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The splitting method and Poincaré’s theorem:
(IT) — matrix, polynomial and language

Maurice Margenstern

Abstract

This paper is the continuation of the paper which appeared
in the previous issue: we revisited Poincaré’s theorem in the light
of the splitting method which was introduced by the author in [5],
especially in the geometric aspect of the question.

This new part is also based on the definition of a combinatoric
tiling which was detailed in the previous issue. Indeed, this defi-
nition has a natural algebraic continuation as long as it involves
a matrix, hence a polynomial. We discuss here the connection of
these objects which we provide the reader in full extent, with the
notion of languages which are attached in such a case which we
call the language of the splitting

We show that in all the cases under study, the language of
the splitting is not regular.

Key-words:hyperbolic tessellations, algorithmic approach

1 Introduction

For the convenience of the reader, here we sketchily remind the defini-
tions and the results of the first part.

Poincaré’s theorem is a famous result about tessellations in the
hyperbolic plane by triangles.

A tessellation of a polygon is a tiling which is obtained by recur-
sively reflecting it in its sides and the images in their sides: this defines
the tiles. The tiling property requires that the interior of the tiles are
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pairwise disjoint and that any point of the plane belongs to the closure
of at least one tile. We say that the considered polygon generates a
tiling by tessellation.

Poincaré’s theorem, being established in the late 19" century, says
that a triangle 7" generates a tiling by tessellation if the interior angles

of T' are of the form z, T and © and if p, q and r satisfy the inequality:
p g p
1 1

— + — 4+ — < 1. Notice that the latter inequality simply says that T is
p_ q T
indeed a triangle in the hyperbolic plane.

Several proofs of this result where given, among them elementary
ones, see, for instance, [1].

In this paper, we revisit the proof of this theorem in the light of
the new method which was introduced by the author in [5] and which
we call the splitting method.

1.1 The splitting method

It lies on the following notion which is a generalisation of [5]:

Definition 1 — Consider finitely many sets Sy, ..., Si of some geo-
metric metric space X which are supposed to be closed with non-empty
interior, unbounded and simply connected. Consider also finitely many
closed simply connected bounded set Py, ..., P, with h < k. Say that
the S;’s and Py’s constitute o basis of splitting if and only if:

(i) X splits into finitely many copies of Sy,

(i%) any S; splits into one copy of some Py and finitely many copies

of Sj’s,
where copy means an isometric image, and where, in the condition
(41), the copies may be of different S;’s, S; being possibly included.

As usual, it is assumed that the interiors of the copies of Py and
the copies of the S;’s are pairwise disjoint.

The set Sy is called the head of the basis and the Pp’s are called
the generating tiles.

Consider a basis of splitting of X, if any. We recursively define a
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tree A which is associated with the basis as follows. First, we split Sg
according to the condition (i7) of Definition 1. This gives us a copy of
say Py which we call the root of A and which we call also the leading
tile of Sp. In the same way, by the condition (i7) of Definition 1, the
splitting of each S; provides us with a copy of some P, which we call
the leading tile of S;. The splitting provides us also with k; regions, S;, ,
.., S9i,. which enter the splitting of \S;. The regions which enter the
splittinlg of Sy according to the condition (7i) of Definition 1 are called
the regions of the first generation. Assume that we have all the regions
of the n' generation: S, ..., Shm, - By definition, their leading tiles
constitute the nodes of the n'™ generation. We split again these Sj’s
according to the condition (i7). We obtain m,, tiles which are called
the tiles of the n 4+ 1'® generation and, for each Sy, which is some Sj,
we have a splitting which is the isometric image of the splitting of S;
as it is above indicated. We say that the leading tiles of these copies
of the splitting of .S; are called the sons of the leading tile of S,,,. By
definition, the sons of the leading tile of S5, belong to the n + 1th
generation. The union of all the sons of the nodes of the n'' generation
constitutes the nodes of the n + 1" generation.
This recursive process generates an infinite tree with finite branch-
ing. This tree, A, is called the spanning tree of the splitting, where
the splitting refers to the basis of splitting Sp, ..., Sk.

Definition 2 — Say that a tiling of X is combinatoric if it has a
basis of splitting and if the spanning tree of the splitting yields exactly
the restriction of the tiling to So, where Sy is the head of the basis.

As in [6], in this paper also, we consider only the case when we have
a single generating tile, i.e. when h = 1.

In previous works by the author and some of its co-authors, a lot
of partial corollaries of that result were already proved as well as the
extension of this method to other cases, all in the case when X is the
hyperbolic plane or the hyperbolic 3D space.

Here, we remind the results which were established for JH? and IH3:

Theorem 1 — (Margenstern-Morita, [8, 9]) The tiling {5,4} of the
hyperbolic plane is combinatoric.
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Theorem 2 — (Margenstern-Skordev, [10]) The tilings {s,4} of the
hyperbolic plane are combinatoric, with s > 5.

Theorem 3 — (Margenstern-Skordev, [11, 12, 13]) The tiling {5,3,4}
of the hyperbolic 3D space is combinatoric.

