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Gray Code for Cayley Permutations
J.-L. Baril

Abstract
A length-n Cayley permutation p of a total ordered set S is

a length-n sequence of elements from S, subject to the condition
that if an element x appears in p then all elements y < x also
appear in p. In this paper, we give a Gray code list for the set of
length-n Cayley permutations. Two successive permutations in
this list di�er at most in two positions.
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1 Introduction and de�nitions
A Gray code for a class of combinatorial objects is an ordered list for the
objects of the class such that two successive objects di�er in a `small
prespeci�ed way', see for example Carla Savage [Sav89].

Let S = {a1, . . . , an} be a total ordered set with a1 < a2 < . . . < an.
A length-n Cayley permutation (C-permutation) p of S is a length-n
sequence p = p1 p2 . . . pn of elements from S satisfying the following
property: if for any i, ai appears in p, then all elements aj , j < i, also
appear in p. In fact, S may contain more than n elements, but in any
C-permutation of length-n only the �rst n elements of S can appear.
For example, if S is the set of natural numbers, then there are thirteen
C-permutations of length three: 000, 001, 011, 012, 010, 021, 101, 102,
100, 201, 110, 120, 210. Without any loss of generality we will consider
only the C-permutations of the set of natural numbers.

Cayley permutations have many interesting combinatorial interpre-
tations; some of the more natural ones are the weak-orders. Recall
that a weak-order is a relation ≤ that is transitive (if x ≤ y and y ≤
c©2003 by J.-L. Baril
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z then x ≤ z) and complete (x ≤ y or y ≤ x always holds ). We can
write x ≡ y if x ≤ y and y ≤ x, and we note x < y if x ≤ y and
y � x. There exists a one-to-one map between C-permutations of
length-n and the weak-orders on n elements. Indeed, a C-permutation
p = p1 p2 . . . pn of length-n can represent the weak-order on the set
{1, 2, . . . , n} de�ned as follows: j is preceded by exactly pj signs <.
For example, the thirteen weak-orders on three elements {1, 2, 3} are:
1 ≡ 2 ≡ 3, 1 ≡ 2 < 3, 1 < 2 ≡ 3, 1 < 2 < 3, 1 ≡ 3 < 2, 1 < 3 < 2,
2 < 1 ≡ 3, 2 < 1 < 3, 2 ≡ 3 < 1, 2 < 3 < 1, 3 < 1 ≡ 2, 3 < 1 < 2,
3 < 2 < 1.

We may also regard C-permutations as certain classes of trees called
Cayley trees [Cay91], as multipartite compositions, or as the di�erent
ways in which n di�erent things can be distributed into an unknown
number of di�erent parcels without blank lot [Gro62].

If we note Wn the set of all C-permutations of length-n, for wn =
card(Wn), this gives [Gro62]:

wn =
∞∑

i=1

2−(i+1) × in,

or recursively

wn =
n−1∑

i=0

(
n

i

)
× wi, for n ≥ 1 with w0 = 1 (1)

where
(
n
i

)
represent the cardinality of the set Cn,i of all i-combinations

of [n] = {0, 1, . . . , n − 1}. Moreover wn
n! is the coe�cient of xn in the

series of (2− ex)−1 [Cay91]. M. More and A.S. Fraenkel [FM84] gave
lexicographic generating and ranking algorithms for C-permutations.

Various studies have been made on Gray codes and generation al-
gorithms for permutations and their restrictions (with given ups and
downs [vBR92], [Kor01], involutions [Wal01], and derangements [BVar])
or their generalizations (multiset permutations [Vaj]). In this paper, we
give a Gray code list for the set of C-permutations of length-n verifying
that two successive elements in the list di�er at most in two positions.
The aim of this article is twofold. One is to propose the �rst Gray code
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for Cayley permutations and thus provide new insights into the com-
binatorics of particular classes of permutations. The other is to show
how the shu�e constructor enables us to obtain new Gray codes and
generating algorithms from similar results for simpler objects.

