Computer Science Journal of Moldova, vol.11, no.1(31), 2003

Fast software-oriented hash function based on
data-dependent lookup operations

Moldovyan N.A., Summerville D.H.

Abstract

The paper considers a method of the construction of the it-
erated hash function on the bases of the data-dependent lookup
operations used previously in the design of the fast software suit-
able ciphers. To transform encryption function into a block one-
way function we use the data-dependent initial condition at each
transformation cycle of the round function except the first cycle.
The variable initial conditions has been also used to strengthen
chaining while constructing the iterated hash function. While fix-
ing initial condition the round function can be transformed into a
block cipher suitable to perform fast disk encryption. The size of
the input data block of the round function and of the block cipher
is parameterized defining their suitability for different practical
applications.

Key words: data-dependent operations, hash function, fast
cipher, software implementation

1 Introduction

Fast software suitable cryptographic methods are widely used as a ba-
sic protection mechanism in modern computer security systems. A
special unkeyed checksum-like function is called one-way hash function
(or simply hash function). Hash functions suites well for data integrity
control as well as for producing message digests in digital signature sys-
tems. A hash function is a computationally efficient function mapping
binary strings of arbitrary length to binary strings of some fixed length,
called hash-values: Hash(M, Hy) = H, where M = (M, My, ..., M,)

(©2003 by Moldovyan N.A., Summerville D.H.

73

Moldovyan N.A., Summerville D.H.

is a hashed message, Hj is a specified initial value, H is the hash value
from M. Since Hj is a specified, one can write simply Hash(M) = H.
Usually hash function has iterated structure. An iterated hash func-
tion Hash is determined by an easily computable round function h
from two bit strings M; and H; ; of respective lengths m and h:
H; = h(M;,H;_1), where i = 1,2,...,n and H = H,. Hash function
should be strongly collision-free. A hash function is strongly collision-
free if it is computationally infeasible to find messages M and M’ that
M # M' and H = H'. The strongly collision-free property implies the
one-way property [1].

A number of hash functions have been proposed earlier. The well
known hash functions are Snefru, N-Hash, MD5, MD4, MD2, and
SHA [2, 3].The algorithms MD5 and SHA are widely used. An inter-
esting approach to the iterated hash function design is connected with
the use of the block ciphers to construct round functions. Because of
the birthday attack the minimum size of the hash value should be 128
bit [1, 2]. A class of hash functions is based on the use of the 128-bit
block ciphers [2]. Using more complex constructions allows one to de-
velop 128-bit iterated hash functions based on 64-bit block ciphers [3].
Use of the 128-bit block ciphers is very attractive, however it is con-
nected with the following problem. The majority of the known block
ciphers use the key scheduling. Performing the key scheduling in block
ciphers is not critical, but in the round hash functions the data blocks
or intermediate hash values are used as key. This defines necessity to
perform the key scheduling procedures in each round of data hashing
that leads to reduction of the performance.

The purpose of this work is to construct a secure and fast software-
oriented hash function based on some fast encryption mechanism avoid-
ing key scheduling procedure. To solve this task we use data-dependent
table lookup operations as a basic cryptographic primitive. Since in dif-
ferent practical applications it is desirable to use hash values having
size from 128 to 256 bit, we shall construct a hash function that allows
specifying the hash value size. In the design of such hash function we
shall use the round function with flexible input.

Data-dependent subkey selection has been earlier shown to be

74

Fast software-oriented hash function ...

effective for creation of fast software encryption algorithms [4, 5].
Such mechanism resembles table lookup operations (or simply table
lookups), however in some variants it has significant peculiarities. In-
deed, the subkey selection depends not on the current data subblock
only but on many previous ones also [6]. This variant of the data-
dependent subkey selection represents data-dependent lookups opera-
tions. Many investigations [4-7,13] show the data-dependent operations
to be very effective cryptographic primitive. In present paper we show
that data-dependent lookup operations are very efficient for the design
of fast software suitable hash functions.

2 Data-dependent table lookups hash function

2.1 Notation

Throughout this paper we will use the following operations, symbols
and notation:

e the term ‘word’ is used to denote a 32-bit number, and we will
use letters: T, C, X etc;

e we shall denote an element of the sequence L by L;, where i =
0,1,2,....

e “|” denotes the concatenation operation;

e the sequence of bytes L = {lg,l1,...,l,} we shall also interpret
as a sequence of the 32-bit words L = {Lg, L1,...,Ls}, where
L; = {l4j, laj1, 1442, l4j+3} and 7 = 0,1,...,s; while interpret-
ing several sequential bytes by a binary number the right byte
corresponds to the most significant digits, for example the se-
quence L is interpreted as number [,]...|l1|lg and four sequential

bytes {a1,as,as,as} we interpret as A = as|aslaz|aq;

o “+;7 (“—4") denotes modulo 2/ addition (subtraction) of words
(for example, the equation j := Zmod2!! is equivalent to the
equation j := Z +11 0);

75

Moldovyan N.A., Summerville D.H.