Recall that the theorem of Poincaré considers that the angles of the

triangle which generates the tessellation are of the form E, T and T,
b q p
In this situation, in [6] we proved the following theorem:

Theorem 4 — (Margenstern, [6]) When p, g, v > 3, the tiling which
, . . . . T
1s generated by the recursive reflection of a triangle with angles —, —
b q

and T with = + — 4+ — <1 is combinatoric. It is also the case for all
T p q T
q, 7 >4 when p = 2.

Now, notice that for the tiling property by tessellation, it is only

2 2
needed that the angles of the triangle are of the form %, % and 77(
1 1 1 1
with the condition 7 —+ z + 7 < 7" If h, k and ¢ are all even, we find

again the condition of Poincaré’s theorem. As announced before, in
most cases, the tiling which is generated by the triangle by tessellation
is combinatoric. But it is not always the case and we need a weaker
notion:

Definition 3 — Say that a tiling is quasi-combinatoric if it has a
sub-tiling which s combinatoric.

Recall that a sub-tiling of a tiling is a partition of the same set
where the members of the partition are unions of tiles of the initial
tiling. We also can view a sub-tiling as a partition over the partition
which is defined by the tiling.

From the definition of a combinatoric tiling, it is not difficult to see
that a sub-tiling of a tiling T is generated by super-tiles which split
into finitely many tiles of 7.

In the following, we shall see that in the cases when we are not able
to prove whether the tiling is combinatoric, it turns out that the tiling
is always quasi-combinatoric.
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We have the following result:

Theorem 5 — (Margenstern, [6]) If we consider a triangle with angles
2w 2w 1

2 1 1
R af‘zd % wz’t‘h 7 + % + 7 < ok tl.Le tiling whz’ch. 18 ge@erated‘ by
the recursive reflections of this triangle is always quasi-combinatoric.
It is combinatoric when h = 2p, k = 2q and £ = 2r for the values
of p, q, and r which are indicated in theorem 4.
1 1 1
When h =2p+1 and k = £ = 2q, and then h > 3 and—+—<§,
b q
the tiling is combinatoric when h > 5.
When h = k =4 = 2p+ 1 and then h > 7, the tiling is always
combinatoric.

Notice that in the first part of the paper, we proved that if A, k£ and
£ are not all even, then either they are all odd, or one of these numbers
is odd and the two others are even and equal to each other.

2 Matrices and polynomials

From [5], we know that when a tiling is combinatoric, there is a poly-
nomial which is attached to the spanning tree of the splitting.
More precisely, we have the following result:

Theorem 6 — (Margenstern, [5]) Let T be a combinatoric tiling, and
denote a basis of splitting for T by Sy, ..., Sk with Py,..., P, as its
generating tiles. Let A be the spanning tree of the splitting. Let M be
the square matriz with coefficients m;; such that mg; is the number of
copies of Sj_1 which enter the splitting of S;_1 in the condition (ii) of
the definition of a basis of splitting. Then the number of nodes of A of
the n' generation are given by the sum of the coefficients of the first
row of M™. More generally, the number of nodes of the n'™ generation
in the tree which is constructed as A but which is rooted in a node being
associated to S; is the sum of the coefficients of the i+ 1" row of M™.

This matrix is called the matrix of the splitting and we call
polynomial of the splitting the characteristic polynomial of this
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matrix, being possibly divided by the greatest power of X which it
contains as a factor. Denote the polynomial by P. From P, we easily
infer the induction equation which allows us to compute very easily
the number u, of nodes of the n'™ level of A. This gives us also the
number of nodes of each kind at this level by the coefficients of M"™ on
the first row: we use the same equation with different initial values. The
sequence {uy, }ne is called the recurrent sequence of the splitting.

2.1 The matrices of the splittings

In this sub-section, we give the matrix of the splitting in all the cases
which are listed by the theorems 4 and 5.

First, we remind that we have two kinds of regions from which we
counstituted the basis of the splitting as it is indicated in the first part
of the paper, see [6].

Below, the figure 1 reminds the definition of the basic regions which
we use:

-k [uxp,r
/ﬁ\mm

Figure 1. The basic regions:
on the left hand: the splitting of an angular sector,
in the middle, and on the right hand,
two different splittings of a truncated sector

For the general case of the theorem of Poincaré, when p,q,7 > 3,
we take the following sets, in this order, as a basis of splitting:

(), (@), (), [p:ql, [g,7]; [,p], [P, 2%7]; [2%p, q], 1, 2%q].

where (p), (q) and (r) are angular sectors of respective angles z, T and
p q

T Also, in order to simplify the writings, we set a =p—3,b=¢q¢—3
r
and ¢ = r — 3. We obtain the 9 x 9 matrix which is displayed by the
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table 1.
0 0O 0 O 1 0 0O 0 O
0 0O 0 O 0 1 0O 0 o0
0 0 0 1 0 0 0O 0 O
a+10 0 O 0 o0 0 o0 1
0 b+10 O 0 0 1 0 0
0 0 c¢+10 0 o0 0 1 0
0 0 ¢ 0 0 0 0 1 0
a 0 0 O 0 o0 0 o0 1
0 b 0 0 0 0 1 0 0

Table 1. The splitting matrix of the general case,
when p,q,r > 3.

