quasi-stability criterion of a vector trajectorial problem with
linear and non-linear (MINMAX and MINMIN) partial criteria is ob-
tained in [1]. Then it is shown in [2] that this criterion holds if all the
partial criteria are in the form of MINMAX MODUL. In the article
this result is extended to the case where the vector criterion has other
kinds of non-linear partial criteria apart from the one mentioned above.

1 Basic definitions and concepts

Let, as usual [1− 6], vector criterion

f(t, A) = ( f1(t, A1), f2(t, A2), ..., fn(t, An) ) → min
t∈T
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be given on the set of trajectories T ⊆ 2E \ {∅}. Here n ≥ 1, m ≥ 2,
Ai – the i-th row of matrix A = [aij ]n×m ∈ Rnm, |T | > 1, E =
{ e1, e2, ..., em }.

We consider the case where the components of f(t, A) are non-linear
functionals of four kinds

fi(t, Ai) = max
j∈N(t)

aij , (1)

fi(t, Ai) = max
j∈N(t)

|aij |, (2)

fi(t, Ai) = min
j∈N(t)

aij , (3)

fi(t, Ai) = min
j∈N(t)

|aij | (4)

in an arbitrary combination. Here i ∈ Nn = { 1, 2, ..., n }, N(t) =
{ j ∈ Nm : ej ∈ t }.

By Imax, Imaxmod, Imin and Iminmod we denote the sets of
those indices from Nn, by which the criteria (1)− (4) respectively are
numbered (Imax ∪ Imaxmod ∪ Imin ∪ Iminmod = Nn).

Under vector (n-criteria) problem Zn(A), n ≥ 1, we understand the
problem of finding the Pareto set consisting of all efficient trajectories

Pn(A) = { t ∈ T : Pn(t, A) = ∅ },
where

Pn(t, A) = { t′ ∈ T : f(t, A) ≥ f(t′, A), f(t, A) 6= f(t′, A) }.
It is obvious that P 1(A) (A – m-dimensional vector ) is the set

of all optimal solutions of scalar trajectorial problem Z1(A).
As usual [1] − [6], we do perturbation of the parameters of vector

criterion f(t, A) by adding matrix A ∈ Rnm with the matrices of the
set

B(ε) = { B ∈ Rnm : ||B|| < ε },
where ε > 0, || · || - norm l∞ in space Rnm, i.e.

||B|| = max{ |bij | : (i, j) ∈ Nn ×Nm }, B = [bij ]n×m.
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Problem Zn(A + B) obtained from initial problem Zn(A) by addi-
tion of matrices A and B ∈ B(ε) is called perturbed; matrix B is called
perturbing.

As usual [1], [2],[5-7], we assume quasi-stability of problem Zn(A)
to be a discrete analogue of the lower semicontinuity in the sense of
Hausdorff of the set-valued (multi-valued) mapping. The mapping es-
tablishes the choice function, i.e. the property of keeping the efficiency
of trajectories for ”small” independent perturbations of the parame-
ters of matrix A. So problem Zn(A) is quasi-stable if and only if the
condition

∃ ε > 0 ∀ B ∈ B(ε) (Pn(A) ⊆ Pn(A + B))

holds. For any index i ∈ Nn put

γi(t, t′, Ai) := −gi(t, t′, Ai)
2

,

gi(t, t′, A) := fi(t, Ai)− fi(t′, Ai).

2 Lemmas

Lemma 1 For any index i ∈ Nn the following statement is true : if
0 < ϕ ≤ γi(t, t′, Ai), t, t′ ∈ T, then the inequality

gi(t, t′, Ai + Bi) < 0 (5)

holds for any matrix B ∈ B(ϕ) .
Proof. Let B ∈ B(ϕ). Then following the condition of the lemma

we have
||B|| < ϕ ≤ γ := γi(t, t′, Ai). (6)

Two cases are possible.
Case 1. i ∈ Imax ∪ Imin. Then the inequalities

fi(t0, Ai)− ||B|| ≤ fi(t0, Ai + Bi) ≤ fi(t0, Ai) + ||B|| (7)
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are evident for any trajectory t0 ∈ T . Therefore taking into account
(6) we obtain

gi(t, t′, Ai + Bi) = fi(t, Ai + Bi)− fi(t′, Ai + Bi) ≤

≤ gi(t, t′, Ai) + 2||B|| < gi(t, t′, Ai) + 2γ = 0.

