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The splitting method and Poincaré’s theorem:
(I) — the geometric part

Maurice Margenstern

Abstract

In this paper we revisit Poincaré’s theorem in the light of the
splitting method which was introduced by the author in [3]. This
led to the definition of combinatoric tilings.

We show that all tessellations Which are constructed on a
triangle with interior angles ﬁ, T and = with - + - + <1

are combinatoric, except when p = 2 and qg = 3. At the price
of a small extension of the definition of a combinatoric tiling,
which we call quasi-combinatoric, we show that all tessellations
with the above numbers p, ¢ and r are quasi-combinatoric for all
possible values of p, ¢ and r, the case when p = 2 and ¢ = 3 being
included.

As a consequence, see [3, 8], there is a bijection of the tiling
being restricted to an angular sector Sy and a tree which we
call the spanning tree of the splitting. Accordingly, there is also
a polynomial P, 4, which allows us to compute the number of
triangles which are associated with the nodes of the n'" level in
the tree: this will be examined in the second part of the paper.

We also show that the tessellations which are constructed on

b
an isosceles triangle with interior angles —, p odd, for the ver-

1
tex angle and T for the basis angles with — + — < 2 are quasi-

combinatoric and indeed combinatoric for p > 5. However, all
the tessellations which are constructed on an equilateral triangle

e 27 . s
with interior angle — are combinatoric tilings.
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1 Introduction

Poincaré’s theorem is a famous result about tessellations in the hyper-
bolic plane by triangles.

A tessellation of a polygon is a tiling which is obtained by recur-
sively reflecting it in its sides and the images in their sides: this defines
the tiles. The tiling property requires that the interior of the tiles are
pairwise disjoint and that any point of the plane belongs to the closure
of at least one tile. We say that the considered polygon generates a
tiling by tessellation.

Poincaré’s theorem, being established in the late 19" century, says
that a triangle 7" generates a tiling by tessellation if the interior angles
of T are of the form %, g and % and if p, ¢ and r satisfy the inequality:
! + - ! + — < 1. Notice that the latter inequality simply says that T is
ﬁldeed a triangle in the hyperbolic plane.

Several proofs of this result where given, among them elementary
ones, see, for instance, [1].

In this paper, we revisit the proof of this theorem in the light of
the new method which was introduced by the author in [3] and which
we call the splitting method.

2 The splitting method

It lies on the following notion which is a generalisation of [3]:

Definition 1 — Consider finitely many sets Sy, ..., S of some geo-
metric metric space X which are supposed to be closed with non-empty
interior, unbounded and simply connected. Consider also finitely many
closed simply connected bounded sets Py, ..., P, with h < k. Say that
the S;’s and Py’s constitute o basis of splitting if and only if:

(i) X splits into finitely many copies of Sy,

(17) any S; splits into one copy of some Py and finitely many copies

of Sj’s,
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Poincaré’s theorem and the splitting method

where copy means an isometric image, and where, in the condition
(i1), the copies may be of different S;’s, S; being possibly included.

As usual, it is assumed that the interiors of the copies of T and the
copies of the S;’s are pairwise disjoint.

The set Sy s called the head of the basis and the Pp’s are called
the generating tiles.

Consider a basis of splitting of X, if any. We recursively define a
tree A which is associated with the basis as follows. First, we split S
according to the condition (i7) of Definition 1. This gives us a copy of
say Py which we call the root of A and which we call also the leading
tile of Sp. In the same way, by the condition (i7) of Definition 1, the
splitting of each S; provides us with a copy of some P, which we call
the leading tile of S;. The splitting provides us also with k; regions, S;,,

.., S;,. which enter the splitting of S;. The regions which enter the
splittinlg of Sy according to the condition (4z) of Definition 1 are called
the regions of the first generation. Assume that we have all the regions
of the n'" generation: S,,, ..., S, - By definition, their leading tiles
constitute the nodes of the n'!' generation. We split again these S;’s
according to the condition (¢). We obtain m,, tiles which are called
the tiles of the n+1"™ generation and, for each Sy, which is some 5,
we have a splitting which is the isometric image of the splitting of S;
as it is above indicated. We say that the leading tiles of these copies
of the splitting of S; are called the sons of the leading tile of Sy, .
By definition, the sons of the leading tile of .S, belong to the n+1th
generation. The union of all the sons of the nodes of the n' generation
constitutes the nodes of the n+1"™ generation.

