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Abstract

A non-cooperative finite game of several persons is considered
in the case, where payoff functions are linear. Extreme levels of
independent perturbations of payoff functions parameters, which
remain Nash and Pareto optimality of a situation, are specified.
Necessary and sufficient conditions of such stability are stated.
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1 Introduction

There are some approaches of formulating of choice functions in the
theory of non-cooperative games. One of them is the widely known
principle of situation stability to deviations of strategy of each player,
operating alone, called Nash equilibrium [1]. But there are situations,
which are more profit for all the players, than Nash equilibrium ones.
Pareto optimal situations can be such situations [2]. These situations
are characterized by the following property: no one situation is more
preferable for all players. In [3-5], stability of Pareto optimal solutions
to perturbations of input data is investigated for vector combinatorial
optimization problems. By analogy with those works, extreme levels of
independent perturbations of linear payoff functions parameters, which
remain Nash and Pareto optimality of a situation, are specified here.
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2 Nash equilibrium situation

Consider a non-cooperative finite game in the normal form [1,6-9].
Let Xi ⊂ R be a finite set of (pure) strategies of the player

i ∈ Nn := {1, 2, . . . , n}, n ≥ 2, |Xi| > 1. Let fi(x) = Cix be a
payoff function of the player i, defined on the set of game situations

X =
n∏

i=1
Xi. Here Ci is the i-th row of the matrix C = (cij)n×n ∈

Rnn; x = (x1, x2, . . . , xn)T , xi ∈ Xi, i ∈ Nn. The game consists in fol-
lowing: the players choose their strategies xi from the sets Xi, i ∈ Nn

simultaneously and independently to each other. So the situation x
is formed. Then each player i receives the profit fi(x) and the game
finishes. Any such game is called a game with the matrix C.

According to Nash [1], a situation x0 ∈ X is called the equilibrium
situation of the game with matrix C, if the following equality holds for
any index i ∈ Nn:

max{Cix : x ∈ W (x0, i)} = Cix
0, (1)

where

W (x0, i) =
n∏

j=1

Wj(x0, i),

Wj(x0, i) =

{
Xj if j = i,

x0
j if j 6= i.

It can be easily seen, that a situation x∗ = (x∗1, x
∗
2, . . . , x

∗
n) of the

game with matrix C is equilibrium situation, if and only if the strategy
of each player i ∈ Nn is expressed by

x∗i =





max{z : z ∈ Xi} if cii > 0,

min{z : x ∈ Xi} if cii < 0,

z ∈ Xi if cii = 0.

We denote by NEn(C) the set of all such situations in the game with
matrix C.
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An equilibrium situation x∗ is called strict, if maximum in equality
(1) is achieved at a single point for any index i ∈ Nn, i.e. if |NEn(C)| =
1.

Thus, the next statements follows.

Proposition 1 NEn(C) 6= ∅ for any matrix C ∈ Rnn.

Proposition 2 An equilibrium situation of the game with matrix
C is strict if and only if any element of the main diagonal of matrix C
is nonzero.

By analogy with [3-5], under stability of a fixed equilibrium situa-
tion of the game with matrix C, we understand its following property:
the situation remains equilibrium under ”small” independent pertur-
bations of elements of the matrix C. Mentioned perturbations are
represented by addition of the matrix C with matrices from the set

B(ε) = {B ∈ Rnn : ||B|| < ε}, ε > 0. (2)

It can be easily seen, that if an element of the matrix C is located
outside the main diagonal, then its perturbations do not influence on
equilibrium of any situation. Therefore we define the norm of the
matrix B = (bij)n×n ∈ Rnn in definition (2) by the following:

||B|| = max{|bii| : i ∈ Nn}.

So an equilibrium situation x ∈ NEn(C) is called stable (to per-
turbations of payoff function parameters), if the following formula is
valid:

∃ε > 0 ∀B ∈ B(ε) (x ∈ NEn(C + B)).

By analogy with [4-6], under stability radius of an equilibrium situ-
ation x ∈ NEn(C) we understand the number

ρn
1 (x, C) =

{
supΩ1, if Ω1 6= ∅,
0 otherwise,

where Ω1 = {ε > 0 : ∀B ∈ B(ε) (x ∈ NEn(C + B))}.
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Proposition 3 Stability radius of a strict equilibrium situation x
of the game with matrix C ∈ Rnn (cii 6= 0, i ∈ Nn) is expressed by the
formula

ρn
1 (x,C) = min{|cii| : i ∈ Nn}.

Hence, any strict equilibrium situation is stable.

Proposition 4 An equilibrium situation is stable if and only if it
is strict.

