Polynomial time algorithm for solving cyclic games

Dmitrii Lozovanu

Abstract

The problem of finding the value and optimal strategies of players in cyclic games is studied. A polynomial time algorithm for solving cyclic games is proposed.

1 Introduction and Problem Formulation

Let $G=(V, E)$ be a finite directed graph in which every vertex $u \in V$ has at least one leaving edge $e=(u, v) \in E$. A function $c: E \rightarrow R$ which assigns a cost $c(e)$ to each edge $e \in E$ is given. In addition the vertex set V is divided into two disjoint subsets V_{A} and $V_{B}(V=$ $V_{A} \cup V_{B}, V_{A} \cap V_{B}=\emptyset$) which we will regard as positions sets of two players.

On G we consider the following two-person game from $[1,2]$. The game starts at position $v_{0} \in V$. If $v_{0} \in V_{A}$ then the move is done by the first player, otherwise it is done by the second one. The move means the passage from position v_{0} to the neighbor position v_{1} through the edge $e_{1}=\left(v_{0}, v_{1}\right) \in E$. After that if $v_{1} \in V_{A}$ then the move is done by the first player, otherwise it is done by the second one and so on indefinitely. The first player has the aim to maximize $\lim _{t \rightarrow \infty} \inf \frac{1}{t} \sum_{i=1}^{t} c\left(e_{i}\right)$ while the second one has the aim to minimize $\lim _{t \rightarrow \infty} \inf \frac{1}{t} \sum_{i=1}^{t} c\left(e_{i}\right)$.

In $[1,2]$ it is proved that for this game there exists a value $p\left(v_{0}\right)$ such that the first player has a strategy of moves that insures
$\lim _{t \rightarrow \infty} \inf \frac{1}{t} \sum_{i=1}^{t} c\left(e_{i}\right) \geq p\left(v_{0}\right)$ and the second player has a strategy of moves that insures $\lim _{t \rightarrow \infty} \inf \frac{1}{t} \sum_{i=1}^{t} c\left(e_{i}\right) \leq p\left(v_{0}\right)$. Furthermore in [1,2]it is shown that the players can achieve the value $p\left(v_{0}\right)$ applying the strategies of moves which do not depend on t. This means that the considered game can be formulated in the terms of stationary strategies. Such statement of the game in [2] is named cyclic game.

The strategies of players in cyclic game are defined as a maps

$$
\begin{aligned}
& s_{A}: u \rightarrow v \in V_{G}(u) \text { for } u \in V_{A} ; \\
& s_{B}: u \rightarrow v \in V_{G}(u) \text { for } u \in V_{B},
\end{aligned}
$$

where $V_{G}(u)$ represents the set of extremities of edges $e=(u, v) \in E$, i.e. $V_{G}(u)=\{v \in V \mid e=(u, v) \in E\}$. Since G is a finite graph then the sets of strategies of players

$$
\begin{aligned}
& S_{A}=\left\{s_{A}: u \rightarrow v \in V_{G}(u) \text { for } u \in V_{A}\right\} ; \\
& S_{B}=\left\{s_{B}: u \rightarrow v \in V_{G}(u) \text { for } u \in V_{B}\right\}
\end{aligned}
$$

are finite sets. The payoff function $F_{v_{0}}: S_{A} \times S_{B} \rightarrow R$ in cyclic game is defined as follows.

Let $s_{A} \in S_{A}$ and $s_{B} \in S_{B}$ be the fixed strategies of players. Denote by $G_{s}=\left(V, E_{s}\right)$ the subgraph of G generated by edges of form $\left(u, s_{A}(u)\right)$ for $u \in V_{A}$ and $\left(u, s_{B}(u)\right)$ for $u \in V_{B}$. Then G_{s} contains a unique directed cycle C_{s} which can be reached from v_{0} through the edges $e \in E_{s}$. The value $F_{v_{0}}\left(s_{A}, s_{B}\right)$ we consider equal to mean edges cost of cycle C_{s}, i.e.

$$
F_{v_{0}}\left(s_{A}, s_{B}\right)=\frac{1}{n\left(C_{s}\right)} \sum_{e \in E\left(C_{s}\right)} c(e),
$$

where $E\left(C_{s}\right)$ represents the set of edges of cycle C_{s} and $n\left(C_{s}\right)$ is a number of the edges of C_{s}. So, the cyclic game is determined uniquely by the network (G, V_{A}, V_{B}, c) and starting position v_{0}. In [1,2] it is proved that there exist the strategies $s_{A}^{*} \in S_{A}$ and $s_{B}^{*} \in S_{B}$ such that

$$
p(v)=F_{v}\left(s_{A}^{*}, s_{B}^{*}\right)=\max _{s_{A} \in S_{A}} \min _{s_{B} \in S_{B}} F_{v}\left(s_{A}, s_{B}\right)=
$$

$$
=\min _{s_{B} \in S_{B}} \max _{s_{A} \in S_{A}} F_{v}\left(s_{A}, s_{B}\right), \forall v \in V
$$

So, the optimal strategies s_{A}^{*}, s_{B}^{*} of players in cyclic games do not depend on starting position v although for different positions $u, v \in V$ the values $p(u)$ and $p(v)$ may be different. It means that the positions set V can be divided into several classes $V=V^{1} \cup V^{2} \cup \ldots \cup V^{k}$ according to values of positions $p^{1}, p^{2}, \ldots, p^{k}$, i.e. $u, v \in V^{i}$ if and only if $p^{i}=p(u)=p(v)$. In the case $k=1$ the network $\left(G, V_{A}, V_{B}, c\right)$ is named the ergodic network [2]. In [3] it is shown that every cyclic game with arbitrary network $\left(G, V_{A}, V_{B}, c\right)$ and given starting position v_{0} can be reduced to an auxiliary cyclic game on auxiliary ergodic network $\left(G^{\prime}, V_{A}^{\prime}, V_{B}^{\prime}, c^{\prime}\right)$.

It is well-known $[2,4]$ that the decision problem associated to cyclic game is in $N P \cap \operatorname{co}-N P$ but it is not yet known for this problem to be in P. Some exponential and pseudo-exponential algorithms for finding the value and the optimal strategies of players in cyclic are proposed in $[1,2,4]$.