For a set L of length-n sequences we denote by L an ordered list of
all sequences in L. We note first(L) and last(L) the �rst and the last
element of the list L respectively. The rank of an element of L is the
number of elements which precede it, and so the rank of first(L) is 0.
L is the list obtained by reversing L, and more generally L(i) is the list
L if i is even and L if i is odd ; if L1, ..., Ln are n (n > 1) lists then
©n

i=1Li = L1 ◦ . . . ◦ Ln is their concatenation.

2 The Gray code
Our construction of a Gray code for the set Wn of length-n C-
permutations is based on the combinatorial proof of the relation above
(1). Indeed, if we assume that W0 contains only the empty word λ then
each element u of Wn (n ≥ 1) can be recursively constructed from a
length-i C-permutation v (0 ≤ i ≤ n− 1) and an i-combination c of n
objects. In addition, v and c are unique.

More formally, let 0 ≤ i ≤ n− 1 and
• c = c1 c2 . . . cn be the binary representation of an i-combination

of n objects,
• v = v1 v2 . . . vi be a C-permutation of length-i.
We de�ne a C-permutation of length-n, u = u1 u2 . . . un, denoted

by (c, v), where each uk, 1 ≤ k ≤ n, is de�ned as:

uk =
{

0 if ck = 0
vj + 1 if ck = 1 is the jth 1 in c.

Note that the number of 1s in c equals the length of v, and in particular
if there are no 1s in c then (c, λ) = 0 0 . . . 0 = c.
For example, if i = 5, n = 8, c = 0 1 1 0 0 1 1 0 1 0 and v = 1 3 0 2 1
then (c, v) = 0 2 4 0 0 1 3 0 2 0.
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We call (c, v) the shu�e of c by v, and c is the trajectory of v in
(c, v); see also [Vaj] where Vajnovszki gives a more general de�nition

for the shu�e operator over combinatorial objects.
If Cn,i denotes the set of all i-combinations of n objects in binary

sequence representation, we have:

Theorem 1 For n ≥ 1,

(1 ) : Cn,i ×Wi ↪→ Wn is a one-to-one map for 0 ≤ i ≤ n− 1

(2 )
n−1⋃
i=0

Cn,i ×Wi is isomorphic to Wn.

Proof : (1) Let c, c′ ∈ Cn,i; v, v′ ∈ Wi; and u = (c, v), u′ = (c′, v′).
If u = u′ then uk = 0 i� u′k = 0 and so c = c′. By a simple translation
we have v = v′.

(2) it is su�cient to prove that each C-permutation of length-n can
be uniquely constructed by the shu�e operation from an appropriate
combination c and a C-permutation of length smaller than n.

Let u ∈ Wn, and we construct the binary sequence c = c1 . . . cn as:

ck =
{

0 if uk = 0
1 otherwise ∀1 ≤ k ≤ n.

Let i be the weight of c (the number of ones in c), and we de�ne
v = v1 . . . vi ∈ Wi as: for 1 ≤ k ≤ i, vk = uj − 1 if uj is the kth non
zero element in u. We can see that u = (c, v). The uniqueness of the
decomposition is obtained by the �rst point of the present theorem.

2

Now, we extend the shu�e operation to lists of C-permutations
and lists of combinations. If L = `1, `2, `3, . . . is a list of length-i C-
permutations (i ≥ 1) and c ∈ Cn,i then (c,L) is the ordered list

(c, `1) ◦ (c, `2) ◦ (c, `3) ◦ . . . = ©
`∈L

(c,L) and obviously we have:

(c,L) = ©
`∈L

(c, `) = ©
`∈L

(c, `).

Moreover, if C = c1, c2, . . . is a list of combinations in Cn,i then
(C,L) is the list (c1,L) ◦ (c2,L) ◦ (c3,L) . . .. More formally:
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(C,L) = ©
c∈C

(c,L(s)) = ©
c∈C

©
`∈L(s)

(c, `) (2)

where s is the rank of c in C.

