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Note on the n-cycles and their achromatic

numbers

Dănuţ Marcu

Abstract

For an n-cycle C, with achromatic number ψ(C), we show
that

n ≥
{

ψ(C)[ψ(C)− 1]/2, if ψ(C) is odd,
[ψ(C)]2/2, if ψ(C) is even.
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1 Introduction

In this note, our graph-theoretic terminology is fairly standard, graphs
considered here being finite and undirected. For a graph G = (V, E),
without loops or multiple edges, with V as the vertex set and E as
the edge set, by an achromatic k-colouring of G, we mean a function
f : V → {1, 2, ..., k} such that

(a) if (x, y) ∈ E, then f(x) 6= f(y)

(b) for every 1 ≤ i < j ≤ k, there exist x, y ∈ V such that (x, y) ∈ E
and f(x) = i, f(y) = j.

The achromatic number [1] of G, ψ(G), is defined to be the greatest
integer k for which an achromatic k-colouring of G exists. Obviously,
by the definition of ψ(G), we have
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|E| ≥ C2
ψ(G) = ψ(G)[ψ(G)− 1]/2. (1)

From (1), by a straightforward calculus, we obtain

ψ(G) ≤ (1 +
√

1 + 8|E|)/2. (2)

Remark 1. Let k be a non-negative integer and C an n-cycle (an elemen-
tary undirected cycle of length n) such that n = k(k−1)/2. Obviously,
there exists an achromatic k-colouring of C and, therefore, ψ(C) ≥ k.
On the other hand, by (1), we have k ≥ ψ(C) and, hence, ψ(C) = k.

2 Main result

The main result of this paper consists of the following

Theorem 1 If C is an n-cycle with achromatic number ψ(C),
then

n ≥
{

ψ(C)[ψ(C)− 1]/2, if ψ(C) is odd,
[ψ(C)]2/2, if ψ(C) is even.

Let f be an achromatic k-colouring of a graph G = (V,E). We shall
denote by K(f, k,G) the complete multigraph with vertices labelled
1, 2, ..., k, such that (x, y) ∈ E if and only if (f(x), f(y)) is an edge of
K(f, k,G), and (f(x), f(y)) is a multiple edge of order t if there exist
(xi, yi) ∈ E, i = 1, 2, ..., t, with f(xi) = f(x) and f(yi) = f(y), for
every i = 1, 2, ..., t.

Remark 2. Obviously, if C = (x1, x2, . . . , xn) is an n-cycle and f
is an achromatic k-colouring of C, then (f(x1), f(x2), ..., f(xn)) is an
Euler cycle of K(f, k, C). Thus, every vertex of K(f, k, C) is of an even
degree. Hence, if K(k) is a complete multigraph with k vertices, every
one of an even degree, then there exists a cycle C and an achromatic
k-colouring f of it, such that K(k) = K(f, k, C).

Proof of the Theorem. Let k be a non-negative integer and Kk the
complete simple graph on k vertices. If k is even, then, by adding to
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Kk a set of edges that form a perfect matching, we obtain a complete
multigraph with k vertices, K∗(k), for which every vertex is of an
even degree, equal to k2/2. Thus, by Remark 2, there exists an n-
cycle (n = k2/2), C and an achromatic k-colouring f of it, such that
ψ(C) ≥ k and K∗(k) = K(f, k, C). Hence, by (2), we have

√
2n ≤

ψ(C) ≤ (1 +
√

1 + 8n)/2, that is, ψ(C) =
√

2n or n = [ψ(C)]2/2.
Moreover, C is the smallest cycle having an achromatic k-colouring.

If k is odd, then Kk has all its vertices of an even degree. Moreover,
for the n-cycle C with n = k(k − 1)/2 and the achromatic k-colouring
f , we have Kk = K(f, k, C). But, for such a cycle, by Remark 1,
ψ(C) = k.

So, summarizing and having in view (1), the theorem is proved.
Remark 3. In [2], is given a necessary and sufficient condition in

which all the elementary cycles of a connected graph G = (V, E) have
lengths ≤ k, where k is a non-negative integer with 2 < k ≤ |E|/2.
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