Similar problems on acyclic networks have been considered in $[5,6]$. New classes of acyclic games have been studied in [5,6] and polynomial time algorithms for its solving have been elaborated. Moreover in [5,6] is made an attempt to reduce the cyclic game to acyclic one. Unfortunately the reduction from $[5,6]$ gives the first player some control over the length of the formed cycles, so that it is not conservative in the general case.

In this paper we propose a polynomial time algorithm for finding the value and optimal strategies of players in cyclic games. The proposed algorithm is based on a new reduction from cyclic games to acyclic one.

2 Some Preliminary Results

First of all we need to remind some preliminary results from [2].
Let $\left(G, V_{A}, V_{B}, c\right)$ be a network with the properties described in
section 1. We denote

$$
\operatorname{ext}(c, u)=\left\{\begin{array}{lll}
\max _{v \in V_{G}(u)}\{c(u, v)\} & \text { for } & u \in V_{A} \\
\min _{v \in V_{G}(u)}\{c(u, v)\} & \text { for } & u \in V_{B}
\end{array}\right.
$$

$$
V E X T(c, u)=\left\{v \in V_{G}(u) \mid c(u, v)=\operatorname{ext}(c, u)\right\}
$$

We shall use the potential transformation $c^{\prime}(u, v)=c(u, v)+\varepsilon(v)-\varepsilon(u)$ for costs on edges $e=(u, v) \in E$, where $\varepsilon: V \rightarrow R$ is an arbitrary function on vertex set V. In [2] it is noted that the potential transformation does not change the value and the optimal strategies of players in cyclic games.

Theorem 1 Let $\left(G, V_{A}, V_{B}, c\right)$ be an arbitrary network with the properties described in section 1. Then there exist the value $p(v), v \in V$ and the function $\varepsilon: V \rightarrow R$ which determine a potential transformation $c^{\prime}(u, v)=c(u, v)+\varepsilon(v)-\varepsilon(u)$ for costs on edges $e=(u, v) \in E$, such that the following properties hold
a) $p(u)=\operatorname{ext}\left(c^{\prime}, u\right) \quad$ for $\quad v \in V$,
b) $p(u)=p(v) \quad$ for $\quad u \in V_{A} \cup V_{B} \quad$ and $\quad v \in \operatorname{VEXT}\left(c^{\prime}, u\right)$,
c) $p(u) \geq p(v) \quad$ for $\quad u \in V_{A} \quad$ and $\quad v \in V_{G}(u)$,
d) $p(u) \leq p(v) \quad$ for $\quad u \in V_{B}$ and $v \in V_{G}(u)$,
e) $\max _{e \in E}\left|c^{\prime}(e)\right| \leq 2|V| \max _{e \in E}|c(e)|$.

The values $p(v), v \in V$ on network $\left(G, V_{A}, V_{B}, c\right)$ are determined unequally and the optimal strategies of players can be found in the following way: fix the arbitrary strategies $s_{A}^{*}: V_{A} \rightarrow V$ and $s_{B}^{*}: V_{B} \rightarrow V$ such that $s_{A}^{*}(u) \in \operatorname{VEXT}\left(c^{\prime}, u\right)$ for $u \in V_{A}$ and $s_{B}^{*}(u) \in \operatorname{VEXT}\left(c^{\prime}, u\right)$ for $u \in V_{B}$.

The proof of Theorem 1 is given in [2].
Further we shall use the theorem 1 in the case of the ergodic network $\left(G, V_{1}, V_{2}, c\right)$, i.e. we shall use the following corollary.

Corollary $1 \operatorname{Let}\left(G, V_{A}, V_{B}, c\right)$ be an ergodic network. Then there exist the value p and the function $\varepsilon: V \rightarrow R$ which determine a potential transformation $c^{\prime}(u, v)=c(u, v)+\varepsilon(v)-\varepsilon(u)$ for costs of edges
$e=(u, v) \in E$ such that $p=\operatorname{ext}\left(c^{\prime}, u\right)$ for $u \in V$. The optimal strategies of players can be found as follows: fix arbitrary strategies $s_{A}^{*}: V_{A} \rightarrow V$ and $s_{B}^{*}: V_{B} \rightarrow V$ such that $s_{A}^{*}(u) \in \operatorname{VEXT}\left(c^{\prime}, u\right)$ for $u \in V_{A}$ and $s_{B}^{*}(u) \in \operatorname{VEXT}\left(c^{\prime}, u\right)$ for $u \in V_{B}$.

3 The reduction of cyclic games to ergodic ones

Let us consider an arbitrary network $\left(G, V_{A}, V_{B}, c\right)$ with given starting position $v_{0} \in V$ which determines a cyclic game. In [3] it is shown that this game can be reduced to a cyclic game on auxiliary ergodic network $\left(G^{\prime}, W_{A}, W_{B}, \bar{c}\right), G^{\prime}=(W, F)$ such that it is preserving the value $p\left(v_{0}\right)$ and $v_{0} \in W=V \cup X \cup Y$.

The graph $G^{\prime}=(W, F)$ is obtained from G if each edge $e=(u, v)$ is changed by a triple of edges $e^{1}=(u, x), e^{2}=(x, y), e^{3}=(y, v)$ with the costs $\bar{c}\left(e^{1}\right)=\bar{c}\left(e^{2}\right)=\bar{c}\left(e^{3}\right)=c(e)$. Here $x \in X, y \in Y$ and $u, v \in V ; W=V \cup X \cup Y$. In addition in G^{\prime} each vertex x is connected with v_{0} by edge $\left(x, v_{0}\right)$ with the cost $\bar{c}\left(x, v_{0}\right)=M$ (M is a great value) and each edge $\left(y, v_{0}\right)$ is connected with v_{0} by edge $\left(y, v_{0}\right)$ with the cost $\bar{c}=\left(y, v_{0}\right)=-M$. In $\left(G^{\prime}, W_{A}, W_{B}, \bar{c}\right)$ the sets W_{A} and W_{B} are defined as follows: $W_{A}=V_{A} \cup Y ; W_{B}=V_{B} \cup X$.

It is easy to observe that this reduction can be done in linear time.

4 Acyclic games on networks and polynomial algorithms for its solving

We consider the following auxiliary games from $[5,6]$.