We remind the reader that a line in the table indicates how is split
the corresponding region. Take as an example the fourth line, which
corresponds to [p,q]. We obtain that this truncated sector is split into
a copy of T', then p— 2 copies of (p) and a copy of [r, 2 ¢]. We denoted
such a splitting by [p,q] = (p—2)(p) + [, 2*q] and the presence of the
copies of (p) on the left hand is due to the fact that the angle of the
truncated on the left side is defined by (p).

In the particular case when p = 2 and ¢,r > 4 in which the tiling
is also combinatoric, as a basis of splitting we have the following sets:

(2), (q), (r), [2,7]; [2, 4],

lq,7], [2xq, 2], [2, 2%7], [q, 2%7], [q, 3%7], [2xq, 7], [r, 3%q].

We introduce again a, b and ¢ with the same meaning as previously.
We obtain the matrix which is displayed by the table 2.

In the equilateral case, when p is even, taking as a basis of splitting
the sets (D), [p,p] and [p,2 * p]. When p is odd, we take as a basis of
splitting the sets (D), [p,p + ], [p+ D:p + p) and [p,2* D + p]. In order
to simplify the writings, we set @ = |=] — 3. The matrices which we

obtain for these two cases are displayed by the tables 3.
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Table 2. The splitting matrix of the general case,
when p =2 and ¢, > 4.

0 1 0 0 1 0 0
a+l O 1 a+l O 1 0
a 0 1 a+l 0O 0 1

a 0 1 0

Tables 3. The splitting matrices of the equilateral
case,
to left: p even; to right: p odd.

At last, for the isosceles case, when p > 7, a basis of splitting is
given by the sets:

@), (@7, (@7 [p,4), lg.4]; [p,2 % q)s [PFp. dl,
[a:D+0); [, 2P+p]; [4:2 % al, [2% ¢, p+p), 2% 4. ).
We obtain the matrix which is displayed by the table 4.
In the table 4, we use again the convention that a = [gj — 3, and
b0 = |_§J, be = b0 + (¢ — 3) mod 2, and bl = b0 + 1. It is not difficult
to see that |_§J = be and that bl = be + (¢ — 2) mod 2.

Indeed, this comes from the fact that in the splittings (5.a) up to
(5.£), when a term of the form (¢—a)(g) occurs, we have to take into ac-

10
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count that each occurrence of (q) is either (¢)~ or (¢)*. More precisely,

L(q — a)J
(g—a)(q) splits into something of the form (g ) ((q)_ (q)+) 2 “(q9)
where (q1) is either () or (¢)" and (¢y) is either § or (¢) . This explains
the rule which is given for b0, be and bl in the table 4. The justifica-
tion of the grouping with (¢)~ and (¢)" is given by the figures 9 which
illustrates the four possible cases of the position of the angle (p) in 7T
and the side which is chosen for splitting with (¢). The corresponding
expressions are given by the table 5, below.

o o o o 1 o0 o o 0o o0 0 o
o o0 o0 o0 o o o 1 0o o0 0 o0
o o0 o0 1 o0 o0 O o0 o o0 0 o0
0 b b 0 0 O 1 0 o0 o0 0 O
0 61 b 0 0 1 o o0 O 0o 0 o0
0 b O O 0 O 1 0 0 o0 0 O
a+t10 0 O 0 o0 o0 o0 o0 1 0 O
a+10 0 O 0 0 o0 o 0 0 0 1
a 0 O O O o0 o o o0 o0 o0 1
0 b0 b O O 0 o0 0 0o 0 1 o0
0O 0 b O 0O O O 0o 1 0 0 o0
0 b O 0 0 1 o o0 o 0o 0 0

Table 4. The splitting matrices of the isosceles case,
when p > 7 and ¢ > 3.

As it can be seen from the figures 9, we have the same expression
depending on whether the reflection of 1" on the side of the splitting
into (¢)’s yields (q) or (¢)". When () is in the left hand in 7" or when
(D) is in the middle of T' and (¢)’s are taken in the left side, then the
reflection of T yields (¢) . When (D) is in the right side in 7" or when
(D) is in the middle of T and (¢)’s are taken in the right side, then the
reflection of T' yields (¢)*.

At last, in the isosceles case, consider the case when p = 5 and
q > 4. A basis of splitting is then given by the sets:

11
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®), (@)~ @%, [p.d), [a.4], [p,2+4q], [ + .,

(¢, + P, [0:2%q], [2% ¢, D+ D], [2*q.4], [3*q.q].

(D) to left: () in the middle and (q)’s to left:
q—a -

L7;Km>mﬁ)+am @ + 15 (@"))

(p) to right: (p) in the middle and (q)’s to rlght.

c@ + 15 (@ @) (@@ ) +e@”

Table 5. The expressions in (¢)~ and (q)7.

Figures 9 The splittings with (¢) and (¢)".