2.2

“@” (“®7) denotes bit-wise exclusive-OR (AND) operation;

“>>7 denotes right circular rotation of words: the cyclic rotation
of word X right by Y bits is denoted “X>>Y” (note that in such
data-dependent rotations only log, 32 = 5 lower-order bits of Y
are used to determine the rotation amount).

“:=" denotes assign operation;

“»7 denotes exchange operation; for example W <+ V produces
the same result as three operations 7' := W, W =V, V =T,

We use the following hexadecimal constants: F' = FFFFO7FF,
a = 0D, P = B25D28AT7; 1A62D775, R = 98915E7TE; C8265EDF;
CDA31ES88; F24809DD; B064BDC7; 285DD50D; 7289F0AC;
6F49DD2D.

Design criteria

We use the following design criteria:

1.

Round hash function (RHF) should be suitable for software im-
plementation.

The RHF should have flexible input, i.e. it should be possible
to assign the input data block size m to be equal Smg, where
mgo = 32 bits and S natural number S > 4. This should allow
use the hash function in different applications.

RHF should be based on data-dependent table lookup operations,
which are efficient cryptographic primitive.

should have large number of internal states, i.e. it should use
sufficient number of internal variables, the last being 32-bit ones.

should be based on fast CPU operations such as “®”, “®@”, “+;”,
“—p7, “*” (including data-dependent rotations).

76

Fast software-oriented hash function ...

6. Majority of transformations used in RHF should be bijective. (If
we represent RHF as a superposition of operations, then only
few of them should define non-bijective mapping). Reducing the
number of non-bijective operations should help to construct a
“collision resistant” hash function.

Elaborating hash function for practical application in computer se-
curity software our strategy was oriented to extensive use of the data-
dependent lookups. Such hashing mechanism suites well to software im-
plementation. To reduce the number of lookups we shall use a known
table of “pseudorandom” numbers, the table size being 2051 bytes.
Such size allows one to define selection of the values from the table
in the direct dependence on 11 bits of the current data subblock. We
use also a simple mechanism defining indirect dependence of lookups
on all bits of data block. The table we shall construct using a special
preprocessing algorithm.

2.3 Generation of the table and basic procedures

Precomputations are represented by the following algorithm.
Procedure Table_Z:

1. Set counter ¢ = 0.
2. Calculate 32-byte value Z! = (a***" mod P)'" mod R.

3. Increment 4 :=14 4 1. If ¢ # 64, then jump to step 2.

4. Form 2051-byte number T' = 24|z} |2(| Zgs| - . . | Z), where 25|2] |2 =
Z(I] 424 0.
5. Represent T’ as sequence of bytes Z = {2g,21,. .., 22050 }-

OUTPUT: table Z.

Table Z is used for selection of the words Q, = 2 y3|2nt2|2n11l2n
the given value n. The round hash function uses the following proce-
dures: Initialize and ChangeNVYU.

Initialize:

7

Moldovyan N.A., Summerville D.H.

1.

2.

3.

Set counter ¢ := 0 and number n := Q9 411 0.
Set internal variables: R := Q4; V := Q78; Y := Qi6; U := Q30;
N := Q.
STOP.
ChangeNVYU:
Transform N and V: N:=N& R; V :=V 439 N.

1.

10.

2.4
The

Transform N := N Q F.
Set n:= N +1; 0.

Transform V, N and Y: V := (V +32 Q) N := N V;
Y=Y +3 N.

Transform N := N Q F.

Set n:= N +11 0.

Transform Y and N: Y := (Y +32 Q)1 N:i= (N +32Y)®F.
Set n:= N +11 0.

Transform U := [(U & Q) +32 B> .

STOP.

One-way round function

one-way round function based on data-dependent lookups is de-

scribed by the following algorithm.

Algorithm 1.
INPUT: data block M; represented as sequence of z 32-bit words
{Wo, Wi, ...,W,_1}.

1.

2.

Set size of input data block S := z.

Set external counter j := 6.

78

Fast software-oriented hash function ...