This recursive process generates an infinite tree with finite branch-
ing. This tree, A, is called the spanning tree of the splitting, where
the splitting refers to the basis of splitting Sy, ..., Sk.

Definition 2 — Say that a tiling of X is combinatoric if it has a
basis of splitting and if the spanning tree of the splitting yields exactly
the restriction of the tiling to So, where Sy is the head of the basis.

In this paper, we consider only the case when we have a single
generating tile, 7.e. when h = 1.
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In previous works by the author and some of its co-authors, a lot
of partial corollaries of that result were already proved as well as the
extension of this method to other cases, all in the case when X is the
hyperbolic plane or the hyperbolic 3D space. Notice that Definitions 1
and 2 are meaningful also when X is an euclidean space and that they
can be applied not only to tessellations but also on tilings being gen-
erated by a single tile in another way. As an example, take the square
grid of the euclidean plane. Define odd columns and even columns
by suitable coordinates for the centres of the squares. Then shift all
the odd columns vertically with an amplitude of half the length of the
square. We get a tiling which is generated by a single tile and which
is not a tessellation. It is not very difficult to see that this tiling is
combinatoric.

Here, we state the results which were established for IH? and IH3:

Theorem 1 — (Margenstern-Morita, [4, 5]) The tiling {5,4} of the
hyperbolic plane is combinatoric.

Theorem 2 — (Margenstern-Skordev, [6]) The tilings {s,4} of the
hyperbolic plane are combinatoric, with s > 5.

Theorem 3 — (Margenstern-Skordev, [7, 8]) The tiling {5,3,4} of the
hyperbolic 3D space is combinatoric.

Theorem 1 is the first implicit application by the author of the
splitting method and it appeared in the technical report [4], after which
the paper [5] appeared in 2001. In [2], the author significantly improved
the method by considering its algebraic consequences. This gave rise
to the Fibonacci technology which gives a solution to the problem of
locating the cells of a cellular automaton. This allowed the author and
its co-authors to devise cellular automata in the conditions which are
indicated by Theorem 2 and Theorem 3. We turn to this aspect of the
question in the second part of the paper to be published with the next
issue of the journal.

Turning now to the theorem of Poincaré, recall that this result

counsiders that the angles of the triangle are of the form E, T and T,
p q p
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Poincaré’s theorem and the splitting method

For the tiling property by tessellation, it is needed that they are of the
2 2 1 1 1

form % % and 7” with the condition - + - + 7 < 7. If b, k and

¢ are all even, we find again the condition of Poincaré’s theorem. As

announced before, in most cases, the tiling which is generated by the

triangle by tessellation is combinatoric. But it is not always the case

and we need a weaker notion:

Definition 3 — Say that a tiling is quasi-combinatoric if it has a
sub-tiling which s combinatoric.

Recall that a sub-tiling of a tiling is a partition of the same set
where the members of the partition are unions of tiles of the initial
tiling. We also can view a sub-tiling as a partition over the partition
which is defined by the tiling.

From the definition of a combinatoric tiling, it is not difficult to see
that a sub-tiling of a tiling T is generated by super-tiles which split
into finitely many tiles of 7.

In the following, we shall see that in the cases when we are not able
to prove whether the tiling is combinatoric, it turns out that the tiling
is always quasi-combinatoric.