We make use of the same notations as in the previous case for b0, be

—4 —2
and bl. We notice that Lq—j = Lq—j —1 and that in the considered

2 2
splitting, the (¢)’s are on the left side and that T has the angle p in

the middle. As p = 5, we have here that a + 1 = 0.

Accordingly, we obtain the following matrix:

12
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0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 bl be O 0 0 1 0 0 0 0 0
0 bl be O 0 1 0 0 0 0 0 0
0 be b0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 b0 be O 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 be b0 0 0 1 0 0 0 0 0 0
0 bl—1be—10 0 1 0 0 0 0 0 0

Table 6. The matrix for the isosceles case,
when p =5 and ¢ > 4.

2.2 The polynomials and the languages

Theorem 1 was the first implicit application by the author of the split-
ting method and it appeared in the technical report [8], after which the
paper [9] appeared in 2001. In [4], the author significantly improved
the method by considering its algebraic consequences. This gave rise
to the Fibonacci technology which gives a solution to the problem of
locating the cells of a cellular automaton. In particular, this solution
cousists in attaching a language to the tiling. This allowed the author
and its co-authors to devise cellular automata in the conditions which
are indicated by Theorem 2 and Theorem 3. Here, we shall see what
happens if we apply the same idea for the triangular tessellations of
the hyperbolic plane.

First, as in [4, 5], number the nodes of A level by level, starting
from the root and, on each level, from left to right. Second, consider
the recurrent sequence of the splitting, {u,}n>1: it is generated by
the polynomial of the splitting. As we shall see, it turns out that the
polynomial has a greatest real root 8 and that 8 > 1. The sequence
{un}n>1 is increasing. Now, it is possible to represent any positive

13
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k
number n in the form n = Y a;.u;, where a; € {0..[8]}, see [2], for
instance. The string ay . .. agz isU called a representation of n. In general,
the representation is not unique and it is made unique by an additional
condition: we take the representation which is maximal with respect
to the lexicographic order on the words on {0..b} where b = |3|. The
set of these representations is called the language of the splitting.

We have the following results:

Theorem 7 — (Margenstern, [4]) The splitting language of the penta-
grid, {5,4}, is reqular.

Theorem 8 — (Margenstern, Skordev [10]) The splitting languages of
the tilings {s,4}, s > 5, are all regular.

Theorem 9 — (Margenstern, [12]) The splitting language of the tiling
{5,3,4} is neither regular nor context-free.

For what is the tessellations of the hyperbolic plane which we con-
sider and which are based on a triangle, the main result of this paper
is the following theorem:

Theorem 10 — In the conditions of the theorems 4 and 5, in all the
cases when the tiling is combinatoric, the language of the splitting is
not reqular.

In this sub-section, we give the polynomials of the splitting in the
different cases and we prove the conclusion of the theorem 10 for the
corresponding language.

The proof is based on the following consideration:

We know from [3] that a necessary and sufficient condition for the
language of the splitting to be regular is that the splitting polynomial
has as its roots the conjugates of a Pisot number and, possibly, the non
real roots of X* — 1.

And so, it will be enough for us to show that the polynomial of the
splitting has always a real root, that the greatest one is positive, and
that it is not a Pisot number.

It will be enough to check that in almost all cases, the polynomial of
the splitting satisfies the following property: there is a number a > 1

14



Poincaré’s theorem and the splitting method

such that P(a) > 0, and there is another number b < —1 such that
P(b) > 0 if P has an odd degree and P(b) < 0 if P has an even
degree. The first condition with a entails that there is a greatest real
root xg with z¢g > 1. The second condition with b entails that there
is a negative root z; with 27 < —1. Later on, we shall refer to this
condition as the a and b lemma.

For the general case, when , in which case we have the
matrix of the table 1, the polynomial of the splitting is:

P(X) = X=X~ (p+q+r—9)X°—(pg+qr+rp—5(p+q+r)+18) X"
—(p—2)(g—2)(r —2)X3 +1.

Notice that if we consider symmetric images of the same sector as different

elements of the basis of splitting, the relations which we obtained in the section

3.2, namely from (1.a) up to (1.1), give rise to a square matrix of dimension 18
whose characteristic polynomial contains P(X) as a factor.

Proposition 1 — In the case when p, q, v > 3, the language of the

splitting which is associate to the tessellation of the triangle with angles

1 1 1
z, T and T such that = + - + < 1 s not regular.

b g b b q
Proof. It is enough to prove that P satisfies the a and b lemma. Let
us introduce the following notations:
s=p+q+r—06,
t = (p—2)(¢=2)+(¢=2)(r=2)+(r-2)(p—2),
w=(p—2)(qg—2)(r—2).

Then P(X) = X% — X6 — (s —3)X5 — (t —s) X* —wX? + 1.

We have: P(1) =—(s—3)—(t—s) —w+1=—t—w+4. And so,
as s > 3,t >3 and w > 1, P(1) > 0. Indeed, when w = 1, necessarily,
p=q=r=3,s=3andt=3 and we get that P(1) = 0. Indeed, we
get that P(X) = (X +1)(X -1)*(X? - X +1)(X?+ X +1)% Now, from
[3], as the polynomial has X 4+ 1 and X — 1 as factors, the language of
fthe splitting is not regular for this case.