4.1 Acyclic c-game on acyclic networks

Let $G=(V, E)$ be a finite directed graph without directed cycles. Assume that in G there exists a vertex v_{f} which is attainable from each vertex $v \in V$, i.e. v_{f} is a sink in G. In addition we consider that a function $c: E \rightarrow R$ is given on edge set E and the vertex set V is
divided into two disjoint subsets V_{A} and $V_{B}\left(V=V_{A} \cup V_{B}, V_{A} \cap V_{B}=\emptyset\right)$ which we regard as positions sets of two players.

On G we consider the two-person game from [5]. The game starts at given position $v_{0} \in V \backslash\left\{v_{f}\right\}$. If $v_{0} \in V_{A}$ then the move is done by the first player otherwise it is done by the second one. Like in cyclic game here the move means the passage from position v_{0} to the neighbor position v_{1} through the edge $e_{1}=\left(v_{0}, v_{1}\right)$. Again if $v_{A} \in V_{A}$ then the move is done by the first player, otherwise it is done by the second one and so on while the final position v_{f} is not reached. As soon as the final position v_{f} is reached the game is over. The final step of the game we denote by t. In this game the first player has the aim to maximize the integral cost $\sum_{i=1}^{t} c\left(e_{i}\right)$ and the second player has the aim to minimize $\sum_{i=1}^{t} c\left(e_{i}\right)$.

In [5] it is shown that for such game there exists a value $\hat{p}\left(v_{0}\right)$ such that the first player has a strategy of moves that insures $\sum_{i=1}^{t} c\left(e_{i}\right) \geq$ $\hat{p}\left(v_{0}\right)$ and the second player has a strategy of moves that insures $\sum_{i=1}^{t} c\left(e_{i}\right) \leq \hat{p}\left(v_{0}\right)$. Moreover the players can achieve this value using the stationary strategies of moves. This game in [5] is named acyclic c-game. The strategies of players in acyclic c-game can be defined as the maps

$$
\begin{aligned}
& s_{A}: u \rightarrow v \in V_{G}(u) \text { for } u \in V_{A} \backslash\left\{v_{0}\right\} \\
& s_{B}: u \rightarrow v \in V_{G}(u) \text { for } u \in V_{B} \backslash\left\{v_{0}\right\} .
\end{aligned}
$$

Since G is a finite graph then the set of strategies of players

$$
\begin{aligned}
& S_{A}=\left\{s_{A}: u \rightarrow v \in V_{G}(u) \text { for } u \in V_{A} \backslash\left\{v_{0}\right\}\right\} \\
& S_{B}=\left\{s_{B}: u \rightarrow v \in V_{G}(u) \text { for } u \in V_{B} \backslash\left\{v_{0}\right\}\right\}
\end{aligned}
$$

are finite sets. The payoff function $\hat{F}_{v_{0}}: S_{A} \times S_{B} \rightarrow R$ in acyclic c-game is defined as follows.

Let $s_{A} \in S_{A}$ and $s_{B} \in S_{B}$ be the fixed strategies of players. Denote by $T_{s}=\left(V, E_{s}\right)$ the tree with root vertex v_{f} in G generated by edges of form $\left(u, s_{A}(u)\right)$ for $u \in V_{A} \backslash\left\{v_{0}\right\}$ and $\left(u, s_{B}(u)\right)$ for $u \in V_{B} \backslash\left\{v_{0}\right\}$. Then in T_{s} there exists a unique directed path $P_{T_{s}}\left(v_{0}, v_{f}\right)$ from v_{0} to v_{f}. We put

$$
\hat{F}_{v_{0}}\left(s_{A}, s_{B}\right)=\sum_{e \in E\left(P_{T_{s}}\left(v_{0}, v_{f}\right)\right)} c(e)
$$

where $E\left(P_{T_{s}}\left(v_{0}, v_{f}\right)\right)$ represents the set of edges of the directed path $P_{T_{s}}\left(v_{0}, v_{f}\right)$.

In $[5,6]$ it is proved that for acyclic c-game on network $\left(G, V_{1}, V_{2}, c\right)$ there exist the strategies of players s_{A}^{*}, s_{B}^{*} such that

$$
\begin{equation*}
\hat{p}(v)=\hat{F}_{v}\left(s_{A}^{*}, s_{B}^{*}\right)=\max _{s_{A} \in S_{A}} \min _{s_{B} \in S_{B}} \hat{F}_{v}\left(s_{A}, s_{B}\right)=\min _{s_{B} \in S_{B}} \max _{s_{A} \in S_{A}} \hat{F}_{v}\left(s_{A}, s_{B}\right) \tag{1}
\end{equation*}
$$

and s_{A}^{*}, s_{B}^{*} do not depend on starting position $v \in V$, i.e. (1) holds for every $v \in V$. Note that here for different positions u and v the values $p(u)$ and $p(v)$ may be different.

The equality (1) is evident in the case when $\operatorname{ext}(c, u)=0, \forall u \in V$. In this case $p(u)=0, \forall u \in V$ and the optimal strategies of players can be obtained by fixing the maps $s_{A}^{*}: V_{A} \backslash\left\{v_{f}\right\} \rightarrow V$ and $s_{B}^{*}: V_{B} \backslash\left\{v_{f}\right\} \rightarrow$ V such that $s_{A}^{*}(u) \in V E X T(c, u)$ for $u \in V_{A} \backslash\left\{v_{f}\right\}$ and $s_{B}^{*}(u) \in$ $V \operatorname{EXT}(c, u)$ for $u \in V_{B} \backslash\left\{v_{f}\right\}$.

If the network $\left(G, V_{A}, V_{B}, c\right)$ has the property $\operatorname{ext}(c, u)=0, \forall u \in$ $V \backslash\left\{v_{f}\right\}$ then it is named the network in canonic form [5]. So, for the acyclic c-game on network in canonic form the equality (1) holds and $p(v)=0, \forall v \in V$.

In general case the equality (1) can be proved using the properties of the potential transformation $c^{\prime}(u, v)=c(u, v)+\varepsilon(v)-\varepsilon(u)$ on edges $e=(u, v)$ of the network, where $\varepsilon: V \rightarrow R$ is an arbitrary real function on V. The fact is that such transformation of the costs on edges of the network in acyclic c-game do not change the optimal strategies of players, although the values $\hat{p}(v)$ of the positions $v \in V$ are changed by $\hat{p}(v)+\varepsilon\left(v_{0}\right)-\varepsilon(v)$. It means that for arbitrary function $\varepsilon: V \rightarrow R$ the optimal strategies of the players in acyclic c-games on networks
$\left(G, V_{A}, V_{B}, c\right)$ and on $\left(G, V_{A}, V_{B}, c^{\prime}\right)$ are the same. Using such property in [5] the following theorem is proved.

