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Khachaturov Vladimir R. Khachaturov Roman V.
Khachaturov Ruben V.

1 Introduction.

Questions, concerning the optimization of supermodular functions on
finite lattices are considered in the paper. The systematic summary of
main authors’ and other researchers’ results known before, new authors’
results are given. There should be marked out the following three
results among new results.

The first — elaboration of the basic propositions of the theory of
maximization of supermodular functions on Boolean lattices (they were
worked out only for the problems of minimization before) and establish-
ing of relation between global minimum and maximum of supermodular
function for main types of lattices.

The second — elaboration of original combinatorial algorithms of
automatized representation of hyper-cubes (booleans) of large dimen-
sion on a plane in the form of various diagrams, on which the properties
of boolean as a partially ordered set of its vertexes are kept (This pro-
vides us with ample opportunities for construction of various schemes
of looking through the elements of atomic lattices and for visualization
of the optimization process).

The third — carrying out the basic propositions of the theory of
optimization of supermodular functions to the main types of lattices:
Boolean lattices, lattices with relative supplements (division lattices,
lattices of vector subspaces of finite-dimensional vector space, geomet-
rical spaces), lattices equal to Cartesian product of chains, distributive
lattices, atomic lattices.
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These theoretical results and availability of the great amount of
optimization problems for lattices with concrete forms of supermodular
functions allow to consider methods and algorithms for solving the
problems of optimization of supermodular functions on lattices as a
new field of mathematical programming — supermodular programming
[19].

2 Basic concepts and definitions, statement of
the optimization problems

Let’s provide necessary concepts and definitions, following in general,
Birkhoff G. and Gratzer G [1, 2].

The partially ordered set (A; <) is called a lattice, if for all a,b € A
there exist sup{a, b} and inf{a,b}. The lattice is called a finite, if the
set A is finite. Lower only the finite lattices will be considered.

Let’s denote sup{a,b} = a V b, inf{a,b} = a A b and we shall call
V a join, and A an intersection. V and A are the binary operations on
lattices, which map A? into A.

Let’s remark, that the sense of the operations V and A depends
on modes of the representation of a set A (and its elements) and on
the order relation <. For example, if A is a set of all subsets of the
fixed set I, i.e. the element a € A is a subset a C I and vice versa,
and the relation < means the set-theoretic inclusion C, then the set-
theoretic operations U and N will correspond to operations V and A.
It, in particular, concerns to Boolean lattices. Other examples will be
reduced also below.

Let’s speak, that in the lattice (A; <) the element a € A covers an
element b € A (a > b) or bis covered by a(b < a),ifa >b (a>b a+#
b) and there is no such x € A, that a > = > b.

The subset D(a) C A

D(a)={zx € Alz > aorz <a}
is called a neighbourhood of a € A.
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The subset A; of the lattice (A; V, A) is called as convex, if for any
a,b € Ay and ¢ € A the inequality a < ¢ < b means that ¢ € A;. If
a < b, then [a, b] = {z € Ala < z < b} is called as an interval. The
interval, by it’s definition, is a convex sublattice.

Let a < b, then subset of elements {a, ..., b} = {z¢, z1, ...,zp_1} is
called as a chain, if 2o = a, zp—1 =band 2; < x44q for 0 <4 < n —1.

All chains {a, ..., b} C [a,b]. The chain {a, ..., b} C [a,b] is called
as a maximum chain, if x; < 2,41, 0 <1 <n -1, 29 =a, Tp—1 = b.

Let’s consider the function f(z), z € A, given on a lattice (A; V, A).

The element ¢ € A is called a local minimum of function f(z) on
a lattice (A; Vv, A), if

f(d) < f(z) for all z € D().

The element ¢ € A is called a global minimum, if

fle) < f(z) for all z € A.

The function f(z) is called supermodular, if for any a,b € A the
following inequality is fulfilled

fla) + f(0) = flaVb) = flanb) < 0. (1)

If the inequality is fulfilled in reverse, then such function is called
submodular. A special case of these two functions is the modular func-
tion (when the inequality is converted into equality).

The problems of optimization of supermodular functions on arbi-
trary lattices were formulated and investigated for the first time in
[11].