Case 2. i ∈ Imaxmod ∪ Iminmod. Using the evident inequalities

||a + b|| ≤ ||a||+ ||b||,

||a|| − ||b|| ≤ ||a− b||,
which are correct for any vectors a, b ∈ Rn, we easily make certain
that inequalities (7) are valid. Hence inequalities (5) are correct too.
Lemma 1 has been proved.

For any two different trajectories t, t′ ∈ T and an index i ∈ Nn put

ζi(t, t′, Ai) :=
{

γi(t \ t′, t′, Ai) if i ∈ Imax ∪ Imaxmod,
γi(t, t′ \ t, Ai) if i ∈ Imin ∪ Iminmod.

(8)

Here and henceforth we assume that

fi(∅, Ai) =
{ −∞ if i ∈ Imax ∪ Imaxmod,

+∞ if i ∈ Imin ∪ Iminmod.
(9)

It is easy to see that ζi(t, t′, Ai) = +∞ only in two cases:

i ∈ Imax ∪ Imaxmod and t \ t′ = ∅;

i ∈ Imin ∪ Iminmod and t′ \ t = ∅.
It is obvious that

∀ i ∈ Nn ∀ t ∈ T ∀ t′ ∈ T (ζi(t, t′, Ai) ≥ γi(t, t′, Ai)), (10)

and the inequality
ζi(t, t′, Ai) > γi(t, t′, Ai)

is valid only in the following cases:
10 t \ t′ 6= ∅, i ∈ Imax ∪ Imaxmod (if fi(t \ t′, Ai) < fi(t, Ai) ),
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20 t′ \ t 6= ∅, i ∈ Imin ∪ Iminmod (if fi(t′ \ t, Ai) > fi(t′, Ai) ),
30 t \ t′ = ∅, i ∈ Imax ∪ Imaxmod,

40 t′ \ t = ∅, i ∈ Imin ∪ Iminmod.

Lemma 2 Let the trajectories t, t′ ∈ T, t 6= t′, be such that the
inequality

0 < ϕ ≤ ζi(t, t′, Ai)

holds for any index i ∈ Nn. Then for any matrix B ∈ B(ϕ) the in-
equality

gi(t, t′, Ai + Bi) ≤ 0

is correct.
Proof. In the case where ζi(t, t′, Ai) = γi(t, t′, Ai) the statement

of the lemma is valid on account of lemma 1. Therefore according to
(10) we only have to consider the case when ζi(t, t′, Ai) > γi(t, t′, Ai).
Hence one of conditions 10 − 40 mentioned above is fulfilled.

Case 10. By the condition of the lemma we have ζi(t, t′, Ai) > 0.
Taking into account lemma 1 and inclusion i ∈ Imax∪Imaxmod for any
number ϕ such that 0 < ϕ ≤ γi(t \ t′, t′, Ai) we see that the inequality

gi(t \ t′, t′, Ai + Bi) < 0 (11)

holds for any matrix B ∈ B(ϕ) . Two subcases are possible.
10.1 fi(t, Ai + Bi) = fi(t \ t′, Ai + Bi). Then in view of (11) we

obtain gi(t, t′, Ai + Bi) < 0.

10.2 fi(t, Ai+Bi) = fi(t∩t′, Ai+Bi), t∩t′ 6= ∅. The relationships

gi(t, t′, Ai + Bi) = fi(t ∩ t′, Ai + Bi)− fi(t′, Ai + Bi) ≤ 0

are evident in this subcase.
Case 20. By the condition of the lemma ζi(t, t′, Ai) > 0. Taking into

account lemma 1 and inclusion i ∈ Imin ∪ Iminmod for any number ϕ
such that 0 < ϕ ≤ γi(t \ t′, t′, Ai) we obtain the inequality

gi(t, t′ \ t, Ai + Bi) < 0 (12)

for any matrix B ∈ B(ϕ). Two subcases are possible.
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20.1 fi(t′, Ai + Bi) = fi(t′ \ t, Ai + Bi). Then in view of (12) we
obtain gi(t, t′, Ai + Bi) < 0.

20.2 fi(t′, Ai + Bi) = fi(t ∩ t′, Ai + Bi), t ∩ t′ 6= ∅. Then

gi(t, t′, Ai + Bi) = fi(t, Ai + Bi)− fi(t ∩ t′, Ai + Bi) ≤ 0.

