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Note on the n-cycles and their achromatic
numbers

Danut Marcu

Abstract

For an n-cycle C, with achromatic number ¥(C), we show
that

n> { Y(O)P(C) —1]/2, if Y(C) is odd,
- [B(C)?/2, if 1(C) is even.
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1 Introduction

In this note, our graph-theoretic terminology is fairly standard, graphs
considered here being finite and undirected. For a graph G = (V| E),
without loops or multiple edges, with V as the vertex set and F as
the edge set, by an achromatic k-colouring of G, we mean a function
f:V —{1,2,...,k} such that

(a) if (z,y) € E, then f(x) # f(y)

(b) for every 1 < i < j <k, there exist z,y € V such that (z,y) € £
and f(z) =1, f(y) = J.

The achromatic number [1] of G, 1(G), is defined to be the greatest
integer k for which an achromatic k-colouring of GG exists. Obviously,
by the definition of 1 (G), we have
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B > CY) = ¥(G)W(G) - 1]/2. (1)

From (1), by a straightforward calculus, we obtain

P(G) < (14 V1 +8[E])/2. (2)

Remark 1. Let k be a non-negative integer and C' an n-cycle (an elemen-
tary undirected cycle of length n) such that n = k(k—1)/2. Obviously,
there exists an achromatic k-colouring of C' and, therefore, 1(C) > k.
On the other hand, by (1), we have k > ¢(C) and, hence, ¢(C) = k.

2 Main result
The main result of this paper consists of the following

Theorem 1 If C is an n-cycle with achromatic number ¥(C),
then

o s ) VOR(C) =1]/2, if p(C) is odd,
B [W(C)]?/2, if ¥(C) is even.

Let f be an achromatic k-colouring of a graph G = (V, E). We shall
denote by K(f,k,G) the complete multigraph with vertices labelled
1,2,..., k, such that (z,y) € E if and only if (f(x), f(y)) is an edge of
K(f, k,G), and (f(x), f(y)) is a multiple edge of order ¢ if there exist
(xi,yi) € E, i = 1,2,..,t, with f(x;) = f(x) and f(y;) = f(y), for
every 1 = 1,2,....t.

Remark 2. Obviously, if C = (z1,x2,...,2,) is an n-cycle and f
is an achromatic k-colouring of C, then (f(z1), f(x2),..., f(zy)) is an
Euler cycle of K(f, k,C). Thus, every vertex of K(f, k, C) is of an even
degree. Hence, if K(k) is a complete multigraph with k vertices, every
one of an even degree, then there exists a cycle C' and an achromatic
k-colouring f of it, such that K(k) = K(f, k,C).

Proof of the Theorem. Let k be a non-negative integer and Ky the
complete simple graph on k vertices. If k is even, then, by adding to
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K a set of edges that form a perfect matching, we obtain a complete
multigraph with k vertices, K*(k), for which every vertex is of an
even degree, equal to k?/2. Thus, by Remark 2, there exists an n-
cycle (n = k%/2), C and an achromatic k-colouring f of it, such that
Y(C) > k and K*(k) = K(f,k,C). Hence, by (2), we have /2n <
P(C) < (1 + /1 +8n)/2, that is, ¥(C) = /2n or n = [(C)]?/2.
Moreover, C' is the smallest cycle having an achromatic k-colouring.
If £ is odd, then K}, has all its vertices of an even degree. Moreover,
for the n-cycle C with n = k(k — 1)/2 and the achromatic k-colouring
f, we have K = K(f,k,C). But, for such a cycle, by Remark 1,
H(C) = k.
So, summarizing and having in view (1), the theorem is proved.
Remark 3. In [2], is given a necessary and sufficient condition in
which all the elementary cycles of a connected graph G = (V, E) have
lengths < k, where k is a non-negative integer with 2 < k < |E|/2.
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