Let f(z) be the supermodular function. It is required to find it’s
minimum, i.e. to find such ¢ € A, that

f(c) = minf (z)

T€A

under the condition (1).
It is known that this problem concerns to a class of NP-difficult
problems.
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The problem of definition of a maximum of the function f(z) is a
dual to this problem, i.e. It is required to find such d, that

£(d) = maxf(x)

z€A
under the condition (1).
Unlike the problem of minimization, the problem of maximization of
the supermodular function can be solved by the polynomial algorithm,

this is proved by Lovasz L [9]. But we do not know any effective
algorithmm developed on the basis of the approach of Lovasz L.

3 Minimization of supermodular functions on
lattices

3.1 Minimization of supermodular functions on Boolean
lattices

Let’s consider a finite set I = 1,2, ..., m and the set B(I), the elements
of which are all subsets w of a set I:

B(l) ={w |w C I}.

Let’s designate by < B(I); U, N > a Boolean lattice, the elements
of which are partially ordered by the set-theoretic inclusion C, and let
the set-theoretic operations U and N correspond to operations V and
A.

For the first time the problem of minimization of supermodular
functions on a Boolean lattice has been considered by V.P.Cherenin,
and he has offered his method “of successive calculations” for it’s solu-
tion [3].

Let’s reduce without the proofs the basic theorem “of successive
calculations” and two rejection rules received by V.P.Cherenin. (These
results are reformulated with the use of the above-stated definitions
and designations).
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Theorem 1 (the basic theorem of the method “of successive calcula-
tions”).

The supermodular function f(w), defined on a Boolean lattice
< B(I); U, N >, on any mazimum chain {0, ..., I}, containing a local
minimum ¢, monotonically decreases down to ¢ and monotonically
increases after .

As the corollaries from this theorem two rejection rules are deduced.

The first rejection rule. If for any two elements wy, wsy, such,
that wy C we, it will appear, that f(w1) < f(ws2), then it is possible
to exclude from consideration all 2™~ 1«2l elements w 2D wy. (As among
them there will be no local minima of function f(w)).

Let’s remark, that the first rejection rule excludes from considera-
tion an interval [wa, I].

The second rejection rule. If for any two elements wy, we, such,
that w; C we, it will appear, that f(w;) > f(w2), then it is possible to
exclude from consideration all 2%l elements w C wy. (As among them
there will be no local minima of function f(w)).

Let’s remark, that the second rejection rule excludes from consid-
eration an interval [©, w].

The development of the method “of successive calculations” further
was performed by studying of properties of local minima, by deriving of
new rejection rules, by perfecting and modification of algorithms [5-8].

Let’s consider a chain {a, ..., b} = {zg, z1, ..., zp_1}.

Let

Flog) =  min  f(z:).

Chain {zg, z1, ..., 2,1} we shall call unimodal, if the function f(z;)
monotonically decreases with index ¢ running from 0 up to k£ and mono-
tonically increases with index 4 running from k£ up to n — 1. Special
cases of a unimodal chain will be: a chain, in which z, = z,_1 and
chain, in which zj = xy.

It follows from the basic theorem, that any chain containing a local
minimum, is unimodal. However it is shown, that not any unimodal
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chain contains a local minimum, and that there exist maximal not
unimodal chains.

A series of the theorems about properties and structures of local
minima of supermodular functions is proved.

Let’s consider an interval [wy, wy]. Let’s designate:

A (i) = { fwi) = flwrU{d}), if f(w1) — flwrU{i}) 20,
0 i flwn) = flwr U{i}) < 0;

flwa) = flwa\{i}), if f(w) = flw2\{i}) 20,
0

£alt) = { | flws) - Flw\fi}) < 0.

f(d)= min f(w)

w1 CwCws

fld) = flw) = Y A

1€ws \w1

fo(d) = flwa) = D As(i).

1€ws \w1
Theorem 2 () > max {/1(¢), fo(c)}.

The next rejection rule follows from this theorem:

The third rejection rule. If for any two elements w; C ws it
will appear, that either f1(c') > f(¢), or fo(c') > f(¢), where f(¢)-is a
known value of function f(w), it is possible to exclude from considera-
tion all 21¢2\“1| elements w € [wy, wo).

The theorems which permit to determine a two-sided estimation for
number of elements in an optimal subset ¢ € I are proved.
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3.2 Minimization of supermodular functions on lattices
with relative supplements

Let (A; V, A) be a lattice, a,b € A, a < b and z € [a, b]. The element
z* € [a, b], such, that £ A z* = a and z V z* = b is called a relative
supplement of an element z in an interval [a, b]. The lattice (A4; V, A)
is called a lattice with relative supplements (RS-lattice), if there exists
a relative supplement z* for any x € A in any interval containing z.