Case 30. t \ t′ = ∅ and t 6= t′. Then t′ \ t 6= ∅. Therefore the
relationships

gi(t, t′, Ai + Bi) =

= fi(t, Ai + Bi)−max{ fi(t, Ai + Bi), fi(t′ \ t, Ai + Bi) } ≤ 0

are correct for any matrix B ∈ Rnm and any index i ∈ Imax ∪ Imaxmod.
Case 40. Taking into account t \ t′ 6= ∅ we see that the relationships

gi(t, t′, Ai + Bi) =

= min{ fi(t′, Ai + Bi), fi(t \ t′, Ai + Bi) } − fi(t′, Ai + Bi) ≤ 0

are evident for any matrix B ∈ Rnm .
Lemma 2 has been proved.

Let us assign the set of equivalent efficient trajectories to an arbi-
trary trajectory t ∈ Pn(A)

Qn(t, A) := { t′ ∈ T \ {t} : f(t′, A) = f(t, A) }.

Lemma 3 Let p ∈ Iminmod, t ∈ Pn(A), t′ ∈ Qn(t, A), t′\t 6=
∅, fp(t′ \ t, Ap) = 0. If τ > 0 and C = [cij ]n×m is a perturbing
matrix with elements

cij =





τ if i = p, j ∈ N(t), apj ≥ 0,
−τ if i = p, j ∈ N(t), apj < 0,
0 otherwise

then

gi(t, t′, Ai + Ci) =
{

τ if i = p,
0 if i ∈ Nn \ {p}. (13)

142



Quasi-stability of a vector trajectorial problem

Proof. According to condition of the lemma we have fp(t′ \
t, Ap) = 0. Since t′ ∈ Qn(t, A) one can obtain fp(t′, Ap) = fp(t, Ap) =
0. Taking into account the structure of the row Cp we have

fp(t, Ap + Cp) = fp(t, Ap) + τ = τ.

Therefore in view of the equality fp(t′ \ t, Ap) = 0 we obtain

gp(t, t′, Ap + Cp) = fp(t, Ap + Cp)− fp(t′, Ap + Cp) =

= τ −min{ fp(t′ \ t, Ap + Cp), fp(t ∩ t′, Ap + Cp) } =

= τ −min{ fp(t′ \ t, Ap), fp(t ∩ t′, Ap + Cp) } = τ.

Besides that for any index i ∈ Nn \ {p} the inequalities

gi(t, t′, Ai + Ci) = fi(t, Ai)− fi(t′, Ai) = 0

are evident.
Lemma 3 has been proved.

3 Quasi-stability criterion

Theorem 1 Vector trajectorial problem Zn(A), n ≥ 1, with the partial
criteria of kinds (1)− (4) is quasi-stable if and only if the condition

∀ t ∈ Pn(A) ( Qn(t, A) 6= ∅ ⇒

⇒ ∀ t′ ∈ Qn(t, A) ∀ i ∈ Nn (ζi(t, t′, Ai) > 0) )

holds.
Proof. Sufficiency. Let t ∈ Pn(A), t′ ∈ T \{t}. Then the following

two cases are possible.
Case 1. t′ ∈ T \Qn(t, A). Then f(t, A) 6= f(t′, A) and in view of

t ∈ Pn(A) there is an index s ∈ Nn such that gs(t, t′, As) < 0. Therefore
according to the continuity of any of the partial criteria (1) − (4) on
the set of the matrices Rnm there exists a number ε = ε(t′) > 0 such
that the inequality

gs(t, t′, As + Bs) < 0
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holds for any perturbing matrix B ∈ B(ε). Consequently there are no
trajectories from T \ Qn(t, A) belonging to set Pn(t, A + B) for any
matrix B ∈ B(ε1), where

ε1 = min{ ε(t′) : t′ ∈ T \Qn(t, A) }.

Case 2. t′ ∈ Qn(t, A). Then by the condition of theorem the
inequality ζi(t, t′, Ai) > 0 is valid for any index i ∈ Nn. In view of
lemma 2 we obtain

∀ i ∈ Nn ∀ B ∈ B(ε(t′)) (gi(t, t′, Ai + Bi) ≤ 0),

where
ε(t′) = min{ ζi(t, t′, Ai) : i ∈ Nn }.