For the other cases, w > 1 and so, P(1) <

Next, P(—1) = —-1—-1+(s—3)—1)— {t—s)+w+1 =w+2s—t—A4.

1 1
Notice that when p, ¢, 7 > 5, + + < 1. Accordingly,
p—2 q—2 r—2

15
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t = w.( L + L + L ) and so, we obtain ¢ < w under these
p—2 q—2 r—2
conditions. As a consequence, P(—1) = (w —t) +2(s — 2) > 0.

We have now to examine the cases when one of the numbers p, ¢,
r is less than 5. We may assume that p < ¢ < r and so p > 4.

We already dealt with the case when p =¢q =1r = 3.

First assume that p = 3 and p = ¢ = r is ruled out, we may assume
s>4. Wehave w = (¢—2)(r—2),t=(¢q—2)(r—2)+(¢g—2)+ (r—2)
and so, P(—1)=(w—1t)+2(s—2)=s+(p—2)—4=5+3—-6>1.

Assume now that p = 4 and that ¢, » > 4. This time, we obtain:
w=2(q—2)(r—2),t=(q—-2)(r—2)+2((¢ —2) + (r — 2)). And so,
P(-l)=(w—t)4+2(s—2)=(q—2)(r—2)+2(p—2)—4>4.

As all cases were examined, we obtain the conclusion of the theorem.

Consider again the general case of Poincaré’s theorem, this time
when |p=2andq,r > 4‘ which corresponds to the matrix of the ta-
ble 2. The polynomial of the splitting is now:

PX)=X"0 - X% _(g+r—-8)X°—(¢—3)(r —3)X*+ 1.

Proposition 2 — In the case when p = 2 and q, r > 4, the language
of the splitting which is associate to the tessellation of the triangle with
T T s 1 1 1 )
angles —, — and — such that — 4+ — + — < 1 is not regular.
p q b p q T
Proof. It is enough to prove that P satisfies the assumptions of the a
and b lemma for a polynomial with an even degree.

We get that P(1) = —(¢+r —8) — (¢ — 3)(r — 3) + 1, and as
g, > 4 and g+ > 9, we obtain that P(1) < 0. At the same time,
P(-1)>2(r—4)—(q—3)(r—-3)+1=(r—3)2—-(¢—3)) —2+1=
—(r—3)(¢ —5) — 1. This gives us P(—1) < 0 for ¢ > 5. If ¢ = 4, then
r>5and we get: P(1)=—(r—4)—(r—3)+1=-2r+8<-2. ®

Notice that in the case when ¢ = 4 and r = 5, which corresponds
to a triangle which generates the pentagrid, we obtain the following
polynomial:

P(X)=X"—-X—1,

16
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as long as X becomes a factor. This new form of P is irreducible and its
greatest root is not a Pisot number. Consequently, the corresponding
language is not regular, see [3]. However, as it is indicated by the
theorem 8, the splitting which is directly associated to the regular
rectangular pentagon is combinatoric and its associated language is
regular.

Consider now the ‘equilateral case, when p is even| . The corre-
sponding matrix is given by one of the tables 3. The polynomial of the
splitting is now:

PX)=X°’-X?—(a+1)X +1,

where p = 2(a + 3).

Proposition 3 — In the case of an equilateral triangle T with a vertex
angle of %, with k > 4, the language of the splitting which is associate

to the tessellation of T is not regqular.

Proof. Notice that p = 2k, which allows to make the correspondence
with the right expression of P. It is enough to prove that P satisfies
the assumptions of the a and b lemma for a polynomial with an odd
degree.

Notice that P(1) = —a and so, it is negative. Next, we obtain that
P(-1)=-14a+1=a>0. 1

In the ‘equilateral case, when p is odd ‘ , the matrix is given by the
other array in the tables 3. The polynomial of the splitting is:

PX)=X*—(a+2)X%?—(a+1)X + 1.

where a = ng - 3.

Proposition 4 — In the case of an equilateral triangle T' with a vertex
2

angle of —ﬂ, with p > 7, the language of the splitting which is associate
p

to the tessellation of T is not regular.

Proof. It is enough to prove that P satisfies the assumptions of the a

17
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and b lemma for a polynomial with an even degree.
Pl)=1-(a+2)—(a+1)+1=-2a—-1<0.