Let’s consider a problem of minimization of supermodular function
f(x) on a finite lattice with relative supplements. It’s required to find
c € A, such, that

#(¢) = minf(a).

z€eA

Unlike the Boolean lattice, z* can be not unique in the case of RS-
lattice. The Boolean lattice is a special case of a RS-lattice, however,
the theorem 1 and rejection rules are transferred on RS-lattices [11].

Theorem 3 On any mazimal chain {a, ..., b}, containing a local
minimum ', the function f(x) monotonically decreases down to x'
and monotonically increases after x'.

Three rejection rules, which are used in algorithms for searching of
a minimum of supermodular function on a finite RS-lattice are proved.

The class of finite RS-lattices is rather wide, and contains many
known lattices. The examples of RS-lattices are: Boolean lattice, lat-
tice of a finite set division, lattice of vectorial subspaces of a finite-
dimensional vector space, geometrical lattices. Let’s note, that the
finite lattices being the product of chains, having length more than 1,
do not belong to a class of RS-lattices.

3.3 Minimization of supermodular functions on lattices
being a Cartesian product of chains
Let A;, 1 € I ={1,2,...,m} be arbitrary finite sets, such, that |4;| =

s(i)+1 < +oc and A; = {29, z}, ...,xf(i)}. A; are linearly ordered, and
:z:? = (0 is a minimum element for all A;:
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0= <al < .. <ai

Let’s consider the Cartesian product of these sets

A=T] 4.

el

Let’s designate an arbitrary element of a set A through X =
(1,22, .y Ty), where z; € A;, i € I = {1,2,....,m}. Let’s de-
fine operations V and A on a set A as follows: if XY € A
and X = (z1,29,..,Zm), ¥ = (Y1,92,..,Ym) then X VY =
(sup(z1,Y1); -, SUP(ZTyn, Ymm)) and X AY = (inf(z1,y1), ..., inf(zm, ym))-
It is obvious, that for any X,Y € A, X VY and X A Y are always
defined and belong to set A. The obtained lattice (we shall desig-
nate it (4; V, A)) is called a Cartesian product of chains. The element
X =(0,0,...,0) is a zero and the element X = (xi(l),a:i(m, ...,a:f;gm)) is
a unity of a lattice.

The property of a unimodality of maximal chains containing a local
minimum, is broken here, that is visible from the following example
(see figure). The function f(X) with A; = {0,1,2}, i € I = {1,2} is
represented in the figure. f(X) is supermodular and has two global
minima — f(2,0) = 0 and f(0,2) = 0 and local minimum - f(2,2) = 3.
But there is no maximal unimodal chain containing a local minimum.

By introduction of the new partial order for elements of a set A it
becomes possible to reduce a problem on a lattice (A; V, A) to problems
on the lower semilattice (A; N) and upper semilattice (A; U), in which
the set A is represented as the join of specially constructed booleans.

Theorem 4 The supermodular function f(X), given on a lattice
(A; V, A), on any mazimal chain of the lower semilattice (A; N) con-
necting zero element with a local minimum, monotonically decreases,
and on any mazimum chain of the upper semilattice (A; U) connecting
a local minimum to unity, monotonically increases.
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The first, second and third rejection rules are also proved for these
semilattices [6,7,12].

During the last time these results were carried to the distributive
lattices [17].

4 Maximization of supermodular functions on
lattices

Let f(z) be a supermodular function given on a lattice (4; V, A). It is
required to find it’s maximum, i.e. to find such d € A, that

f(d) = maxf(x)

z€A
4.1 4.1. Correlation between global maximum and
global minimum of supermodular function.

The theorems establishing correlation between global maximum and
global minimum of supermodular function on various types of lattices
were proved [16,18].

4.1.1 Case of a Boolean lattice

Let’s consider a finite set I = 1,2,...,m and set B(I), the elements of
which are all subsets w of a set I:

B(l) ={w |w C I}.

Let’s designate a Boolean lattice by < B(I); U, N >, the elements
of which are partially ordered by set-theoretic inclusion C, and set-
theoretic operations U and N correspond to operations V and A.

Let function f(w), given on each subset w € B(I), be supermodular,
ie.

fO)+f(v) = f(6Ury) = f(6Ny) V6, v € B(I)
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Theorem 5 Let d € B(I) be a global maximum of function f(w), and
¢ € B(I) be a global minimum of function f(w), i.e.

f(d) = max f(w)f(c) = min f(w).

weB(I) weB(I)
Then

fld) < f(I) + £(©) = f(o).