3 The splitting for the triangular tessellations

In this section, we describe the splitting which we associate to each
tessellation of JH? being defined by a triangular tile which obeys the
condition of Poincaré’s theorem. We also describe the splitting in con-
ditions which go a bit beyond the traditional statement of the theorem.
We begin by indicating the regions which we take as a basis for the
splitting. Then, we shall proceed to the splitting in the general case.
In a third sub-section, we introduce new regions which are adapted to
several special cases and we produce the corresponding splittings.

In the first subsection, we also fix the notations which will be fol-
lowed later on, in the whole paper.
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3.1 Angular sectors and cut angular sectors

In this sub-section, we deal with the conditions of the theorem of
Poincaré as it is stated in the introduction. Namely, the angles of

. . . ™ T ™ .
the triangle 7" under consideration are —, — and — where the positive
q T

. . 1 1
integers p, g and r satisfy — + — + — < 1.
p q T

Consider the pictures which are displayed by the figures 1 and 2.

Figure 1. Splitting an angular sector,
Notice the splitting into T+ X

T .
In the figure 1, we have an angular sector of —, for instance. The

triangle T is inscribed in the sector, and the closure of the complement
of the convex hull of T" in the sector is a convex region which we call
a truncated angular sector, truncated sector for short. A truncated
sector is always determined as the intersection of two angles which
have a common side. The vertices of the angles are at a distance

which is one of the sides of T'. With respect to the common side, each

L T . km
angle has an absolute value which is 7—— on one side and 7——,

v w
where v, w € {p,q,r}. As we want that the rays which start from the
respective vertices do not meet, neither in the hyperbolic plane nor at
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km

. . hr .
infinity, we may assume that 7—— + m1—— > 7 or, in other terms,

v w
h k
that — + o < 1. Notice that when the equality holds, the rays

v w
are still supported by lines which have a common perpendicular and
so, they are non secant. In general, we shall denote such a truncated

hr k
sector as [—W, —W] and also [hxv, kxw] for short. In the case of Figure 1,
vow

we have ¥ = [v,w] for the truncated sector ¥. On another hand, we
h h
shall denote by (—W) the angular sector of angle —W, (h*v) for short.
v v
Below, the figures 2 and 3 indicate the way in which a truncated
sector [h * v,k % w] can be split. It can be split in different ways as it
is stated by the following statement:

Figure 2. Splitting a truncated angular sector,
The splitting is T+ (g—(h+1)) (=) + 3
q
Basic lemma — Consider three positive integers p, q and r such that
h k 1 (k+1)

—+ — < 1. If we have — + ——= < 1 then,
q T p r
hn km s m (k+1)m
1 —,— ] =T+ (g—(h+1))(—) + [-, ————].
0 Fo =T+ @0 () + L]
1 1
On another hand, if we have (ht1) + — <1, then:
q p
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hr kmn, (h+)7 m . m
(@) [ =T =) ().

Proof. Easy computation being left to the reader. l

hr kn

W N

. N

™

q
EI

SIE N

Figure 3. Splitting a truncated angular sector an-
other way,
The splitting is now T+X/'4(r—(k+1)) (z)
q
Making use of the short notation which we introduced, we rewrite
the relations (1) and (2) as:

(1) [hxqkxr]= (¢—(h+1))(q) + [p, (k+1) % 7].
(2) [h*q, k1] = [(h+1) x q,p] + (r—(k+1))(r).

Notice that in the new formulation, 7' is omitted: indeed, we have to
consider that it is included in the symbol = which replaces the symbol
= of the former formulation.

In the notations (¢) and [h * g,k x r], if ¢ or r are replaced by an
explicit integer, say n and, possibly, m, we write (%) and [h * 7, k * 7).

Notice also, in the statement of the lemma, the different order of the
terms between formulas (1) and (2): this corresponds to the orientation
of the picture which is settled by a fixed global orientation of IH2. This
is also due to the reflection process which underlies in the construction
of the tessellation and which requires that we should be able to split a
truncated sector as well as its reflected image.
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3.2 The basic case of Poincaré’s theorem

There is an easy consequence of the basic lemma:

Corollary — For all positive integers p, q and r with p, q, v > 3, and
1 1

——|——+1<1, we have:
p q T
lg,7] = (¢=2)(q) +[p, 2+ 7].
[q,2% 7] = [2 % q,p] + (r=3)(r).