Next, P(-1) =1—(a+2)+(a+1)+1=1> 0. However, an
;) = 11—2— ?ZTG, and so, P(—;) <0
for a > 5. Clearly, this modification of the assumptions of the lemma
is valid for its conclusion. For a € {0..4}, a computation under Maple8
shows that there is a single real root ¢ which satisfies ¢ > 1, and that
there is always a complex root zg with |zg| > 1 and so, z¢ is neither a
Pisot nor a Salem number.
Consider now the‘ case of the isosceles triangle, when p is odd,p > 7.
The corresponding matrix is given by the table 4 and the polynomial
of the splitting is:

P(X) = X" —beX? —beX®+a7 X"+ a6 X" +asX®
+ a4X4 + a3X3 + CLQ‘XV2 + a1X + ag
the polynomial being obtained from the characteristic polynomial by
a division by X. The coefficients of the polynomial are given by the
following expressions:

a7 = —((a+3)b0 + 2(a + 1) + 2¢)
ag = —2(a+2)b0+2(b0 — (a+1))e
as = — (260 + 1) + (260 + a + 2)e
ag = —(2(a+2)b0 +2a + 1) + (2(a + 2)b0 + 2a + 3)e

a3 = —2(a+ 1)b0 + (2(a + 3)b0 + a + 4)e

ag = —b0 + (2(a +2)b0 + 2a + 1)e
a;=1—(a+1)b0+ (=1 +2(a+ 1)b0)e

ap = b0 — (260 + 1)e

Proposition 5 — In the case of an isosceles triangle T with a vertex

2 1 1 1
angle of —7(, with p > 7, and a basis angle of T with ~ +-< 2 the
p q p q
language of the splitting which is associate to the tessellation of T is

not reqular.

easy computation shows that P(—

Proof. It is enough to prove that P satisfies the assumptions of the a
and b lemma for a polynomial with an odd degree.
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We shall distinguish two cases, depending on whether ¢ = 0 or
e = 1. First consider the .

We have now that the polynomial is
P(X) = X"1-b0X°—b0X8+a7, X" +ag, XO+as, X°
+ a40X4+a30X3+a20X2—i—aloX—i-aoo

with, this time:

ar, = —((a+3)b0+2(a+1)) asz, = —2(a + 1)b0
ag, = —2(a + 2)b0 as, = —b0

a5, = —(2b0 + 1) al, = 1-— (a + 1)b0
A4y = —(2(a+2)b0+2a+1) ag, = b0

Notice that almost all coefficients of P are negative.

Now, P(1) = —(960+4ab0+2a+1) < 0 and so, P has a greatest real
root zp with zp > 1. A simple computation shows that P(—1) = 0,
whatever b0 and a are. As —1 is a root of P, xy cannot be a Pisot
number.

Now, consider the |case e = 1.

We have now that the polynomial is
P(X) = X1-b1X°-b1X3+a7, X +ag, X +as, X°
+ a41X4+a31X3+a21X2+a11X+a01

with, this time:

a7, = —((a+3)b0+2(a+2)) asz, =4b0 +a+ 4

ag, = —2(a +1)(b0 + 1) az, = (2a+3)b0+2a+1
as, =a+1 ap, = (a+1)b0

ag, =2 ap, = —(b0+1)

We have that P(1) = 0 for all values of b0 and of a and we have
that P(—1) = —2(b0+ 1) < 0. The fact that 1 is a root shows that the
greatest real root is not a Pisot number if that root is greater than 1.
But we have that P(2) = 739 — 336a — (246a + 1235)b0. This means
that when b0 > 1, P(2) < 0 and so the greatest real root xg exists and
it satisfies zp > 2. When b0 = 0, we have now that P(2) = 739 — 336a
and so, P(2) < 0 as soon as a > 3. And so, we remain with three cases,
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according to whether a is 0, 1 or 2.

Next, we notice that P(—2) = (6a + 489)b0 + 96a — 1437. This
means that P(—2) > 0 when b0 > 3. When 0 < b0 < 3, we have only
finitely many cases when P(—2) < 0. Indeed, P(—2) > 0 for b0 = 0
and a > 15,60 =1 and a > 10, b0 = 2 and a > 5.

It remains to look at the particular cases:

We remained with the cases when 60 = 0 and 0 < a < 14 for
P(—2) > 0, which contains also a particular case which we considered
for P(2) < 0. We have also to consider the case when b0 = 1 with
0 <a <9 and the case when b0 = 2 with 0 < a < 4. In all these cases,
the particular values of a and b0 provide us with an explicit polynomial
for which we may compute the values. Using Maple8 to that purpose,
we obtain the data which are displayed by the tables 7, 8 and 9. The
tables indicate the polynomial, its greatest real root z(, the smallest
real root z1, and a complex root z with |z| > 1. W

In the‘ case of the isosceles triangle, when p = 5|, in which the cor-
responding matrix is given by the table 6, the polynomial of the split-
ting is:

P(X) = X10—beX8—beX"—2be X+ (—(14b0)+(2b0+1)€) X°
+(—3b0 + 1 4 2b0€) X* +2(b0 + 1)e X3
+(—b0+(260+1)€) X2+ (—b0+2b0€) X +1—2e,

this polynomial being obtained from the characteristic polynomial of

the matrix by a division by X2.

Proposition 6 — In the case of an isosceles triangle T with a vertex
2

angle of —W, with p = 5, and a basis angle of T with q > 4, the language
p q

of the splitting which is associate to the tessellation of T is not reqular.

Proof. It is enough to prove that P satisfies the assumptions of the a
and b lemma for a polynomial with an even degree.

