Note on the *n*-cycles and their achromatic numbers

Dănuț Marcu

Abstract

For an *n*-cycle C, with a chromatic number $\psi(C)$, we show that

$$n \ge \begin{cases} \psi(C)[\psi(C) - 1]/2, & \text{if } \psi(C) \text{ is odd,} \\ [\psi(C)]^2/2, & \text{if } \psi(C) \text{ is even.} \end{cases}$$

AMS (MOS) Subject Classification (2000) : 05C40. **Keywords and phrases:** graphs, cycles length, achromatic number.

1 Introduction

In this note, our graph-theoretic terminology is fairly standard, graphs considered here being finite and undirected. For a graph G = (V, E), without loops or multiple edges, with V as the vertex set and E as the edge set, by an *achromatic k-colouring* of G, we mean a function $f: V \to \{1, 2, ..., k\}$ such that

- (a) if $(x, y) \in E$, then $f(x) \neq f(y)$
- (b) for every $1 \le i < j \le k$, there exist $x, y \in V$ such that $(x, y) \in E$ and f(x) = i, f(y) = j.

The achromatic number [1] of G, $\psi(G)$, is defined to be the greatest integer k for which an achromatic k-colouring of G exists. Obviously, by the definition of $\psi(G)$, we have

329

^{©2002} by D. Marcu

$$|E| \ge C_{\psi(G)}^2 = \psi(G)[\psi(G) - 1]/2.$$
(1)

From (1), by a straightforward calculus, we obtain

$$\psi(G) \le (1 + \sqrt{1 + 8|E|})/2. \tag{2}$$

Remark 1. Let k be a non-negative integer and C an n-cycle (an elementary undirected cycle of length n) such that n = k(k-1)/2. Obviously, there exists an achromatic k-colouring of C and, therefore, $\psi(C) \ge k$. On the other hand, by (1), we have $k \ge \psi(C)$ and, hence, $\psi(C) = k$.

2 Main result

The main result of this paper consists of the following

Theorem 1 If C is an n-cycle with achromatic number $\psi(C)$, then

$$n \geq \begin{cases} \psi(C)[\psi(C)-1]/2, & \text{if } \psi(C) \text{ is odd,} \\ [\psi(C)]^2/2, & \text{if } \psi(C) \text{ is even.} \end{cases}$$

Let f be an achromatic k-colouring of a graph G = (V, E). We shall denote by $\mathbf{K}(f, k, G)$ the complete multigraph with vertices labelled 1, 2, ..., k, such that $(x, y) \in E$ if and only if (f(x), f(y)) is an edge of $\mathbf{K}(f, k, G)$, and (f(x), f(y)) is a multiple edge of order t if there exist $(x_i, y_i) \in E, i = 1, 2, ..., t$, with $f(x_i) = f(x)$ and $f(y_i) = f(y)$, for every i = 1, 2, ..., t.

Remark 2. Obviously, if $C = (x_1, x_2, ..., x_n)$ is an *n*-cycle and f is an achromatic *k*-colouring of C, then $(f(x_1), f(x_2), ..., f(x_n))$ is an Euler cycle of $\mathbf{K}(f, k, C)$. Thus, every vertex of $\mathbf{K}(f, k, C)$ is of an even degree. Hence, if $\mathbf{K}(k)$ is a complete multigraph with k vertices, every one of an even degree, then there exists a cycle C and an achromatic *k*-colouring f of it, such that $\mathbf{K}(k) = \mathbf{K}(f, k, C)$.

Proof of the Theorem. Let k be a non-negative integer and \mathbf{K}_k the complete simple graph on k vertices. If k is even, then, by adding to

330

 \mathbf{K}_k a set of edges that form a perfect matching, we obtain a complete multigraph with k vertices, $\mathbf{K}^*(k)$, for which every vertex is of an even degree, equal to $k^2/2$. Thus, by Remark 2, there exists an ncycle $(n = k^2/2)$, C and an achromatic k-colouring f of it, such that $\psi(C) \ge k$ and $\mathbf{K}^*(k) = \mathbf{K}(f, k, C)$. Hence, by (2), we have $\sqrt{2n} \le$ $\psi(C) \le (1 + \sqrt{1 + 8n})/2$, that is, $\psi(C) = \sqrt{2n}$ or $n = [\psi(C)]^2/2$. Moreover, C is the smallest cycle having an achromatic k-colouring.

If k is odd, then \mathbf{K}_k has all its vertices of an even degree. Moreover, for the *n*-cycle C with n = k(k-1)/2 and the achromatic k-colouring f, we have $\mathbf{K}_k = \mathbf{K}(f, k, C)$. But, for such a cycle, by Remark 1, $\psi(C) = k$.

So, summarizing and having in view (1), the theorem is proved.

Remark 3. In [2], is given a necessary and sufficient condition in which all the elementary cycles of a connected graph G = (V, E) have lengths $\leq k$, where k is a non-negative integer with $2 < k \leq |E|/2$.

Acknowledgement. I wish to thank the referee for his kindness in reading and correcting this material. Also, I wish to express all my gratitude for bibliographic list [3, 8] provided to me, which is very closely related to this paper.

References

- F. Harary, S. Hedetniemi, *The achromatic number of a graph*, J. Combin. Theory 8 (1970), pp.154–161.
- [2] D. Marcu, Note on the length of elementary cycles of a graph, Quart. J. Math. Oxford (2), 34 (1983), pp.475–476.
- [3] F. Hughes, G. MacGillivray, The achromatic number of graphs: a survey and some new results, Bull. Inst. Combin. Appl. 19 (1997), pp.27–56.
- [4] H. L. Bodlaender, Achromatic Number is NP-Complete for Cographs and Interval Graphs, Inf. Pro. Let. 31 (1989), pp.135– 138.

- [5] N. Cairnie, K. J. Edwards, Some results on the achromatic number, J. Graph Theory, 26 (1997), pp.129–136.
- [6] K. J. Edwards, The harmonious chromatic number and the achromatic number. In: R. A. Bailey, ed., Surveys in Combinatorics 1997 (Invited papers for 16th British Combinatorial Conference), Cambridge University Press, Cambridge, 1997, pp.13–47.
- [7] P. Krysta, K. Lory's, Efficient approximation algorithms for the achromatic number. In: ESA '99 (Prague), Springer, 1999, pp.402– 413.
- [8] A. Chaudhary, S. Vishwanathan, Approximation algorithms for the achromatic number. In: Proceedings of the Eight Annual ACM-SIAM Symposium on Discrete Algorithms, 1997, pp.558– 563.

Dănuț Marcu,

Received June 19, 2002, Revised July 19, 2002

Str. Pasului 3, Sector 2, 70241-Bucharest, Romania. E-mail: drmarcu@yahoo.com, danutmarcu@romtelecom.ro

332