3. Execute procedure Initialize.

4. Set internal counter v := 0.

5. Execute procedure ChangeNVYU.

6. Transform the current word: W, := (W, —32 V) @ U.

7. Transform the variable R: R := R 430 W,,.

8. Finish transformation of the word W,: W, := W, &V —3, Y.
9. Increment v :=v + 1. If v # S, then jump to step 5.

10. Decrement j := j — 1. If j # 0, then jump to step 4, otherwise
STOP.

OUTPUT: the converted data block C; = W,_1|...|W;|Wj.

3 Characterization of the round hash function

The round transformation defined by algorithm 1 is analogous to the
encryption procedure of [6] in the case of the known encryption key.
Oune-way character of the round hash function is defined by the fact that
initialization of the variables R, V, Y, U, and N is performed before the
first cycle only. The set of the initial values of these variables represent
the initial condition that is set by the procedure Initialize. Different
combinations of the values of variables R, V, Y, U, N define different
internal states of the hashing mechanism, which can be described by
the 160-bit value G = R|V|Y|U|N. Depending on the input data block
M; the value G is changed counsecutively 6z times, i.e. at each step of
the transformation of some word W,,.

The avalanche effect corresponding to the change of the value G
spreads well when moving from the word W; to the word W;,,. It is
defined by the fact that each bit of the word W; defines the selection
of at least one value @) from the table Z. The round transformation is
composed in such a way that any alteration in encryption process are
accumulated in variables R, V, Y, U, N. Due to this after the first

79

Moldovyan N.A., Summerville D.H.

transformation cycle the table lookup operations depend on all data
bits. This causes strong avalanche effect.

Let G; be the final internal state of the hashing mechanism after
M; is transformed into C;. One can easy calculate initial value M;
corresponding to C;, provided the value G; is known. If the value C;
is chosen at random, i.e. the value M; is unknown, then it is computa-
tionally infeasible to determine the final internal state G; due to very
large number of the internal states (2'%°). This defines security of the
counsidered round hash function.

Security analysis of the block ciphers based on data-dependent
lookup operations [13] shows that such operations represent efficient
cryptographic primitive, however estimating security of the hash func-
tions one should take into account the birthday attack. The last defines
the minimum size of the data blocks (> 128 bit) in the described hash
function and the minimum size (> 128 bit) of some value G which cor-
responds to the internal state of the round hash function. In algorithm
1 the size of the value G = R|V|Y|U|N is 160 bit and the values z > 4
are acceptable. If necessary, taking algorithm 1 as a prototype one can
easy compose a new round hash function with more variables. For ex-
ample, the use of six or eight 32-bit variable defines 192-bit or 256-bit
value G, respectively.

There are possible different variants to define the round function
with the use of algorithm 1. The simplest one is shown in Fig. 1la,
where Gy corresponds to the initial condition and box E denotes the
transformation function defined by algorithm 1. This variant can be
described as follows:

Hi=h(M;,H; 1) =Eq,(M;) ®H; 1 =C; ® H;_1,

where 7 = 1,2,...,n and the value Hy is specified. The hash value
from message M is H = H,. Figure 1b describes the hash function
corresponding to the formula:

H,; = h(MZ',Hz;l) = EGO(Mi &) Hl‘fl) @& M;.
Figure 1c shows the hash function described by the formula:

H; =h(M;,H;_1) = Eg,(M; ® Hi—1) ® H;_1.

80

Fast software-oriented hash function ...

| lGo a) :
|
: E— Ci Hl :
| M,' —b> E —> :
: H,'_l |
T T
| [|
! i H; :
: —o—»é_> E > ‘\ > :
| |
I |
T T T T T T T T T T T T T T T T T —
| Go C) :
| l
| —_— H |
M; ! |
| il . .
: X E "¢ g :
|
: H,’-l |
e _
lGll d)

Figure 1. Round functions with different variants of the chaining mech-
anism

The mechanism of the data transformation used in algorithm 1
is very close to that of the data encryption based on data-dependent
lookup operations, therefore it is easy to modify algorithmn 1 into some
block encryption function with flexible input. For this purpose one
should use key-dependent table Z and replace in step 10 the phrase
“then jump to step 4”7 for “then do procedure Reorder and jump step
3”, where procedure Reorder is the following one.

81

Moldovyan N.A., Summerville D.H.

Reorder

1. Set counter v := 0.

2. Wy & W,_yv1

3. If z is even, then jump to step 5.

4. If v # (2 — 1)/2, then increment v := v + 1 and jump to step 2,
otherwise STOP.

5. If v # z/2, then increment v := v + 1 and jump to step 2, other-
wise STOP.

The extended encryption key Q (that is key-dependent table used
instead of Z) can be generated in the following way. The secret key is
repeated a necessary number of times until the 2052 bytes sequence is
received. Let Q' denote such sequence. Then the 2051-byte auxiliary
table H is generated using sequence Q' and the table Z:

H= (Q' mod 216408) @ Z.