As in the case when p > 7, we shall distinguish two cases, depending
on whether e =0 or e = 1.

First consider the .

We have now that the polynomial is
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Poincaré’s theorem and the splitting method

P(X) = X" —p0X® —b0X7 —200X° — (14 b0)X°
—(3b0 — 1) X* — b0OX? — bOX +1,

Now, P(—1) =4 — 4b0 < 0 when b0 > 2. We have that
P(—g) _ 52435788178201  13243605734160
207 10240000000000 25600000000

52435788178201 < 132436057341
10240000000000 25600000000

21
—%) < 0 when b0 > 1.

Also, P(1) =2 —10b0 < 0 when b > 1.

and 1t turns out that

This means that P(

Notice that when ¢ = 0 we have necessarily that b0 > 1 and so, the
theorem is proved in that case.

Now, consider the |case e = 1.

We have now that the polynomial is

P(X) = X0~ (b0+1) X5~ (b0+1) X" —2(b0+1) X0 +b0.X°
—(b0—1) X44-2(b0+1) X3+ (b0+1) X2 +b0X —1,

Notice that P(1) = 0 for any b0, which already rules out a greatest
real root as a Pisot number if the greatest real root has its value greater
than 1. But, P(2) = 547 — 47460 and so, for b0 > 2, P(2) < 0. This
leaves us with b0 = 0 and b0 = 1 to be examined. Notice that as e =1,
the value b0 = 0 is possible here.

On another hand, P(—1) = —6b0 — 2 < 0. And so, when b > 2,
the greatest real root z satisfies zo > 1 (even zy > 2). There is also a
smallest real root 1 with 1 < —1.

When b0 =1 the polynomial is:
P(X)=X10_-2X8 —2X7 —4X® + X5 +4X3 +2X2+ X — 1,
whose greatest real root is 1.941130349, whose smallest real root is

0.4079364160 and which has several complex roots with a modulus
being greater than 1.
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a polynom z0 zl z
x_x9_x8_4x7T_2x6 |1.70989..|.534984.. | —1.193.. —i.213..
+ xPqpoxtax3 4+ x2 1
1 xM_x9_x8 6x7_4x6 |1.86365..|.428794.. | —1.228.. —i.232..
+2x9 yoxt5x343x2 1
2 xM_x9_x8 sxT_6x6 |1.97968..|.366369.. | —1.270.. —i.241..
+3x°% +oxtrex345x2 -1
3 xU_x9_x8_q10x7_sx6 |2.07470..].324561.. | —1.314.. —i.235..
+4x° poxtyrxd47x2 1
4 xU_x9_x8_12x7_10x% | 2.15604.. | —.72347.. | —1.356.. —i.219..
+5x° yoxt 1 8x3 41 9x2 1
5 xM_x9_ x8 _14x7_12x%(2.22762.. | —.79371.. | —1.395.. —i.193..
+6x%+2xd1ox3 411x2 21
6 xM_x9_ x8 16x7_14x%(2.29184.. | —.83286.. | —1.430.. — i.156..
+7x%+ox4 t10x3+13x2 21
7 x_x9_x8_18x7_16x% | 2.35027.. | —.85879.. | —1.462.. — i.100..
+8x°raxdr11x3415x2 1
8 x11_x9_x8_o0x7_18x9 [2.40402.. | —1.5642.. | .1574.. + i2.074..
+ox9rax41ax3 41721
9 xM_x9_x8_ 9ox7_50x6|2.45389..| —1.6652.. | .1611.. + i2.128..
+10x°%4+2x4113x3110x2 1
10 x1_x9_x8_o4xT_22x6[2.50048.. | —1.7390.. | .1645.. +i2.179..
+11x%4+2x41ax3101x2 21
11 x1_x9_x8_ o6x7_24x6 |2.54425.. | —1.8020.. | .1674.. + i2.226..
+12x%4+ax4 15 x3103x2 1
12 x_x9_x8_ 9gx7_26x6|2.58559.. | —1.8582.. | .1701.. + i2.270..
+13x°%4+2x4116x3125x2 -1
13 x_x9_ x8_30x7_28x6(2.62478..| —1.9095.. | .1726.. + i2.312..
+1axSpoxtrirx34orx2 1
14 x1_x9_x8_32x7_30x% [2.66208.. | —1.9569.. | .1748.. + i2.352..