Theorem 2 For arbitrary acyclic network $\left(G, V_{A}, V_{B}, c\right)$ there exists a function $\varepsilon: R \rightarrow R$ which determines a potential transformation $c^{\prime}(u, v)=c(u, v)+\varepsilon(v)-\varepsilon(u)$ on edges $e=(u, v) \in E$ such that $\left(G, V_{A}, V_{B}, c^{\prime}\right)$ has the canonic form. The value $\varepsilon(v), v \in V$, which determines $\varepsilon: V \rightarrow R$, can be found by using the following recursive formula

$$
\begin{cases}\varepsilon\left(v_{f}\right)=0, \tag{2}\\ \varepsilon(u)= \begin{cases}\max _{v \in V_{G}(u)}\{c(u, v)+\varepsilon(v)\}, & \text { for } u \in V_{A} \backslash\left\{v_{f}\right\}, \\ \min _{v \in V_{G}(u)}\{c(u, v)+\varepsilon(v)\}, & \text { for } u \in V_{B} \backslash\left\{v_{f}\right\} .\end{cases} \end{cases}
$$

According to this theorem the optimal strategies of players in acyclic c-game can be found using the following algorithm.

Algorithm 1.

1. Find the values $\varepsilon(v), v \in V$, according to recursive formula (2) and the corresponding potential transformation $c^{\prime}(u, v)=c(u, v)+$ $\varepsilon(v)-\varepsilon(u)$ for edges $(u, v) \in E$.
2. Fix the arbitrary maps $s_{A}^{*}: V_{A} \backslash\left\{v_{f}\right\} \rightarrow V$ and $s_{B}^{*}: V_{B} \backslash\left\{v_{f}\right\} \rightarrow$ V for which $s_{A}^{*}(u) \in \operatorname{VEXT}\left(c^{\prime}, u\right)$ for $u \in V_{A} \backslash\left\{v_{f}\right\}$ and $s_{B}^{*}(u) \in$ $V \operatorname{EXT}\left(c^{\prime}, u\right)$ for $u \in V_{B} \backslash\left\{v_{f}\right\}$.

Remark 1 The values $\varepsilon(u), u \in V$, represent the values of the acyclic c-game on $\left(G, V_{A}, V_{B}, c\right)$ with starting position u, i.e. $\varepsilon(u)=$ $\hat{p}(u), \forall u \in V$.

Remark 2 Algorithm 1 needs $O\left(n^{2}\right)$ elementary operations because such number of operations need the tabulation of values $\varepsilon(u), u \in V$, by using formula (2).

4.2 Acyclic c-game on arbitrary networks

Let us consider the game from section 4.2 when G is an arbitrary graph, i.e. G may contain directed cycles. In this case the subgraph $T_{s}=\left(V, F_{s}\right)$, generated by given strategies of players

$$
\begin{aligned}
& s_{A}: u \rightarrow v \in V_{G}(u) \text { for } u \in V_{A} \backslash\left\{v_{f}\right\} ; \\
& s_{B}: u \rightarrow v \in V_{G}(u) \text { for } u \in V_{B} \backslash\left\{v_{f}\right\},
\end{aligned}
$$

may contain directed cycles. So, for given s_{A} and s_{B} either exists a unique directed path $P_{T_{s}}\left(v_{0}, v_{f}\right)$ from v_{0} to v_{f} in T_{s} or such a path does not exist in T_{s}. In the second case there exists a unique directed cycle C_{s} which can be reached from v_{0} through the edges of T_{s}. If in T_{s} there exists a unique directed path $P_{T_{s}}\left(v_{0}, v_{f}\right)$ from v_{0} to v_{f} then $\hat{F}_{v_{0}}\left(s_{A}, s_{B}\right)$ we define as

$$
\hat{F}_{v_{0}}\left(s_{A}, s_{B}\right)=\sum_{e \in E\left(P_{T_{s}}\left(v_{0}, v_{f}\right)\right)} c(e) .
$$

If in T_{s} there are no directed paths from v_{0} to v_{f} then $\hat{F}_{v_{0}}\left(s_{A}, s_{B}\right)$ we define in the following way.

Let C_{s} be the cycle which can be reached from v_{0} and $P_{T_{s}}^{\prime}\left(v_{0}, u_{0}\right)$ represent a unique directed path in T_{s} which connects v_{0} with the cycle $C_{s}\left(P_{T_{s}}^{\prime}\left(v_{0}, u_{0}\right)\right.$ and C_{s} have no common edges). Then we put

$$
\hat{F}_{v_{0}}\left(s_{A}, s_{A}\right)=\left\{\begin{array}{lll}
+\infty & \text { if } & \sum_{e \in E\left(C_{s}\right)} c(e)>0 \\
\sum_{e \in E\left(P_{T_{s}}^{\prime}\left(v_{0}, u_{0}\right)\right)} c(e) & \text { if } & \sum_{e \in E\left(C_{s}\right)} c(e)=0 \\
-\infty & \text { if } & \sum_{e \in E\left(C_{s}\right)} c(e)<0 .
\end{array}\right.
$$

We consider the problem of finding the strategies s_{A}^{*}, s_{B}^{*} for which

$$
\hat{F}_{v_{0}}\left(s_{A}^{*}, s_{B}^{*}\right)=\max _{s_{A} \in S_{A}} \min _{s_{B} \in S_{B}} \hat{F}_{v_{0}}\left(s_{A}, s_{B}\right)
$$

This problem [7] is named the max-min path problem in c-game.

It is easy to observe that for this problem may be the case when the players couldn't reach the final position v_{f}. We shall formulate the condition when for the player in this game there exists a settle value $\hat{p}(v)$ for each $v \in V$.