If we have r = 3 in the latter relation, we obtain:

(9,2 %3] = [2 % q,p].

1 2
Proof. As p,r > 3, we have — + — < 1. Consequently, the lemma
T

follows from the formulas (1) aII)Id (2) as long as p, ¢ and 7 play here
symmetrical roles. The case when r = 3 can easily be checked by the
reader, using the Figure 4, below. ll
27
3/
7r
3

S

Figure 4. Splitting the truncated sector [g, 2 * 3]
7

The splitting is now 17"+ (T—(k+1))( )
q
We are now in the position to prove the following property:

i
Theorem 4 — The recursive replication of a triangle with angles —,

1 1 1
T and T which satisfy the relation — + — + — < 1 gives rise to a com-
T T

q
binatoric tiling for all p, q and r with p, q, r > 3 and for all g and
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r with q, v > 4 for p = 2. When p = 2 and q = 3, the tiling is
quasi-combinatoric.

Proof. We first consider the | case when p, ¢, r > 3 |.

1 1 1
We may assume that p < ¢ < r. From the condition — + — + — < 1,

p q T
we obtain that r > 4.
The Figure 1 gives us the first relation:

(La)  (p) = lg,7].
Then, applying the basic lemma and its corollary, we get, succes-
sively:
(1.b)  lg,r] = (¢=2)(q) + [p,2 %],
(Le)  [p,2xr] = [2%p,q] + (r=3)(r),
(Ld)  [2xp,q] = (p=3)(p) +[r,2 % g,
(Le)  [r,2xq] = [2%rp]+(¢=3)(9),
At this point, we notice that [2 * r, p| is symmetric to [p,2 * r] and

s0, it is a copy of that latter set. By symmetry, from the relations (1.c)
— (1.e) we obtain the following ones:

(1.f)  [2xrpl = (r=3)(r) +[g,2 % p],
(L.g)  lg;2xp] = [2%q,r]+ (p=3)(p),
(Lh)  [2xqr]= (¢=3)(q) + [, 2 xr].
And so, the relations (1.a) — (1.e) are enough to prove the recursion,

provided that we give a similar splitting for the other angular sectors
(q) and (r) which are involved in the considered formulas.

For the first sector, we get easily that:
(Li) (@) = [r.p],
and then:
(Lj) ol = (r=2)(r) +[g,2 * p,
and from that point, by symmetry, we are led to (1.d).

Next for the remaining angular sector we obtain that:

(LE) (1) = [p.dl;
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and then:

(1) [p.al = (p=2)(p) + [r, 2% q],
and from that point, we are led to (1.e).

We have now to consider the | case when p =2 |.

The condition on the angles provides us with the following relation:
1,11
q r 2
This entails that ¢, 7 > 3 and, in the case when ¢ = 3, that r > 7. As
previously, we assume that g <.

First we assume ¢q # 3. Accordingly, | g, 7 > 4 |.

Applying the technique of the basic lemma and its corollary, we
obtain, successively:

(2.a) (2) = [q,7].
(2.0)  lag,r] = [2%¢,2] + (r=2)(r),
(2.¢) [2%q,2] = [3*q,r],
2.d)  [Brgr]=(¢—4)(q) +[2,2%7],
(2.€)  [2,2%7] = [q,3 7],
(2.1) [q,3 7] = [2%¢q,2] + (r—4)(r).
and from that point, we are led to (2.c).