+15x9roxtr18x3420x2 1

Table 7. The polynomials for 0 = 0, case p > 7
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bla polynom z0 zl z

110 x_oxY_ox8_7x7_4xb% |2.15549..| —1.3765.. |.1766.. + i1.202..
+x0poxdyex3pax24x—2

1| xM_ox9_ox8_10x7—sx8% |2.29137..1.342216.. |-1.401..—i.0458..
+2x%roxd9x348x242x -2

20 x1l ox9 ox8 13x7 12x6 |2.40030..|.279165.. |-1.443..—i.0361..
+3x94oxd110x3412x243x—2

31 xM_ox9 ox8_16xT—16x8 [2.49241..| —1.5422.. [1513.. +41.8207..
+4x942x4 111 x3 416 X2 44X —2

4] x11_ox9_9x8 _19x7_20x6 |2.57287..| —1.6328.. |.1669.. +1.9278..
+5x942x4112x3 420X 245X -2

51 xM_ox9 9x8 9oxT_24x6 [2.64467..| —1.7145.. [1791.. +i2.0196..
+6x%4+2x4113x3 42ax2 46X -2

6 x1l ox9 ox8 o5x7 28x6 [2.70976.. | —1.7895.. |.1890.. + i2.100..
+7x9ox 11ax3408x2 47X —2

71 xM_ox9 9x8_98xT_32x6 [2.76947..| —1.8588.. |.1972.. +i2.173..
+8x°42x4 115x3 4302 48X —2

8| xM_ox9 2x8 31x7_36x6 |2.82475..| —1.9232.. |.2041.. +2.239..
+oxd4oxt116x3436x2ox—2

9| xM_5x9 9x8 34x7_40x8 [2.87630..| —1.9831.. |.2101.. + i2.300..
+10x°+2xd17x3 440X 2 410X —2

Table 8. The polynomials for 80 = 1, case p > 7

When b0 = 0 the polynomial is:
PX)=X1"0- X8 - X" -2X0+ X" +2X3+ X2 - 1.
As being computed by Maple8, its greatest real root is 1.429660343,

and its smallest real root is 0.6743321665. Moreover, it has several
complex roots with a modulus being greater than 1.

Accordingly, we proved that in all cases, the greatest real root of
the polynomial of the splitting is neither a Pisot number nor a Salem
number and so, the language of the splitting is not regular. W
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bla polynom z0 zl z

210 x11_3x9_3x8_10x7-6x8 |2.47521..| —1.7686.. |.1983.. + i1.199..
+x9toxt1ax34rx240x -3

1| xM_3x9_3x8_1ax7-12x6 |2.60351.. | —1.8155.. |.0964.. + i1.046..
+2x94ox4113x3 4132 44x -3

2] xM_3x9 3x8_18x7_18x6 [2.70931..| —1.8685.. |.1343.. + i1.762..
+3x94ax411ax3419x2 46X -3

31 xM_3x9_3x8_2oxT_2ax6 |2.80029..| —1.9257.. |.1615.. +i1.903..
+4x942x4 115 x3 425 X2 48X —3

4] x11_3x9_3x8 _26x7-30x6 |2.88066..| —1.9850.. |.1812.. +42.0193..
+5x9%12x4 116 x3 431 X2 410X -3

Table 9. The polynomials for b0 = 2, case p > 7

In the tables 7, 8 and 9, we notice that the smallest real root, x1, satisfies
the condition |z1] < z¢ in twenty cases while this is not the case in ten other
ones. Indeed, it can be proved that the condition is satisfied in all the other
cases which are stated in the propositions 1 up to 6.

It is now plain that the theorem 10 is an immediate corollary of the
propositions from 1 to 6.

Notice also that, in the case when p = 2 and ¢ = 4, r > b, it is
possible to define a sub-tiling of the tessellation by grouping together
two copies of T' in such a way that one side of the right angle is contin-
ued by the side of the same length of the other triangle: this gives us
an isosceles triangle with the angle % as the basis angle. Now, group-

T .
ing r such triangles around the vertex with the angle —, we obtain a
r

tiling with the regular rectangular polygon with r sides. Now, we now,
from the theorem 8, that the language being associated with this new
tiling is regular. And so, a combinatoric tiling for which the language
is not regular may contain a combinatoric sub-tiling whose associated
language is regular.

Notice that the computations of this section, in particular the com-
putation of the polynomials of the splitting from the splitting matrix
have been performed or checked by Maple8.
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3 Conclusion

As the conclusion of this second part of the paper, we would like to
draw the attention on the possible continuation of this work on its
algebraic side.

Is it possible to obtain more information on the languages which
are associated to the splittings which we counsidered for the tessellations
being based on triangles? We proved that these languages are not
regular when the tiling is combinatoric. However, when the tiling is
only quasi-combinatoric, the combinatoric sub-tiling which we obtained
is associated with a splitting whose language is regular. On another
side, the result of the author which is obtained for the hyperbolic three-
dimensional tiling {5, 3,4} points to another direction: indeed, for that
tiling, the language of the splitting is not only not regular, it is not
context-free. Now, if we consider the polynomial of the splitting, its
greatest real root is not a Pisot number, but it is a Salem number and
not very far from being a Pisot number, as 1 is one if its root. Here,
almost all the polynomials which we met have the property that they
have at least two real roots which are in modulus greater than 1, the
greatest one being positive. And so, this property seems to point at
the conjecture that these languages are also not context-free. A first
step could be to show that the greatest root of the polynomial which
we met in this paper is always a real Perron number as it seems to be
the case.

Also, since the time of the publication of the first part of the paper,
the author could continue the work in the direction of the implemen-
tation of cellular automata in the triangular grids of the hyperbolic
plane. Some interesting details which lie on the ground of this work
and on the developments of [4] are given in [7], to appear.
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