Proposition 5 If at least one diagonal element of the matrix C ∈
Rnn is zero, then there is no stable equilibrium situation.

3 Pareto optimal situation

There is no single meaning of choice function in games theory. Evident
examples exist (see [6-9] and example 1 below), when there are more
advantageous situations for participants of the game, than equilibrium
ones. Such situations can be Pareto optimal [2]. A situation x0 in the
game with matrix C is called Pareto optimal, and also efficient, if it
belongs to the set

Pn(C) = {x ∈ X : π(x,C) = ∅},

where
π(x,C) = {x′ ∈ X : Cx ≤ Cx′, Cx 6= Cx′}.

It is evident, that Pn(C) 6= ∅ for any finite game with matrix C ∈ Rnn.
By analogy with [3-5], under stability radius of an efficient situation

x ∈ Pn(C), we understand the number

ρn
2 (x,C) =

{
supΩ2 if Ω2 6= ∅,
0 otherwise,

where
Ω2 = {ε > 0 : ∀B ∈ B(ε) (x ∈ Pn(C + B))}.
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The set B(ε) is defined here by formula (2), but under the norm of
a matrix B = (bij)n×n we understand Chebyshev norm:

||B||∞ = max{|bij | : (i, j) ∈ Nn ×Nn}.

A minimization problem was considered in [3]. We discuss here a
maximization one. Therefore, applying the result of [3], we obtain

Proposition 6 Stability radius of any efficient situation x ∈
Pn(C) in the game with matrix C ∈ Rn is expressed by the formula

ρn
2 (x,C) = min

x′∈X\{x}
max
i∈Nn

Ci(x− x′)
||x− x′||1 ,

where ||z||1 =
n∑

i=1
|zi|, z = (z1, z2, . . . , zn).

A situation x ∈ Pn(C) of the game with matrix C is called stable,
if ρn

2 (x,C) > 0; it is called Smale optimal (or strongly efficient) [10], if
there are no situations x′ ∈ X\{x}, such that

Cx = Cx′.

From proposition 5, we obtain
Corollary. Pareto optimal situation is stable if and only if it is

Smale optimal.
Consider some examples of the two-person game called bimatrix.

Let Xi = {0, 1}, i ∈ N2, x(1) = (0, 0)T , x(2) = (0, 1)T , x(3) =
(1, 0)T , x(4) = (1, 1)T . We write payoff functions in the form of matrix

[
(C1x

(1), C2x
(1)) (C1x

(2), C2x
(2))

(C1x
(3), C2x

(3)) (C1x
(4), C2x

(4))

]
.

Example 1. Let C =
(

2 −6
−2 1

)
. Then we obtain bimatrix game

with payoff functions
[

(0, 0) (−6, 1)
(2,−2) (−4,−1)

]
.
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Therefore NE2(C) = x(4), P 2(C) = {x(1), x(2), x(3)}. It is evident,
that efficient strategy x(1) is more advantageous for players, than equi-
librium situation x(4), although it is not an equilibrium one. Such a
game is known in the literature (see, for example, [7-9]) as ”dilemma
of prisoner”. By virtue of propositions 3 and 6, we have

ρ2
1(x

(4), C) = 1, ρ2
2(x

(1), C) = ρ2
2(x

(3), C) = 2, ρ2
2(x

(2), C) = 1.

Example 2. Let C =
(

2 −1
−1 0

)
. Then payoff functions matrix is

[
(0, 0) (−1, 0)

(2,−1) (1,−1)

]
.

From here, NE2(C) = {x(3), x(4)}, P 2(C) = {x(1), x(3)}. On the basis
of propositions 4 and 6, we obtain

ρ2
1(x

(3), C) = ρ2
1(x

(4), C) = 0, ρ2
2(x

(1), C) =
1
2
, ρ2

2(x
(3), C) = 1.

Example 3. Let C =
(

2 3
5 1

)
. Then payoff functions matrix is

[
(0, 0) (3, 1)
(2, 5) (5, 6)

]
.

Therefore NE2(C) = P 2(C) = {x(4)}. According to propositions 3
and 6, we derive

ρ2
1(x

(4), C) = 1, ρ2
2(x

(4), C) = 3.

Example 4. Let C =
(−2 −1

1 −3

)
. Then payoff functions matrix is:

[
(0, 0) (−1,−3)

(−2, 1) (−3,−2)

]
.

Therefore NE2(C) = {x(1)}, P 2(C) = {x(1), x(3)}. Refer-
ring to propositions 3 and 6 once again, we obtain ρ2

1(x
(1), C) =

2, ρ2
2(x

(1), C) = 3
2 , ρ2

2(x
(3), C) = 1.
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