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Linear-time algorithm for the edge-colorability
of a graph with prescribed vertex types

Zsolt Tuza * Vitaly Voloshin

Abstract

We consider the coloring of edges in a graph in which there
are vertices of three types. In a feasible edge coloring, each ver-
tex of the first type is incident with at least two edges of the
same color, and each vertex of the second type with at least two
edges of different colors; while no constraints are required for
the vertices of the third type. We present a characterization of
colorable graphs, and a linear-time algorithm to decide whether
a given graph with prescribed vertex types admits a feasible edge
coloring.

1 Introduction

The problems discussed in this paper are motivated by the theory of
mixed hypergraphs introduced in [6, 7].

A mized hypergraph is a triple H = (X,C, D), where X is the vertex
set and each of C and D is a family of subsets of X, called the C-edges
and D-edges, respectively. A proper k-coloring of H = (X,C,D) is an
injective mapping from the vertex set X into a set of k colors so that
each C-edge has two vertices with a common color and each D-edge has
two vertices with different colors. A mixed hypergraph is k-colorable
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if it has a proper coloring with at most &k colors. A strict k-coloring is
a proper k-coloring using all of the k colors.

The maximum number of colors in a strict coloring of H is the
upper chromatic number, denoted x(H); and the minimum number is
the lower chromatic number, x(#H). Thus, general mixed hypergraphs
represent the structures where the problems on both the minimum and
maximum number of colors are nontrivial.

In contrast to classic colorings of hypergraphs (see e.g. [1]), mixed
hypergraphs may admit no colorings at all. A mixed hypergraph having
no colorings is said to be uncolorable [6, 7], and otherwise it is called
colorable. The first paper about uncolorable mixed hypergraphs is [3].
It has been proved in [4] that it is NP-complete to decide whether a
given mixed hypergraph is colorable or not.

The following problem arose in considering the colorability prob-
lem of mixed hypergraphs H = (X,C, D). What happens to the com-
plexity of the colorability problem if the “dual hypergraph” of H is a
(multi)graph? We consider duality as it is defined in [1], namely, the
dual of a hypergraph # is the hypergraph H* whose incidence matrix
is the transpose of the incidence matrix of H. In this way, the edges
(vertices) of H are represented with the vertices (edges, respectively)
of H*, while keeping the incidence relation unchanged. Then the dual
of H is a multigraph if and only if H is regular of degree 2.

Motivated by this correspondence, we introduce the following
model. Let G = (V, E) be a multigraph with vertex set V and edge
set E/, where multiple edges and also loops are allowed. Let, moreover,
V =VCUVPUVY be a given partition of the vertex set, where any of
the three subsets may be empty. It will be assumed throughout that
every vertex of degree less than 2 belongs to V.

Definitions. A proper edge k-coloring of G is an injective mapping
from the edge set F into a set of k colors so that each v € V¢ has
degree at least two in some color — this means either a loop at v
or two edges incident with v that have a common color — and each
v € VP is incident with at least two edges with different colors (this
latter requirement cannot be satisfied by a loop). A graph G is edge
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k-colorable if it has a proper edge k-coloring. A strict edge k-coloring
is a proper edge k-coloring that uses all of the k colors. The maximum
number of colors in a strict edge coloring of G is the upper chromatic
index denoted ¥'(H); and the minimum number of colors is the lower
chromatic indez, x'(H).

In this way, we obtain colorings of the edges of graphs where the
problems on both the minimum and maximum number of colors are
also nontrivial.

We shall show that, in sharp contrast to the hardness of colorabil-
ity on unrestricted mixed hypergraphs (and even on 3-uniform hyper-
graphs), on graphs the problem is solvable in linear time. This will be
proved in the following section, where also structural characterizations
of (un)colorable graphs will be given.

Since in the paper we consider only the colorings of the edges, for the
sake of simplicity, in what follows, the word “coloring” will mean edge
coloring. 1t is worth mentioning that in this setting the problem solved
by Vizing [5] represents a special case, namely when VE =VY = and,
moreover, all the edges incident with any vertex of V7 are of different
colors. The opposite case, namely when VP = V0 = (), was investigated
in [2].

For more information on mixed hypergraph coloring, see the recent
research monograph [8].

2 Colorability

Here the criteria of colorability (uncolorability) will be given. We first
design an analogue of the “splitting-contraction algorithm” [7], but
with the essential new features that it runs in linear time and either
finds a proper coloring or reduces the input graph to a configuration
that is trivially uncolorable, namely an isolated loop at a vertex of V7.
Then, at the end of the section, we formulate explicit necessary and
sufficient conditions for (un)colorability.

Assume that a graph G = (V, E) with vertex partition V = V¢ U
VP UV is given. Next, we list some elementary reduction steps, each
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of them invertible in the natural way, which generate colorable graphs
if and only if G itself is colorable. After each step, we indicate in
parentheses how a coloring of G can be obtained from that of the
reduced graph.