Theorem 3 Let $\left(G, V_{A}, V_{B}, c\right)$ be a network with given final position, where G is an arbitrary directed graph. Moreover let us consider that $\sum_{e \in E\left(C_{s}\right)} c(e) \neq 0$ for every cycle C_{s} from G. Then for c-game on $\left(G, V_{A}, V_{B}, c\right)$ the condition

$$
\begin{aligned}
\hat{p}(v)= & \hat{F}_{v}\left(s_{A}^{*}, s_{B}^{*}\right)=\max _{s_{A} \in S_{A}} \min _{s_{B} \in S_{B}} \hat{F}_{v}\left(s_{A}, s_{B}\right)= \\
& =\min _{s_{B} \in S_{B}} \max _{s_{A} \in S_{A}} \hat{F}_{v}\left(s_{A}, s_{B}\right), \forall v \in V
\end{aligned}
$$

holds if and only if there exists a function $\varepsilon: V \rightarrow R$ which determines a potential transformation $c^{\prime}(u, v)=c(u, v)+\varepsilon(v)-\varepsilon(u)$ on edges $(u, v) \in E$ such that $\operatorname{ext}\left(c^{\prime}, u\right)=0, \forall v \in V$. The optimal strategies of players in c-game on $\left(G, V_{A}, V_{B}, c\right)$ can be found by fixing the arbitrary maps $s_{A}^{*}: V_{A} \backslash\left\{v_{f}\right\} \rightarrow V$ and $s_{B}^{*}: V_{B} \backslash\left\{v_{f}\right\} \rightarrow V$ such that $s_{A}^{*}(u) \in$ $\operatorname{VEXT}\left(c^{\prime}, u\right)$ for $u \in V_{A}$ and $s_{B}^{*}(v) \in \operatorname{VEXT}\left(c^{\prime}, u\right)$ for $u \in V_{B}$.

Proof. \Rightarrow Let us consider that the condition

$$
\hat{p}(v)=\hat{F}_{v}\left(s_{A}^{*}, s_{B}^{*}\right)=\max _{s_{A} \in S_{A}} \min _{s_{B} \in S_{B}} \hat{F}_{v}\left(s_{A}, s_{B}\right)=\min _{s_{B} \in S_{B}} \max _{s_{A} \in S_{A}} \hat{F}_{v}\left(s_{A}, s_{B}\right)
$$

holds for every $v \in V$ and $\hat{p}(v)<\infty, \forall v \in V$. It is easy to observe that if we put $\varepsilon(v)=\hat{p}(v)$ for $v \in V$ then the function $\varepsilon: V \rightarrow R$ determines a potential transformation $c^{\prime}(u, v)=c(u, v)+\varepsilon(v)-\varepsilon(u)$ on edges $(u, v) \in E$ such that holds $\operatorname{ext}\left(c^{\prime}, u\right)=0, \forall u \in V$.
\Leftarrow Let us consider that there exists a potential transformation $c^{\prime}(u, v)=c(u, v)+\varepsilon(v)-\varepsilon(u)$ of costs of edges $(u, v) \in E$ such that $\operatorname{ext}\left(c^{\prime}, u\right)=0, \forall u \in V$. Then for a c^{\prime}-game on network $\left(G, V_{A}, V_{B}, c^{\prime}\right)$ the following condition

$$
\max _{s_{A} \in S_{A}} \min _{s_{B} \in S_{B}} \hat{F}_{v}^{\prime}\left(s_{A}, s_{B}\right)=\min _{s_{B} \in S_{B}} \max _{s_{A} \in S_{A}} \hat{F}_{v}^{\prime}\left(s_{A}, s_{B}\right), \forall v \in V
$$

holds. Since the potential transformation do not change the optimal strategies of players then

$$
\max _{s_{A} \in S_{A}} \min _{s_{B} \in S_{B}} \hat{F}_{v}\left(s_{A}, s_{B}\right)=\min _{s_{B} \in S_{B}} \max _{s_{A} \in S_{A}} \hat{F}_{v}\left(s_{A}, s_{B}\right), \forall v \in V
$$

Corollary 2 The difference $\varepsilon(v)-\varepsilon\left(v_{0}\right), v \in V$, in Theorem 3 determines the cost of max-min path from v to v_{f}, i.e. $\varepsilon(v)=\hat{p}(v)$, $\forall v \in V$.

Algorithm 2.

1. We construct an auxiliary acyclic graph $H=(W, \bar{E})$, where

$$
\begin{aligned}
W= & \left\{w_{0}^{0}\right\} \cup W^{1} \cup W^{2} \cup \ldots \cup W^{n}, W^{i} \cap W^{j}=\emptyset, i \neq j \\
& W^{i}=\left\{w_{0}^{i}, w_{1}^{i}, \ldots, w_{n-1}^{i}\right\}, i=\overline{1, n} \\
& \bar{E}=E^{0} \cup E^{1} \cup E^{2} \cup \ldots \cup E^{n-1} ; \\
& E^{i}=\left\{\left(w_{k}^{i+1}, w_{l}^{i}\right) \mid\left(v_{k}, v_{l}\right) \in E\right\}, i=\overline{1, n-1} ; \\
& E^{0}=\left\{\left(w_{k}^{i}, w_{0}^{0}\right) \mid\left(v_{k}, v_{0}\right) \in E, i=\overline{1, n}\right\} .
\end{aligned}
$$

The vertex set W of H is obtained from V if it is doubled n times and then a sink vertex w_{0}^{0} is added. The edge subset $E^{i} \subseteq \bar{E}$ in H connects the vertices of the set W^{i+1} and the vertices of the set W^{i} in the following way: if in G there exists an edge $\left(v_{k}, v_{l}\right) \in E$ then in H we add the edge $\left(w_{k}^{i+1}, w_{l}^{i}\right)$. The edge subset $E^{0} \subseteq \bar{E}$ in H connects the vertices $w_{k}^{i} \in W^{1} \cup W^{2} \cup \ldots \cup W^{n}$ with the sink vertex w_{0}^{0}, i.e. if there exists an edge $\left(v_{k}, v_{0}\right) \in E$ then in H we add the edges $\left(w_{k}^{i}, w_{0}^{0}\right) \in E^{0}, i=\overline{1, n}$.