Thus none of the trajectories from Qn(t, A) belong to set Pn(t, A + B)
for any matrix B ∈ B(ε2), where

ε2 = min{ ε(t′) : t′ ∈ Q(t, A) }.

So we conclude that t ∈ Pn(A + B) for any perturbing matrix
B ∈ B(ε), where

ε = min{ε1, ε2}.
Hence problem Zn(A) is quasi-stable.

We will prove necessity by contradiction. Let t ∈ Pn(A) and there
exist such t′ ∈ Qn(t, A) and p ∈ Nn that

ζp(t, t′, Ap) ≤ 0. (14)

Then for any p ∈ Imax ∪ Imaxmod according to (8) we have

fp(t \ t′, Ap) ≥ fp(t′, Ap), (15)

at that t \ t′ 6= ∅ (see (9)). And for any p ∈ Imin ∪ Iminmod (see (8))
we have

fp(t, Ap) ≥ fp(t′ \ t, Ap), (16)

at that t′ \ t 6= ∅ (see (9)).
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Let 0 < β < ε, B∗ = B(t, t′, p, β) = [b∗ij ]n×m is a perturbing
matrix with elements

b∗ij =





β if i = p ∈ Imax, j ∈ N(t \ t′),
β if i = p ∈ Imaxmod, j ∈ N(t \ t′), apj ≥ 0,
−β if i = p ∈ Imaxmod, j ∈ N(t \ t′), apj < 0,
−β if i = p ∈ Imin, j ∈ N(t′ \ t),
β if i = p ∈ Iminmod, j ∈ N(t′ \ t), apj < 0,
−β if i = p ∈ Iminmod, j ∈ N(t′ \ t), apj ≥ 0,
0 otherwise.

(17)

It is evident that ||B∗|| = β. Let us show that the equality

gp(t, t′, Ap + B∗
p) = β (18)

holds. We will consider four possible cases.

Case 1. p ∈ Imax. Then inequality (15) is true. Thus the inequality
fp(t \ t′, Ap) ≥ fp(t ∩ t′, Ap) is true in view of the obvious equation
fp(t′, Ap) ≥ fp(t ∩ t′, Ap) and from here – fp(t \ t′, Ap) = fp(t, Ap).
Therefore considering the equality

fp(t, Ap) = fp(t′, Ap) (19)

and taking into account the definition of matrix B∗ we derive

gp(t, t′, Ap + B∗
p) = max{ fp(t \ t′, Ap + B∗

p), fp(t ∩ t′, Ap + B∗
p) }−

−fp(t′, Ap +B∗
p) = max{ fp(t\ t′, Ap)+β, fp(t∩ t′, Ap) }−fp(t′, Ap) =

= fp(t \ t′, Ap) + β − fp(t′, Ap) = fp(t, Ap) + β − fp(t′, Ap) = β,

i.e. equality (18) holds.

Case 2. p ∈ Imaxmod. Then inequality (15) is correct. Thus the in-
equality fp(t\t′, Ap) ≥ fp(t∩t′, Ap) is true in view of the obvious equa-
tion fp(t′, Ap) ≥ fp(t∩ t′, Ap) and from here – fp(t \ t′, Ap) = fp(t, Ap).
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Therefore considering (19) and taking into account the definition of
matrix B∗ we obtain

gp(t, t′, Ap + B∗
p) = max{ fp(t \ t′, Ap + B∗

p), fp(t ∩ t′, Ap + B∗
p) }−

−fp(t′, Ap +B∗
p) = max{ fp(t\ t′, Ap)+β, fp(t∩ t′, Ap) }−fp(t′, Ap) =

= fp(t \ t′, Ap) + β − fp(t′, Ap) = fp(t, Ap) + β − fp(t′, Ap) = β.

We make sure once again that equality (18) holds.