Then, setting value S = 513 and using algorithm 1 with table H in-
stead of Z the sequence Q' is transformed into extended encryption key
Q. This transformation is described below as Form_Key. The encryp-
tion key Q represents some ordered sequence of bytes ¢[i] : Q = {¢;},
where ¢ = 0,1,...,2051. While performing encryption the following
subkeys Q; = qj+3/¢j+2|qj+1]q;, where 7 =0,1,...,2047, are used.

Procedure Form_Key

1. Initialize parameter z = 513.
2. Using algorithm 1 with table H instead of Z, convert Q'.
3. The output of step 2 is taken as Q.

Algorithm 2.
INPUT: data block M; represented as sequence of z 32-bit words
{Wo, Wi, ...,W,_1}.

82

Fast software-oriented hash function ...

1. Set size of input data block S = z.

2. Set external counter j := 6.

3. Using key-dependent table Q, execute procedure Initialize.
4. Set internal counter v := 0.

5. Using key-dependent table Q, execute procedure ChangelN-
VYU.

6. Transform the current word: W, := (W, —32 V) @ U.

7. Transform the variable R: R := R 430 W,,.

8. Finish transformation of the word W,: W, := W& —3, Y.
9. Increment v := v + 1. If v # S, then jump to step 5.

10. Decrement j := j — 1. If j # 0, then execute procedure Reorder
and jump to step 3, otherwise STOP.

OUTPUT: the round value of hash function H; = W,_4| ... |W;|W,.

One can say that the round hash function is constructed on the ba-
sis of this block encryption algorithm. One-way character of the round
hash function is caused by the fact that the procedure Initialize is
executed only once per one data block. Since final values of variables
R,V,Y,U, N, and n are not known it is computationally difficult to
reconstruct input corresponding to the given output. Such mechanism
of the transformation of the block cipher into a round hash function
is different from that used earlier [1-3]. The investigation of statis-
tic properties of algorithms 1 and 2 has been carried out with tests
proposed in [8]: (1) the average number of output bits changed when
changing one input bit; (2) the degree of completeness; (3) the degree
of the avalanche effect; (4) the degree of strict avalanche criterion. Our
statistic experiments have shown that 2 rounds are quite sufficient to
get uniform correlation between input and output bits.

83

Moldovyan N.A., Summerville D.H.

4 Disk encryption

Due to possibility to specify the size of the input data block algorithm
2 suites well to perform disk encryption and to other applications re-
quiring fast software encryption. In modern computer security systems
disk encryption is used as basic mechanism to protect data, therefore
this kind of encryption attracts much attention of different cryptog-
raphers. Regarding requirements to algorithms of the disk encryption
one can put forward the following ones: high security, high speed while
implementing in software, and the 512-byte blocksize. When encrypt-
ing data blocks having large size it is quite difficult to provide full
avalanche plaintext and ciphertext. One can build large block cipher
using some underlying cipher with standard 64-bit (DES, Blowfish [4],
RC5 [9]) or 128-bit blocksize (RC6, MARS. TWOFISH, Rijndael [10]).
However to obtain strong randomization over the whole 4096-bit sector
at least two encryptions both of them being performed in the chaining
mode. First encryption is performed forwards and the second one is
performed backwards. Large-blocksize ciphers BEAR and LEON [11]
can be adopted for disk encryption, but their performance correspond-
ing to “small” size of the sector is comparatively low. are required.
The very fast stream cipher SEAL [7] providing a strong PRNG suits
well for disk encryption. When using SEAL one can consider the entire
disk as a single contiguous array of bytes and XORed with respective
elements of the key stream generated at the output of PRNG. To per-
form readings or writings of specific sectors of the disk the appropriate
portion of the output can be directly generated without the need to
generate elements of the key stream corresponding to preceding bytes.
However against some attacks [12] such simple disk encryption with
SEAL is ineffective. Secure disk encryption with SEAL can be im-
plemented in more complicated way considered in [12]. Unfortunately
such application of SEAL requires the ciphertext to be larger than the
plaintext, harming the natural format of the file system. Another ap-
proach consists in the design of block ciphers which natural blocksize
is 4096 bits. A variant of such ciphers can be get from the algorithm
2 selecting the value z = 128. Because of sufficiently large number of

84

Fast software-oriented hash function ...

the elementary encryption steps corresponding to the transformation of
the 32-bit words the number of the encryption rounds can be reduced
to four getting higher performance.