After that we define the acyclic network $\left(H_{0}, W_{A}, W_{B}, c_{0}\right), H_{0}=$ (W_{0}, E_{0}) where H_{0} is obtained from H by deleting the vertices $w_{k}^{i} \in W$ from which the vertex w_{0}^{0} couldn't be attainable. The sets W_{A}, W_{B} and the cost function $c_{0}: E_{0} \rightarrow R$ are defined as follows:

$$
\begin{gathered}
W_{A}=\left\{w_{k}^{i} \in W_{0} \mid v_{k} \in V_{A}\right\}, W_{B}=\left\{w_{k}^{i} \in W_{0} \mid v_{k} \in V_{B}\right\} \\
c_{0}\left(w_{k}^{i+1}, w_{k}^{i}\right)=c\left(v_{k}, v_{l}\right) \text { if }\left(v_{k}, v_{l}\right) \in E \text { and }\left(w_{k}^{i+1}, w_{k}^{i}\right) \in E_{0}
\end{gathered}
$$

$$
c_{0}\left(w_{k}^{i}, w_{0}^{0}\right)=c\left(v_{k}, v_{0}\right) \text { if }\left(v_{k}, v_{0}\right) \in E \quad \text { and }\left(w_{k}^{i}, w_{0}^{0}\right) \in E_{0}
$$

2. On auxiliary acyclic network $\left(H_{0}, W_{A}, W_{B}, c_{0}\right)$ with sink vertex w_{0}^{0} we consider the acyclic c-game. According to recursive formula (2) we find $\varepsilon\left(w_{k}^{i}\right)$ for every $w_{k}^{i} \in H_{0}$, i.e. $\varepsilon\left(w_{k}^{i}\right)=\hat{p}\left(w_{k}^{i}\right), \forall w_{k}^{i} \in H_{0}$.
3. Fix $U=\left\{v_{0}\right\} ; i=0$.
4. $i=i+1$.
5. Find the edge set $E(U)=\left\{\left(v_{k}, v_{l}\right) \in E \mid v_{l} \in U, v_{k} \in V \backslash U\right\}$ and the vertex set $V(U)=\left\{v_{k} \in V \mid e=\left(v_{k}, v_{l}\right) \in E(U)\right\}$.
6. Fix $\varepsilon\left(v_{k}\right)=\varepsilon\left(w_{k}^{i}\right)$ for $v_{k} \in V(U)$.
7. Select the vertex set $V^{0}(U)$ from $V(U)$ where $v_{k} \in V^{0}(U)$ if the following conditions are satisfied:
a) $c\left(v_{k}, v_{q}\right)+\varepsilon\left(v_{q}\right)-\varepsilon\left(v_{k}\right) \leq 0, \forall v_{q} \in U \cup V(U),\left(v_{k}, v_{q}\right) \in E$ if $v_{k} \in V_{A} \cap V(U) ;$
b) $c\left(v_{k}, v_{q}\right)+\varepsilon\left(v_{q}\right)-\varepsilon\left(v_{k}\right) \geq 0, \forall v_{q} \in U \cup V(U),\left(v_{k}, v_{q}\right) \in E$ if $v_{k} \in V_{B} \cap V(U) ;$
c) there exists an edge $\left(v_{k}, v_{l}\right) \in E$ such that

$$
c\left(v_{k}, v_{l}\right)+\varepsilon\left(v_{l}\right)-\varepsilon\left(v_{k}\right)=p\left(v_{0}\right)
$$

8. If $V^{0}(U)=\emptyset$ go to step 10 .
9. Change U by $U \cup V^{0}(U)$.
10. If $U \neq V$ then go to step 4 , otherwise go to next step 11 .
11. End.

The correctness of this algorithm follows from the algorithm from [8].

Remark 3 Algorithm 4 finds the values $p\left(v_{0}\right)$ and optimal strategies of players in time $O\left(n^{2}|E|^{2}\right)$.

4.3 Acyclic l-game on networks

Let $\left(G, V_{A}, V_{B}, c\right)$ be the network with the properties described in section 1. So, $G=(V, E)$ represents a directed graph without directed cycles and G contains a sink vertex $v_{0} \in V$. On E a function $c: E \rightarrow R$ is defined and on V a partition $V=V_{A} \cup V_{B}\left(V_{A} \cap V_{B}=\emptyset\right)$ is given, where V_{A} and V_{B} are considered as positions sets of two players.

We study the following acyclic l-game from [5]. Again the strategies of players we define as the maps

$$
\begin{aligned}
& s_{A}: u \rightarrow v \in V_{G}(u) \text { for } u \in V_{A} \backslash\left\{v_{f}\right\} ; \\
& s_{B}: u \rightarrow v \in V_{G}(u) \text { for } u \in V_{B} \backslash\left\{v_{f}\right\} .
\end{aligned}
$$

The payoff function $\bar{F}_{v_{0}}: S_{A} \times S_{B} \rightarrow R$ in this game we define as follows.
Let $s_{A} \in S_{A}$ and $s_{B} \in S_{B}$ be the fixed strategies of players. Then the tree $T_{s}=\left(V, E_{s}\right)$ contains a unique directed path $P_{T_{s}}\left(v_{0}, v\right)$ from v_{0} to v_{f}. We put

$$
\bar{F}_{v_{0}}\left(s_{A}, s_{B}\right)=\frac{1}{n\left(P_{T_{s}}\left(v_{0}, v_{f}\right)\right)} \sum_{e \in E\left(P_{T_{s}}\left(v_{0}, v_{f}\right)\right)} c(e)
$$

where $E\left(P_{T_{s}}\left(v_{0}, v_{f}\right)\right)$ is the set of edges of the path $P_{T_{s}}\left(v_{0}, v_{f}\right)$ and $n\left(P_{T_{s}}\left(v_{0}, v_{f}\right)\right)$ is the number of its edges.

In $[5,6]$ it is proved that the function $\bar{F}_{v_{0}}\left(s_{A}, s_{B}\right)$ satisfies the following condition:

$$
\begin{gather*}
\bar{p}\left(v_{0}\right)=\bar{F}_{v_{0}}\left(s_{A}^{*}, s_{B}^{*}\right)=\max _{s_{A} \in S_{A}} \min _{s_{B} \in S_{B}} \bar{F}_{v_{0}}\left(s_{A}, s_{A}\right)= \\
=\min _{s_{B} \in S_{B}} \max _{s_{A} \in S_{A}} \bar{F}_{v_{0}}\left(s_{A}, s_{B}\right) \tag{3}
\end{gather*}
$$

In this game the optimal strategies s_{A}^{*} and s_{B}^{*} of players depend on starting position v_{0}. But the players can achieve the settle value $\bar{p}\left(v_{0}\right)$ starting from v_{0} by using the successive choosing of optimal strategies of moves from one position to another while the final position v_{f} is not reached.