Lemma 1

(C,L) =





(C,L) if card(C) is odd

(C,L) if card(C) is even

Proof : Suppose that card(C) is odd. Then:

(C,L) = ©
c∈C

©
`∈L(s)

(c, `)

= ©
c∈C

©
`∈L(s)

(c, `),

where s is the rank of c in C. If we denote by r the rank of c in C then
r = card(C)−s + 1. Since card(C) is odd, r = s mod 2 and

(C,L) = ©
c∈C

©
`∈L(r)

(c, `)

= (C,L).

When card(C) is even the proof is similar. 2

Now, let d be the Hamming distance on length-n sequences. A 2-
Gray code for a set S is a list S for this set where any two successive
sequences s and s′ verify d(s, s′) ≤ 2. When S is a 2-Gray code for a
set of combinations in binary sequence representation, we say that S is
homogeneous if S is a 2-Gray code, all pairs of successive sequences of S
di�er by a transposition of two bits, and bits between those transposed
are 0s.

Lemma 2 Let C be a homogeneous Gray code for a set C ⊂ Cn,k of
combinations in binary sequence representation and L a 2-Gray code
for a set L ⊂ Wk of Cayley permutations. Then the list (C,L) is a
2-Gray code.
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Proof : Let u, u′ be two successive elements of the list (C,L). There
are as a whole two cases:

1) u and u′ are de�ned from the same combination c ∈ C and two
successive elements v and v′ of L that are u = (c, v), u′ = (c, v′).
Since L is a 2-Gray code (d(v, v′) ≤ 2) and u and u′ are de�ned along
the same trajectory c, d(u, u′) ≤ 2.

2) The two successive elements u and u′ are de�ned by two com-
binations c and c′ and only one C-permutation v that is u = (c, v),
u′ = (c′, v). Since c and c′ are successive in C and C is homogeneous,
c and c′ di�er in exactly two positions, say i and j, and ck = c′k = 0
for i < k < j. Thus uk = u′k = 0 for i < k < j, ui = u′j , and uj = u′i.
2

In order to de�ne our Gray code for C-permutations, we need a
homogeneous Gray code for the set Cn,k of combinations in binary se-
quence representation.

Various Gray codes are given for combinations, but one of them,
as de�ned by Ruskey, is more interesting for our purpose. It's crucial
that the code is homogeneous which is the case when the Gray code is
two-close. More precisely, we use the following Gray code, which is a
slight variation of Ruskey's Gray code, where each binary sequence is
reversed (see Vajnovszki and Walsh [VW02]):

Cn,k =

=





1n if k = n
0n if k = 0
0.1n−1 ◦ 1 Cn−1,k−2 if k = n− 1
0 Cn−1,1 ◦ 1 0n−1 if k = 1
0 Cn−1,k ◦ 1 0 Cn−2,k−1 ◦ 1 1 Cn−2,k−2 if 1 < k < n− 1 .

(3)

Property 1 [Rus93] The list Cn,k de�ned by (3) satis�es the properties:

(1) Cn,k is a list of all k-combinations of [n]
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(2) first(Cn,k) = 0 1k 0n−k−1

(3) last(Cn,k) = 1k 0n−k

(4) The list Cn,k is a two-close 2-Gray code.

Let Wn be the list for the set Wn and φn,k the sequence de�ned by
φn,n−1 = 0 and for 1 ≤ k ≤ n− 1

φn,n−k−1 = φn,n−k +
(

n

n− k

)
.

For k ≥ 0, we denote by Vk the list W(φn,k)
k and de�ne recursively

the list of all C-permutations by W0 = λ and for n ≥ 1

Wn = (C(0)
n,n−1,Vn−1) ◦ (C(1)

n,n−2,Vn−2) ◦ . . .

. . . ◦ (C(n−2)
n,1 ,V1) ◦ (C(n−1)

n,0 ,V0)

= ©n−1
k=0 (C(k)

n,n−1−k,Vn−1−k) =

= ©n−1
k=0 (C(k)

n,n−1−k,W
(φn,n−1−k)
n−1−k )

(4)

In table 1 we give the list for the set W4:

Table 1: The list
W4 = (C(0)

4,3 ,W(0)
3 ) ◦ (C(1)

4,2 ,W(4)
2 ) ◦ (C(2 )

4 ,1 ,W(10 )
1 ) ◦ (C(3)

4,0 ,W(14)
0 ).