5 Conclusion

In the proposed round hash function we have used the procedure which
is very close to the data encryption based on the data-dependent lookup
operations. The novel feature is the use of the data-dependent initial
conditions in each iteration of the round hash function except the first
iteration. Due to this feature the round hash function is some one-way
transformation. Thus, we have avoided the use of any key scheduling,
the encryption procedure is used as a hashing one though.

The use of the data-dependent initial conditions allows one to
strengthen the chaining mechanism of the iterated hash function. For
this reason one can use the fixed initial conditions (set by the pro-
cedure Initialize) only for transforming the first data block of the
message M = (My, M, ..., M,). While transforming each subsequent
data block one can define new initial values of the variables R, V, Y,
U, and N depending on preceding data blocks. Figure 1d shows the
use of the data-dependent initial conditions as an additional chaining
mechanism. This variant of the hash function construction is described
as follows:

Hi=h(M;,H; 1,G;—1) =Eq, (M;) ® H;_1,

where the value G;_; corresponds to the internal state of the round
hash function after performing transformation of the data block M;_;.
Since G;_, depends on M; ;, we have variable initial condition for
i =2,3,..,n (Gg is specified). The practical use of such new chain-
ing mechanism is very attractive, since more efficient chaining should
provide more security against differential cryptanalysis.

Acknowledgement: This research was supported by
EOARD/AFRL grant #1994p.

85

Moldovyan N.A., Summerville D.H.

References

1.

10.

D.R.Stinson, Cryptography. Theory and practice.- New York, CRC
Press, 1995.-434 p.

A.J.Menezes, P.C. von Oorschot, S.A. Vanstone. Handbook of Ap-
plied Cryptography. — New York, CRC Press, 1996.- 777 p.

B.Schneier, Applied Cryptography, Second Eddition, New York,
John Wiley & Sons, Inc., 1966.-790 p.

B.Schneier, Description of a new variable-length key, 64-bit block
cipher (Blowfish) // 1st Int. Workshop “Fast Software Encryp-
tion”. Proc./. Springer-Verlag LNCS. 1994. V. 809. P.191-204.

Moldovyan A.A., Moldovyan N.A. Flexible block ciphers with prov-
ably inequivalent cryptalgorithm modifications//Cryptologia. 1998.
V. XXII. No. 2. P.134-140.

Moldovyan A. A., Moldovyan N. A. Software encryption algorithms
for transparent protection technology // Cryptologia, January 1998,
Volume XXII No. 1. P. 56-68.

Rogaway Ph., Coppersmith D. A software-optimized encryption al-
gorithm // Journal of Cryptology. 1998. Vol.11. No 4. P. 273-287.

B. Preneel, A. Bosselaers, V. Rijmen, et al. Comments by
the NESSIE Project on the AES Finalists. 24 may 2000.
(http://www.nist.gov /aes).

R.L. Rivest: The RCS encryption algorithm. Fast Software En-
cryption — FSE'94 Proceedings. Springer-Verlag, LNCS Vol.1008.
(1995) 86-96.

Proceeding of 1% Advanced encryption standard candi-
date conference, Venture, California, Aug 20-22 1998,
(http://www.nist.gov/aes)

86

Fast software-oriented hash function ...

11.

12.

13.

Anderson R., Biham E. Two practical and provably secure block
ciphers: BEAR and LION // 3d Int. Conference FSE’96 Proc./
Springer-Verlag LNCS, 1996, vol.1039. P.113-120.

P. Crowley. Mercy: A fast large block cipher for disk sector en-
cryption // Tth Int. werkshop, FSE 2000 Proc. / Springer-Verlag
LNCS, 2001, vol.1978.P.49-63.

N.D. Goots, B.V. Izotov, A.A.Moldovyan, and N.A.Moldovyan.
Modern cryptography: Protect wyour data with fast block
ciphers. |/ Wayne, A-LIST Publishing, 2003.-400 p.
(www.alistpublishing.com).

N.A.Moldovyan, D.H. Summerville, Received March 29, 2002

N.A Moldovyan,

Specialized Center of Program Systems “SPECTR?”,
Kantemirovskaya str., 10, St. Petersburg 197342, Russia;
Phone/fax: 7 — 812 — 2453743

E-mail: infoQcobra.ru

D.H. Summerville,

Binghamton University

Watson School Electrical and Computer Engineering,
PO Box 6000

Binghamton NY

Phone: 607 — 777 — 2942

E-mail: dsummer@binghamton.edu

87