The equality (3) can be proved by using the Theorem 1 (corollary 1). It is easy to observe that if for given acyclic l-game we identify the positions v_{0} and v_{f} we obtain the cyclic game with an auxiliary ergodic network $\left(G^{\prime}, V_{A}^{\prime}, V_{B}^{\prime}, c^{\prime}\right)$ and given starting position v_{0}. In this ergodic network the graph G^{\prime} is obtained from G when the vertices v_{0} and v_{f} are identified. In the graph G^{\prime} all directed cycles pass through the vertex v_{0}. Applying the corollary 1 of Theorem 1 to the obtained cyclic games on ergodic network $\left(G^{\prime}, V_{A}^{\prime}, V_{B}^{\prime}, c^{\prime}\right)$ with starting position v_{0}, we obtain the proof of the following theorem [4].

Theorem 4 Let be given an acyclic l-game on network Let (G, V_{A}, $\left.V_{B}, c\right)$ with starting position v_{0}. Then there exist a value $\bar{p}\left(v_{0}\right)$ and a function $\varepsilon: V \rightarrow R$ which determine a potential transformation $c^{\prime}(u, v)=c(u, v)+\varepsilon(v)-\varepsilon(u)$ of costs on edges $e=(u, v) \in E$ such that the following conditions hold
a) $\bar{p}\left(v_{0}\right)=\operatorname{ext}\left(c^{\prime}, u\right), \forall u \in V \backslash\left\{v_{f}\right\}$;
b) $\varepsilon\left(v_{0}\right)=\varepsilon\left(v_{f}\right)$
the optimal strategies of players in acyclic l-game can be found as follows: fix the arbitrary maps $s_{A}^{*}: V_{A} \backslash\left\{v_{f}\right\} \rightarrow V$ and $s_{B}^{*}: V_{B} \backslash\left\{v_{f}\right\} \rightarrow V$ such that $s_{A}^{*}(u) \in \operatorname{VEXT}\left(c^{\prime}, u\right)$ for $u \in V \backslash\left\{v_{f}\right\}$ and $s_{B}^{*}(u) \in$ $V E X T\left(c^{\prime}, u\right)$.

This theorem follows from corollary 1 of Theorem 1 because the acyclic l-game on network Let $\left(G, V_{A}, V_{B}, c\right)$ with starting position v_{0} can be regarded as a cyclic game on network Let $\left(G^{\prime}, V_{A}^{\prime}, V_{B}^{\prime}, c^{\prime}\right)$ with starting position v_{0}. This network is obtained from the network $\left(G, V_{A}, V_{B}, c\right)$ when the vertices v_{0} and v_{f} are identified.

Taking into consideration remark 2 and corollary 2 of Theorem 3 we obtain the following result.

Corollary 3 The difference $\varepsilon(v)-\varepsilon\left(v_{0}\right), v \in V$, in Theorem 4 represents the costs of max-min path from v to v_{f} in acyclic c-game on network $\left(G, V_{A}, V_{B}, \bar{c}\right)$ where $\bar{c}(u, v)=c(u, v)-\bar{p}\left(v_{0}\right), \forall(u, v) \in E$.

So, if $\bar{p}\left(v_{0}\right)$ is known then the optimal strategies s_{A}^{*} and s_{B}^{*} of players in acyclic l-games can be found in time $O\left(n^{2}\right)$ by reducing acyclic l game to acyclic c-game on $\left(G, V_{A}, V_{B}, \bar{c}\right)$.

On the basis of this property in [5] the polynomial algorithm for solving l-games is elaborated. In [6] an attempt to elaborate strongly polynomial time algorithm for l-games is made. But the algorithm from [6] contains the same flow as the algorithm of reducing cyclic games to acyclic one.

5 Polynomial time algorithm for solving cyclic games

On the basis of the obtained results we can propose polynomial time algorithm for solving cyclic games.

We consider an acyclic game on ergodic network $\left(G, V_{A}, V_{B}, c\right)$ with given starting position v_{0}. The graph $G=(V, E)$ is considered to be strongly connected and $V=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. Assume that v_{0} belongs to the cycle $C_{s^{*}}$ determined by the optimal strategies of players s_{A}^{*} and s_{B}^{*}.

We construct an auxiliary acyclic graph $H_{r}=\left(\bar{W}_{r}, \bar{E}_{r}\right)$, where

$$
\begin{aligned}
\bar{W}_{r}= & \left\{w_{0}^{0}\right\} \cup W^{1} \cup W^{2} \cup \ldots \cup W^{r}, W^{i} \cap W^{j}=\emptyset, i \neq j \\
& W^{i}=\left\{w_{0}^{i}, w_{1}^{i}, \ldots, w_{n-1}^{i}\right\}, i=\overline{1, r} \\
& \bar{E}=E^{0} \cup E^{1} \cup E^{2} \cup \ldots \cup E^{r-1} \\
& E^{i}=\left\{\left(w_{k}^{i+1}, w_{l}^{i}\right) \mid\left(v_{k}, v_{l}\right) \in E\right\}, i=\overline{1, r-1} \\
& E^{0}=\left\{\left(w_{k}^{i}, w_{0}^{0}\right) \mid\left(v_{k}, v_{0}\right) \in E, i=\overline{1, r}\right\}
\end{aligned}
$$

The vertex set W_{r} of H_{r} is obtained from V if it is doubled r times and then a sink vertex w_{0}^{0} is added. The edge subset $E^{i} \subseteq \bar{E}$ in H_{r} connects the vertices of the set W^{i+1} and the vertices of the set W^{i} in the following way: if in G there exists an edge $\left(v_{k}, v_{l}\right) \in E$ then in H_{r} we add the edge $\left(w_{k}^{i+1}, w_{l}^{i}\right)$. The edge subset $E^{0} \subseteq \bar{E}$ in H_{r} connects the vertices $w_{k}^{i} \in W^{1} \cup W^{2} \cup \ldots \cup W^{r}$ with the sink vertex w_{0}^{0}, i.e. if there exists an edge $\left(v_{k}, v_{0}\right) \in E$ then in H_{r} we add the edges $\left(w_{k}^{i}, w_{0}^{0}\right) \in E^{0}, i=\overline{1, r}$.