Reductions invariant under colorability

1.

Delete an isolated vertex or an isolated edge which is neither a
loop nor a multiple edge.

(Both endpoints of a non-multiple edge have degree 1, belonging
to VU by assumption, therefore the edge may receive any color.)

. Delete an isolated loop incident with a vertex of V\V? = VCuv?o.

(The loop may receive any color.)

Delete a non-isolated loop and put its vertex into V°.

(The vertex, say v, of the deleted loop remains non-isolated after
the reduction, i.e. it will be incident with a remaining edge of
some color. We assign the loop to the same color if v € V¢ in the
original vertex partition of G, and to a new color otherwise.)

Delete an edge uv that has both endpoints in V7, and put both
v and v into V.

(A new color may be used for the deleted edge to color G.)

If one endpoint u of an edge wv has degree 1, then delete vertex
u, delete edge uv, and put the vertex v into V.

(By the degree-1 assumption, we have v € V. Hence, the color of
uv can be chosen properly with respect to v, similarly to Step 3.)
If v € VO, delete v and all its incident edges, and put all its
neighbours into V0.

(The selection of colors on the edges incident with v is analogous
to the previous case.)
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7. If v € V¢ has degree 2, say uv, vw are its two incident edges, then
delete v and replace uv,vw by a new edge uw. If u and w are
adjacent already in G, this yields a new parallel edge.

(The original edges uv and vw may receive the color of the new
edge uw; this will be proper for v. Note that in every proper
coloring of the original G, the two edges incident with v must
have the same color.)

8. If v € V¢ has two neighbors u,w € VP, then delete the edges
wv,vw and put u,v,w into VY.

(We may assign the same new color to the two deleted edges,
hence making all the three vertices w,v,w properly colored in

G.)

9. If wv € E has multiplicity at least 3, then delete two of these
parallel edges and put u,v into V0.

(Each of the deleted edges can make one of u and v properly
colored in G.)

Starting from G, we repeatedly apply the above steps, as long as
at least one of them is possible. Observe that if the degree of a vertex
decreases in some step, then the vertex in question is put into VY, i.e.
the degree constraint remains valid and hence the transformations gen-
erate structures within the same class. When the procedure eventually
stops, we denote by GY the graph obtained, and call it the reduced
graph of G. (It may also be the case that the reduced graph is the
null-graph, without any vertices.)

Lemma 1 In the reduced graph G°, the set V' is empty and all ver-
tices have degree at least 2.

Proof. If some vertex does not satisfy these properties, then at least
one of the operations above can be applied, i.e. the graph is not reduced
yet. |
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Lemma 2 In the reduced graph G°, every C-vertex is adjacent to at
least two other C-vertices, while the D-vertices are mutually nonadja-
cent.

Proof. All vertices of degree at most 1, as well as all C-vertices of
degree 2 are eliminated, so that every C-vertex of G has degree at
least 3. Since such a vertex can have at most one D-neighbor, it must
be adjacent with at least two C-vertices. Also, the edges with both
endpoints in VP are eliminated during the process. O

Now we are in a position to characterize (un)colorable graphs.

Theorem 1 A graph G is colorable if and only if the operations above
do not produce any isolated loop on a v € VP.

Proof. We define a coloring as follows.

e If both endpoints of an edge are C-vertices, then assign color 1 to
it.

e [f at least one endpoint of an edge is a D-vertex, assign a distinct
color to it.

By the preceding lemmas, if G° is non-empty, then it has minimum
degree at least 2, and every C-vertex is adjacent to at least two C-
vertices. Thus, the coloring just defined is proper on every C-vertex,
and also on every D-vertex incident with more than one edge. Hence,
the coloring is not proper only if GY has a D-vertex of degree 2 incident
with just one edge, which is then necessarily a loop.

Conversely, it is trivial that an isolated loop at a VP-vertex is un-
colorable. O

Observe that Step 7 is the only operation where a modified vertex
may remain in VP, Hence, an isolated D-loop can be obtained from
an isolated cycle only. In this way, we obtain the following alternative
characterization.
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Theorem 2 A graph G is uncolorable if and only if it has a connected
component which is a cycle with precisely one D-vertex and all the other
vertices of this cycle are in VC. O

The cycle component involved in this theorem can be a loop, or
a cycle of length two consisting of precisely two parallel edges (with
one C-vertex and one D-vertex), or a simple cycle of length at least 3
(without loops and multiple edges). If just the colorability of G has to
be checked — a decision problem, as opposed to the search problem of
finding a proper coloring if it exists — then the above characterization
admits an even faster algorithm.

Theorem 3 The (un)colorability of G can be tested by the following
algorithm :

o Find the set Vo of degree-2 vertices in VEUVP.
e Find the cycles induced by V.

e Check if (at least) one of those cycles has one vertez in VP and
all the other vertices in VC.

If a cycle with the property described in the last step is found, then G
18 uncolorable ; and otherwise it is colorable. O
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