4.1.2 Case of lattice with relative supplements

Let (A; V, A) be a lattice with relative supplements.
Let f(z) be supermodular function on (A4; V, A), i.e.

f@)+fly) = f@Vy) = flzAy) Vo, y € A
Let’s consider an interval [a, b], containing a lattice (4; V, A).

Theorem 6 Let d € [a, b] be a global mazimum of function f(z), and
c € [a, b] be a global minimum of function f(x), i.e.

F(d) = max f(x)f(c) = min f().
z€[a, b] z€Ja,b]
Then
f(d) < f(b) + f(a) — f(c).
4.1.3 Case of lattice being a Cartesian product of chains

Let (A; V, A) be a lattice being a Cartesian product of chains, i.e.

A= H A;
i—1
where
Aj={z) =0, 2}, ..., :z:f(i)}.

Let f(z) be a supermodular function on a lattice (4; V, A), i.e.

fl@)+fly) = flaVy)—flzAy) Vo, y€e A
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Theorem 7 Let d € A be a global mazimum of function f(z), and
c € A be a global minimum of function f(x) i.e.

f(d) = maxf(z) f(c) = minf (z).

T€EA €A

Then
Fd) < f@W, 22 my 4 50, ..., 0) = f(c).

4.2 Rejection rules of not optimum solutions for a case
of a Boolean lattice

Definition:
The function f(w) has a local maximum on a subset d,, € B([), if
the following conditions are fulfilled:

f(da) > f(dy U{i}) Vi € I\d, f(d) > f(d\{i}) Vi € d,

Let’s consider tw0~subsets w1y and w9 such, that © C wy C wy C 1.
Let’s designate w; C d C wy such, that

fld) = max f(w).

Let’s designate local maxima of function f(w) through d, for w, C
w C wa.

The first rejection rule.

If for any iy € wo\w; it has appeared, that f(w;) < f(w; Uip), then
19 € Ju, i.e. 79 belongs to all local maxima Ju, so it belongs to global
maxima d among all w) C w C wo.

The second rejection rule.

If for any ig € wy\w; it has appeared, thatf(wy) < f(w2\ig), then
io ¢ (iu and io ¢ (i

The third rejection rule.

Let fi(d) and fo(d) be upper estimations for a value of a local
maximums for subsets w; C w C wy, which are calculated under the
formulas:
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Ad) = fw)+ D [f(wr) = flwr U{i})]

1€ws \w1

Fad) = fw) + D0 [flwe) = flw2\{i})):

1€wa\w1

Let some temporarily-optimum solution d’ with its value f(d') be
fixed during searching a global maximum d and its value f(d). Then the
third rejection rule is formulated as follows: if for any subsets w; C wo
it will appear either fi(d) < f(d'), or fo(d) < f(d'), then it is not
necessary to consider all 212\“1l subsets w; C w C wo, as obviously

f(d) < f(d') and, consequently f(d) < f(d).

5 General approach to optimization on lattices
with the use of atomic lattices

5.1 Optimization on atomic lattices

The element covering zero, is called atom of partially ordered set with
zero. The element covered by unity is called coatom of partially ordered
set with unity.

Let’s call a finite lattice and semilattice atomic (coatomic), if any
their element can be presented as the join of atoms (intersection of
coatoms). Such lattices are called, as well, dot lattices.

Let (B;V,A) be a finite atomic lattice (or lower semilattice
(B; N)). Let’s designate a set of its atoms by A(B).

If (B; V, A) is atomic lattice, then for any subset Y C A(B) exists

the join supY = é/yx. Hence, there exists a map ¢ of a set of all
x

subsets 24(B) of a set of atoms into a set B, keeping the partial order.
It ensures applicability of algorithms of looking through the elements
of a set 24(B) in a combination with rejection rules, like it is carried
out for Boolean lattices (24(%); U, N). But the map ¢ can be not
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one-to-one, as to various subsets A(B) there can correspond the same
element from B. Therefore it is necessary to formulate rules excluding
recurrings during construction of elements of a lattice (B; V, A). These
rules depend on a mode of representation of any element of a lattice
(B; V, A) as a join of its atoms [11,13].