Case 3. p ∈ Imin. Then inequality (16) is valid. Thus the inequality
fp(t′ \ t, Ap) ≤ fp(t′ ∩ t, Ap) is true in view of the obvious equation
fp(t, Ap) ≤ fp(t ∩ t′, Ap) and from here – fp(t′ \ t, Ap) = fp(t′, Ap).
Therefore according to (19) and taking into account the definition of
matrix B∗ we derive

gp(t, t′, Ap + B∗
p) =

= fp(t, Ap + B∗
p)−min{ fp(t′ \ t, Ap + B∗

p), fp(t′ ∩ t, Ap + B∗
p) } =

= fp(t, Ap)−min{ fp(t′ \ t, Ap)− β, fp(t′ ∩ t, Ap) } =

= fp(t, Ap)− (fp(t′ \ t, Ap)− β) = fp(t, Ap)− (fp(t′, Ap)− β) = β,

i.e. (18) is true.

Case 4. p ∈ Iminmod. Then in view of (16) t′ \ t 6= ∅. At first let
us show that there are no zeros among numbers apj , j ∈ N(t′ \ t). We
assume that there exists an index k ∈ N(t′ \ t) such that apk = 0, i.e.
fp(t′ \ t, Ap) = 0. Then by lemma 3 there exists a perturbing matrix
C ∈ B(ε) such that ||C|| = τ, where 0 < τ < ε and equalities
(13) are correct. It means that trajectory t /∈ Pn(A + C), i.e. problem
Zn(A) is not quasi-stable. Contradiction.

So it is shown that number fp(t′ \ t, Ap) > 0. Therefore taking into
account (16) and the definition of matrix B∗ (see(17)) we easily derive

fp(t′ \ t, Ap + B∗
p) = fp(t′ \ t, Ap)− β,

where 0 < β ≤ fp(t′ \ t, Ap) and

fp(t′ ∩ t, Ap + B∗
p) = fp(t′ ∩ t, Ap) ≥ fp(t′, Ap) ≥ fp(t′ \ t, Ap)
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Since
fp(t′, Ap) ≤ fp(t′ \ t, Ap)

and in view of (19) we have

fp(t′ \ t, Ap) = fp(t, Ap) = fp(t′, Ap).

Summing up we derive

gp(t, t′, Ap + B∗
p) =

= fp(t, Ap + B∗
p)−min{ fp(t′ \ t, Ap + B∗

p), fp(t′ ∩ t, Ap + B∗
p) } =

= fp(t, Ap)−min{ fp(t′ \ t, Ap)− β, fp(t′ ∩ t, Ap) } =

= fp(t, Ap)− (fp(t′ \ t, Ap)− β) = fp(t, Ap)− (fp(t′, Ap)− β) = β.

So there exists such number β > 0 and such perturbing matrix B∗

that the following relations hold

gi(t, t′, Ai + B∗
i ) =

{
β if i = p,
0 if i ∈ Nn \ {p}.

Thus we obtain

∀ ε > 0 ∃ B∗ ∈ B(ε) (t /∈ Pn(A + B∗)).

Consequently in view of t ∈ Pn(A) we conclude that problem
Zn(A) is not quasi-stable. The obtained contradiction proves theorem
1.

It is evident that the partial case of theorem 1 is the criterion of
the quasi-stability of vector l∞-extreme trajectorial problem obtained
in [2].

Let us define the Smale set, i.e. the set of strictly efficient trajec-
tories:

Sn(A) := { t ∈ Pn(A) : Qn(t, A) = ∅ }.
It is obvious that Qn(t, A) 6= ∅ if and only if t ∈ Pn(A) \ Sn(A).
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Defining the set

Pn
∗ (A) := { t ∈ Pn(A) \ Sn(A) :

∀ t′ ∈ Qn(t, A) ∀ i ∈ Nn (ζi(t, t′, Ai) > 0) }
we see that the following equivalent definition of theorem 1 is true.

Theorem 1
′

Vector trajectorial problem Zn(A), n ≥ 1, with
partial criteria of kinds (1) − (4) is quasi-stable if and only if one of
the conditions holds:

• Pn(A) = Sn(A),

• ∅ 6= Pn(A) \ Sn(A) = Pn∗ (A).

Corollary 1 If Pn(A) = Sn(A) then problem Zn(A), n ≥ 1, is
quasi-stable.

In particular it follows that problem Zn(A) is quasi-stable if
|Pn(A)| = 1.

Corollary 2 Scalar (single criterion) trajectorial problem
Z1(A) (A ∈ Rm) with any of partial criteria (1)− (4) is quasi-stable
if and only if it has a unique optimal trajectory.

Note that for linear scalar trajectorial problem (with partial crite-
rion of kind MINSUM) this criterion was established in [8].
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