The �rst �fty two elements form the sublist (C(0)
4,3 ,W(0)

3 ); the sub-
list (C(1)

4,2 ,W(4)
2 ) is in boldface; the sublist (C(2)

4,1 ,W(10)
1 ) is in italic .

The last element is the single element list (C(3)
4,0 ,W(14)

0 ).
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1. 0123 14. 1011 27. 1203 40. 1110 53. 1200 66. 0201
2. 0132 15. 1021 28. 1302 41. 1210 54. 2100 67. 0101
3. 0122 16. 1012 29. 1202 42. 1120 55. 1100 68. 0110
4. 0212 17. 2011 30. 2102 43. 2110 56. 1010 69. 0210
5. 0312 18. 2021 31. 3102 44. 2210 57. 2010 70. 0120
6. 0213 19. 3021 32. 2103 45. 3210 58. 1020 71. 0100
7. 0231 20. 2031 33. 2301 46. 2310 59. 1002 72. 0001
8. 0321 21. 2013 34. 3201 47. 2130 60. 2001 73. 0010
9. 0221 22. 3012 35. 2201 48. 3120 61. 1001 74. 1000

10. 0211 23. 2012 36. 2101 49. 2120 62. 0011 75. 0000
11. 0112 24. 1022 37. 1102 50. 1220 63. 0021
12. 0121 25. 1032 38. 1201 51. 1320 64. 0012
13. 0111 26. 1023 39. 1101 52. 1230 65. 0102

Property 2 For n ≥ 1
(1) first(Wn) = 0 1 2 . . . n− 1
(2) last(Wn) = 0 0 . . . 0
(3) Two successive elements of the list Wn di�er in at most two

positions.

Proof : By De�nition 2 of the list Wn, we have first(W1) =
last(W1) = 0 and for n ≥ 1, last(Wn) = 0 0 . . . 0. The recurrence
on n ≥ 1 completes the proof:

first(Wn) = first( (Cn,n−1,Wn−1))
= first( (Cn,n−1, first(Wn−1))
= (0 1 1 . . . 1, 0 1 2 . . . n− 2)
= 0 1 2 3 . . . n− 1.

For the third point of the property, Lemma 2 proves that each block
(C(k)

n,n−1−k,W
(φn,n−1−k)
n−1−k ) is a 2-Gray code.

In order to prove this, we must verify that the last element
of the list (C(k+1)

n,n−k,W
(φn,n−k)
n−k ) and the �rst element of the list

(C(k)
n,n−1−k,W

(φn,n−1−k)
n−1−k ) di�er in at most two positions.
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There are four cases :
• k is even and φn,n−1−k is even. Then we have:

first( (C(k)
n,n−1−k,W

(φn,n−1−k)
n−1−k )) = (first(Cn,n−1−k), first(Wn−1−k))

= 0 1 2 . . . (n− 1− k) 0k

and since φn,n−k = φn,n−1−k − ( n
n−k) then

last( (C(k+1)
n,n−k,W

(φn,n−k)
n−k )) = (last(Cn,n−k), last(Wn−k))

= 0 1 2 . . . (n− 1− k) (n− k) 0k−1.
(5)

• k is odd and φn,n−1−k is even:

first( (C(k)
n,n−1−k,W

(φn,n−1−k)
n−1−k )) = (first(Cn,n−1−k), first(Wn−1−k))

= 1 2 . . . (n− 1− k) 0k+1

and

last( (C(k+1)
n,n−k,W

(φn,n−k)
n−k )) = (last(Cn,n−k), last(Wn−k))

= 1 2 . . . (n− 1− k) (n− k) 0k.
(6)