If (B; N) is the lower atomic semilattice, then the joinsupY = Vya:
ze

exists not for every subset Y C A(B). It is possible to show, that there
exists a map ¢ of some subset C' C 24(B) into a set B, keeping the
partial order. During the construction of algorithm of looking through
the elements of a semilattice (B; N) it is necessary to formulate, except
the rules excluding recurring during the construction of elements of a
semilattice (B; N), the rules excluding from consideration such subsets
Y C 24(B) | for which Y does not belong C. Similarly it is possible to
act during research of a finite coatomic lattice (or upper semilattice
(B; U)).

If a considered lattice is not atomic (not coatomic), then it is nec-
essary to try to transform a given lattice into atomic (coatomic) lattice
or a semilattice by introduction of the new order, so that the desirable
properties of function being minimized (for example, a property of a
supermodularity) will be kept.

The given approach has been applied for a lattice “Cartesian prod-
uct” and division lattices. The rules for elimination of elements, not
belonging to these lattices, and excluding recurrings have been obtained
[11,12,13]. The properties of the supermodular functions on the dis-
tributive lattices have been also studied [17]. The rejection rules were
carried out for finding the functions minimum values.

5.2 Representation of N-dimensional hyper-cube on a
plane in the form of diagrams

As follows from the part 2, it is important to study the Boolean lattice
properties, as it can help for the solution of the optimization problems
on lattices of general type. Therefore the visualization of hyper-cubes
(Booleans) receives a great importance. One of the ways to resolve this
problem is to represent the hyper-cubes (HC) in the form of diagrams.
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Different methods of automatization of these diagrams construction
[19] are described below.

N-dimensional hyper-cube can be represented on the plane by the
different methods. Let us stop here on two of them, which seem to be
the most interesting from the point of view of obtaining the various
representations of HC on a plane. First of them is the orthogonal pro-
jection of HC in the Euclidean Space RY on a plane of observation.
The second method allows to construct the diagrams of Boolean lat-
tices of various shapes, which may not always correspond to real HC
projections, but conserve all Boolean lattice properties.

Let’s describe the first method. In the aim to obtain various pro-
jections of HC (to be exact, of its tops and ribs) it is necessary:

1. To construct the N-dimensional HC in space RY;

2. To fix one of the coordinate planes in space RM (here, in general,
M > N);

3. To turn the HC around one of the coordinate subspaces in space
RM on the given angle a = (a1, ..., ay);

4. To receive a projection of the HC in the chosen coordinate plane.

The operator of turn in space RM looks as follows:

Uy 0

where

cosq; — sinq;

Ui = . . . ] )
sina;  cosq;

Eg — a single matrix of the s (s = p,q) order, 2k +p+q= M.

The following cases are possible:

1. p = M — identical transformation;
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2. ¢ = M — the rotation is the central symmetry;

3. p+q = M — the rotation is a symmetry concerning a p-plane
(reflection from a p-plane);

4. Operator A does not contain F, and —FE, submatrixes — rotation
is a turn around a unique stationary point;

5. Operator A contains submatrixes U; and E,,, but does not contain
submatrix —F, — rotation is as a turn around a p-plane;

6. Operator A contains submatrixes U; and —FE,, but does not con-
tain a submatrix F, — rotation is a rotary reflection from a (M —q)
plane.

Thus, the turning of N-dimensional HC in M-dimensional Eu-
clidean Space on different angles around various coordinate subspaces
permit to obtain the different projections of HC on plane (as well as on
any coordinate subspace of dimension less than N). In some of these
projections the tops and the ribs will coincide and superimpose each
other. However, it is always possible to construct the projections, in
which all 2" tops will be visible, like in the HC itself. For example, in
the case of 4D HC we can write the operator A in the following form:

cosqy —sinaqg 0 0
A sin o cos 0 0
0 0 cosqy  — sinag
0 0 sin ag COoS (g

This corresponds to the case 4, when the rotation is a turn around
a unique stationary point. If we set here the angles a; = a9 = /4
radians, then we’ll receive the centrally symmetrical projection of 4D
HC, where all the tops will be separated and visible (Fig.1).

The second method of N-dimensional HC representation on a plane
is of special interest. First of all, we have to set the initial frame of
N ribs of HC, which come from the top with coordinates (0,...,0).
These N two-dimensional vectors can be considered as a projection of
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corresponding ribs of HC, omitting the question if this projection is
really possible in the Euclidean space. Such an approach permits to
set the initial IV ribs of given lengths and directions on a plane, inde-
pendent from each other, and then to construct the “projection” of HC
on this plane according to the given frame. The described procedure
allows to realize different deformations with the HC image on a plane,
counserving, thus, all of its properties as a Boolean lattice.