After that we define the acyclic network $\left(H_{r}^{\prime}, W_{A}, W_{B}, c_{r}^{\prime}\right), H_{r}^{\prime}=$ $\left(W_{r}, E_{r}\right)$ where H_{r}^{\prime} is obtained from H_{r} by deleting the vertices $w_{k}^{i} \in$ \bar{W}_{r} from which the vertex w_{0}^{0} couldn't be attainable. The sets W_{A}, W_{B} and the cost function $c_{r}^{\prime}: E_{r} \rightarrow R$ are defined as follows:

$$
\begin{gathered}
W_{A}=\left\{w_{k}^{i} \in W_{0} \mid v_{k} \in V_{A}\right\}, W_{B}=\left\{w_{k}^{i} \in W_{0} \mid v_{k} \in V_{B}\right\} \\
c_{r}^{\prime}\left(w_{k}^{i+1}, w_{k}^{i}\right)=c\left(v_{k}, v_{l}\right) \text { if } \quad\left(v_{k}, v_{l}\right) \in E \quad \text { and } \quad\left(w_{k}^{i+1}, w_{k}^{i}\right) \in E_{r}
\end{gathered}
$$

$$
c_{r}^{\prime}\left(w_{k}^{i}, w_{0}^{0}\right)=c\left(v_{k}, v_{0}\right) \text { if }\left(v_{k}, v_{0}\right) \in E \quad \text { and }\left(w_{k}^{i}, w_{0}^{0}\right) \in E_{r}
$$

Now we consider the acyclic c-game on acyclic network $\left(H_{r}^{\prime}, W_{A}\right.$, $\left.W_{B}, c_{r}^{\prime}\right)$ with sink vertex w_{0}^{0} and starting position w_{0}^{r}.

Lemma 1 Let $p=p\left(v_{0}\right)$ be the value of the ergodic game on G and the number of edges of the maxim cycle in G is equal to r. Moreover, let $p_{r}\left(W_{0}^{r}\right)$ be the value of the l-game on $\left(H_{r}^{\prime}, W_{A}, W_{B}, c_{r}^{\prime}\right)$ with starting position w_{0}^{r}. Then $p\left(v_{0}\right)=p_{r}\left(w_{0}^{r}\right)$.

Proof. It is evident that there exist a bijective mapping between the set of cycles with exactly r edges (which contains the vertex v_{0}) in G and the set of directed paths with r edges from w_{0}^{r} to w_{0}^{0} in H_{r}^{\prime}. Therefore $p\left(v_{0}\right)=p_{r}\left(w_{0}^{r}\right)$.

On the basis of this lemma we can propose the following algorithm for finding the optimal strategies of players in cyclic games.

Algorithm 3.

We construct the acyclic networks $\left(H_{r}^{\prime}, W_{A}, W_{B}, c_{r}^{\prime}\right), r=2,3, \ldots, n$ and for each of them solve l-game. In such a way we find the values $p_{2}\left(w_{0}^{2}\right), p_{3}\left(w_{0}^{3}\right), \ldots, p_{n}\left(w_{0}^{n}\right)$ for these l-games. Then we consequatively fix $p=p_{2}\left(w_{0}^{2}\right), p_{3}\left(w_{0}^{3}\right), \ldots, p_{n}\left(w_{0}^{n}\right)$ and each time solve the c-game on network $\left(G, V_{A}, V_{B}, c^{\prime}\right)$, where $c^{\prime}=c-p$. Fixing each time the values $\varepsilon^{\prime}\left(v_{k}\right)=\widehat{p}^{\prime}\left(v_{k}\right)$ for $v_{k} \in V$ we check if the following condition

$$
\operatorname{ext}\left(\bar{c}^{\prime}, v_{k}\right)=0 . \quad \forall v_{k} \in V
$$

is satisfied, where $\bar{c}^{\prime}\left(v_{k}, v_{l}\right)=c^{\prime}\left(v_{k}, v_{l}\right)+\varepsilon\left(v_{l}\right)-\varepsilon\left(v_{k}\right)$. We find r for which this condition holds and fix the respective maps s_{A}^{*} and s_{B}^{*} such that $s_{A}^{*}\left(v_{k}\right) \in \operatorname{VEXT}\left(c^{\prime}, v_{k}\right)$ for $u \in V_{A}$ and $s_{B}^{*}\left(v_{k}\right) \in \operatorname{VEXT}\left(c^{\prime}, v_{k}\right)$ for $u \in V_{B}$. So, s_{A}^{*} and s_{B}^{*} represent the optimal strategies of player in cyclic games on G.

References

[1] A. Ehrenfeucht, J. Mycielski, Positional strategies for mean payoff games. International Journal of Game Theory, (8), 1979, pp. 109113.
[2] V.A. Gurvich, A.V. Karzanov, L.G. Khachiyan, Cyclic games and an algorithm to find minmax cycle means in directed graphs. USSR, Computational Mathematics and Mathematical Physics, (28), 1988, pp. 85-91.
[3] D.D. Lozovanu, Extremal-Combinatorial problems and algorithms for its solving. Kishinev, Stiinta, 1991.
[4] U. Zwick, M. Paterson, The complexity of mean payoff games on graphs. TCS, 158: 344-359, 1996.
[5] D.D. Lozovanu, Algorithms to solve some classes of network minmax problems and their applications, Cybernetics (29), 1991, p. 93100.
[6] D.D. Lozovanu, Strongly polynomial algorithms for finding minimax paths in networks and solution of cyclic games, Cybernetics and Systems Analysis, (29), 1993, p. 754-759.
[7] D.D. Lozovanu, V.A. Trubin, Min-max path problem on network and an algorithm for its solving, Discrete Mathematics and Applications, (6), 1994, pp. 138-144.
[8] R. Boliac, D. Lozovanu, D. Solomon, Optimal paths in network games with p players, Discrete Applied Mathematics, vol. 99, N 1-3 (2000), pp. 339-348.
D.Lozovanu,

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, str. Academiei, 5, Chishinau, MD-2028,
Republic of Moldova
E-mail:lozovanu@math.md