• k is even and φn,n−1−k is odd:

first( (C(k)
n,n−1−k,W

(φn,n−1−k)
n−1−k )) = (first(Cn,n−1−k), first(Wn−1−k))

= 0 1n−1−k 0k

and

last( (C(k+1)
n,n−k,W

(φn,n−k)
n−k )) = (last(Cn,n−k), last(Wn−k))

= 0 1n−k 0k−1.
(7)

• k is odd and φn,n−1−k is odd:

first( (C(k)
n,n−1−k,W

(φn,n−1−k)
n−1−k )) = (first(Cn,n−1−k), first(Wn−1−k))
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= 1n−1−k 0k+1

and

last( (C(k+1)
n,n−k,W

(φn,n−k)
n−k )) = (last(Cn,n−k), last(Wn−k))

= 1n−k 0k.
. (8)

2

3 Algorithmic considerations
In this part we explain how the recursive de�nition (4) can be imple-
mented into e�cient generating algorithms. Such algorithms already
exist for combinations [EM][RP90], so we will just give the main di�-
culties inimplementing ours.

Successive C-permutations are stored in an array w, and a loop
statement generates the sublists Lk = (C(k)

n,n−1−k,W
(φn,n−1−k)
n−1−k ) for 0 ≤

k ≤ n− 1. For each list Lk, we use an algorithm from Vajnovszki and
Walsh [VW02] to generate the two-close list C(k)

n,n−1−k such that there is
a constant number of computations between successive combinations.
So, for each (n−1−k)-combination c of length-n we produce recursively
the list Wn−1−k or Wn−1−k according to the parity of φn,n−1−k and to
the rank of c in C(k)

n,n−1−k.
In order to store the di�erent combinations c for each level of recur-

sivity, we use (n−1) global arrays Ti (1 ≤ i ≤ n−1). More precisely, if
c = c1 c2 . . . ck is a combination in integer sequence representation, the
array Ti is de�ned by: Ti[0] = c1, for 1 ≤ j ≤ k − 1 Ti[cj ] = cj+1 and
Ti[ck] = n+1. In fact, Ti[cj ] is the position of the (j+1)th entry greater
than (i−1) in the current C-permutation w. Notice that Ti corresponds
to a combination on the trajectory de�ned by Ti−1. The interest of this
representation of combinations is that between two consecutive combi-
nations on the level i we need to change at most one value in the array
Ti, and we don't modify the others. Likewise, between two lists Lk, we
need to modify only one entry on one array Ti. This structure allows
us to assure that this algorithm transforms an object into its successor
in a constant amortized time.
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More precisely, this can be implemented as follows:
- initialize a global array w by first(Wn) = 0 1 2 . . . n− 1
- initialize (n−1) global arrays T1, T2, . . . , Tn according to first(Wn)
- For k from n− 1 downto 0

- while Tn−k 6= last(C(k)
n,n−1−k) do

- Tn−k = succ(Tn−k)
- call resursively the algorithm on the trajectory Tn−k

- modify the array Tn−k according to the relations (5) (6) (7)
(8)

The time complexity of this algorithm is proportional to the total
number of recursive calls. The number of calls of degree 1 is at most
wn, and the others calls have a degree of at least 2. So, we have the
following inequality:

number of recursive calls

number of generated objects
≤ 3,

which proves that the complexity is linear in the number of gener-
ated words.

4 Concluding remarks
Our Gray code veri�es that two successive elements di�er in at most
two positions i and j (i < j) without more restrictions on these indices.
Are there a similar Gray code Wn and constant c (independent of n)
such that i and j verify the |i − j| < c? Moreover, we do not �nd a
Gray code verifying that two successive elements of the list di�er in
only one position. However, if we denote by even(Wn) the number
of C-permutations w = w1 . . . wn ∈ Wn verifying

n∑
i=1

ci is even, and
odd(Wn) = wn−even(wn), we verify easily that for n ≥ 3 : even(Wn) <
odd(Wn) − 2. This inequality proves that there is no Gray code such
that two successive elements di�er in only one position and the entry
on this position di�ers by one.
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