A specific case is of the particular interest, when initial NV frame
vectors are of the same length and the angle between every two neigh-
bouring vectors is equal to /N radians. In this case the exterior
contour of the HC image on a plane represents the regular 2N-gon,
and the whole figure is centrally symmetrical (Fig.1).

Figure 1.

For HC of any dimension, except the case of N = 2% (K =0,1,2,... -
integer), this representation of HC corresponds to the orthogonal pro-
jection from the space R" towards one of its main diagonals direction
to the plane of observation. It means, in general, the coincidence of
some HC tops in this projection. In the special case, when N = 2K and
the number of tops is P = 2V = 22K, there exists another direction,
except the direction of the HC main diagonal, the projection towards
which gives equal lengths of the all ribs projections, and none of tops
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projections superimposes another. The simple example of this is the
two-dimensional cube (quadrate), for which N = 2 = 2! (Fig.2).

Figure 2.

Fig.3 represents the 4D HC diagram constructed in this manner. You
can see that this diagram is identical to the one in the Fig.1, while it
was constructed with the first method and represents a real projection
of 4D HC to a plane.

Figure 3.
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The algorithms have been developed and the computer programs
elaborated for both methods of HC representation on a plane, described
above. They permit either to turn N-dimensional HC in space RM
and to obtain its various projections to planes, or to set initial frame
vectors and, next, to construct the pseudo-projections (or diagrams) of
HC with the preservation of its properties as Boolean lattice.

By introduction of metric the worked out algorithms will allow to
distribute non-uniformly the vertexes of HC in the space, deforming it
and keeping the partial order of it’s vertexes. This allows, in case of
keeping the property of supermodularity, to use also values and proper-
ties of some other function, which are known in the area of disposition
of “deformed” hypercube, while solving the problem of optimization of
supermodular function.

5.3 Some examples of the hyper-cube representation on
a plane

Below you can see the examples of the HC representations constructed
in two different ways for each HC dimension:

Way A — the HC diagram is constructed by the first method from 5.2
(as an orthogonal symmetric projection to a plane from N-dimensional
space).

Way B — the HC diagram is constructed by the second method from
5.2 (with a symmetric deformation of the initial N ribs).
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Representation of 3D HC diagrams.

=

Figure 4. Way A Way B

Representation of 4D HC diagrams.

==

Figure 5. Way A Way B
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Representation of 5D HC diagrams.

Figure 6. Way A
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Figure 7. Way B
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Representation of 6D HC diagrams.

Figure 8. Way A
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64



Supermodular Programming on Lattices

Representation of 8D HC diagrams.

Figure 10. Way A
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16D HC orthogonal symmetric projection (way A, only
apexes). It can be seen on this image and on the image below that,

Figure 11.

as it was noticed in 5.2, in the case of 16D HC orthogonal syminetric
projection none of the apexes projections superimposes another.
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Central part of the 16D HC orthogonal symmetric projec-
tion (scale 10:1).

Figure 12.
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5.4 About the basic algorithms of optimization

The wide experience of a solution of problems of optimization for lat-
tices with concrete types of supermodular functions was accumulated.
The following problems, for example, were concerned this type of prob-
lems: static and dynamic optimal enterprise allocation problems with
a step-wise cost function, the vertex graph coloring problem, the opti-
mal work grouping problem, optimal partitioning of a set of production
points into duplicating systems, problem of optimal distribution of the
investments between areas of a region, and many others [4-8,10-18].

The various algorithms of the exact and approximate solution of
the problems are developed. These algorithms essentially use atomic
structure of lattices.

In algorithms of finding an exact solution there is organized the
directed looking through the vertexes of lattices, during which, the
appropriate rejection rules are being used, these rules exclude from
consideration great amount of not optimal vertexes. The considered
problems, as a rule, concern to a class of NP-difficult problems. How-
ever experience of a solution of the large number of practical problems
has allowed to deduce the following statistical estimation of number
vertexes of lattices, which have been looked through, for which the
calculation of values of optimized function f(z) was carried out:

1
N =~ km?, —2<k<m2,
m

where m is a number of atoms in the appropriate Boolean lattice;

k — coefficient depending on concrete values of a problem parame-
ters,

N - is a number of calculations of values of function f(z). Conse-
quently

(m+1) < N<m’

The approached algorithms allow to find solutions with their error
estimation. Thus the number of the calculations of function f(z) does
not exceed magnitude [18]
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N = (m*+3m —2)/2.
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Figure 13. Way B
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