We notice that the condition on the angles is satisfied:

+-<1

QN
DN | =

3 1
as far as ¢ > 4 and — + — <1 as long as ¢, r > 4.
q r

We have to split (¢) and (r). As g and r play symmetrical roles as
far as we do not use the hypothesis ¢ < r, it is enough to decompose
(q). We have:

(2.9)  (q)=[2.7].
(2.h) [2,7] = [q,2 * 7],
(21) [Q7 2 T] = [2 * %m + (T_3)(T)7

Of course, from the relations (2.g)—(2.7), we obtain the symmetrical
ones which correspond to another displaying of the angular sector (g),
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namely when the right angle is on the other side with respect to the
. . . m
side being opposite to the angle —.

q

Let us now consider the | case when p =2 and ¢ =3 |. From the

condition on p, and r, we get that r > 7.
The above relations become:
(3.a) (2) = [3,7].
(3.b) B,7] = [2%3,2] + (r—2)(r).
But [2%3, 2] is not a region: it is a copy of T'. And so, what we obtain

does not match the definition of a combinatoric tiling. Accordingly, we
have to split [3,7] in the other way:

(3.61)  [B,r]=(3)+[2,2%7].
Next, we necessarily obtain:
(3.¢) [2,2%7] = [3,3 x 7],
which, in its turn, generates

(3.d) 3,3 7] = (3) + 2,4 * ]

h 1 o .
As long as — < ok we have an infinite region, and the only way to
T

split the truncated sector in order to be conformal to the definition of
a combinatoric tiling, is to arrive to [2, (h+1) * r].

When h > %, it is not difficult to see that we cannot extract (3)
from the trqlncated sector because, starting from that point, the ray of
angle T with the basis of the truncated sector cuts the opposite side
of the sector which can be easily split into finitely many copies of 7'
But the other way to split the sector generates immediately two copies
of T" and so, the definition of a combinatoric tiling is not satisfied.

This is why this tiling is not combinatoric, at least, by defining the
regions in this way.

However, we can prove that the tiling is quasi-combinatoric. Indeed,
six copies of 1" can be glued around their vertex with angle ™ in order

™
to constitute the equilateral triangle with angle —. As in the last
r
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sub-section of this section we show that the tiling being based on the
equilateral triangle is combinatoric, we obtain that the tiling being
generated by T is quasi-combinatoric. Accordingly, we postpone the
end of the proof to the study of the case of the equilateral triangle. i

3.3 The particular cases

As announced in the introduction, now we consider the situation when
the triangle which is the basis of the tessellation has its angles of the

2 2 2
form —ﬂ, T and ZZ. The condition for T' to be a triangle in the
p q r
. . 1 1 1 . 27
hyperbolic plane is now — + — + - < 3 Notice that the form % for
q T

the angles is needed in ]Z)rder to obtain a tiling: roughly speaking,
when we turn around a vertex, we must go back exactly on the initial
position.

Let us look closer at this argument. If ¢ is a line, denote by py the
reflection in £. Now, let us start from 7', and consider £ and m the

2
sides of 7" which meet on the vertex with angle T We perform the

reflection o1 = py on 7T, then the reflection 02 = p,, () on 01(T"). More
generally, we perform ook 1 = po,, (¢) 00 02k (02%-1(. .. (01(T))...)). If
p is even, it is plain that op(op—1(...(01(T))...)) = T. If p is odd, it
is not difficult to see that o,(o,—1(...(01(T))...)) = T if and only if
the other angles are equal, 4.e. if and only if ¢ = r.

Accordingly, if T tiles the plane, either p, ¢ and r are all even, or
if one of them is odd, p is odd and ¢ and r are even with ¢ = r, or
p=q=r.

In other words, if one of the three numbers is odd, either the triangle

. . o . . 2r
is equilateral, or it is isosceles with, as angle in the vertex — with p
p

odd and, as the basis angle, T

The theorem 4 has solved the case when p, ¢ and r are even. We
shall now consider the other cases.
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The case of an equilateral triangle
Theorem 5 — The recursive replication of an equilateral triangle with

27
vertex angle —, p > 7, gives rise to a combinatoric tiling for all values

ofp,p=>T.

Proof. Notice that the case when p is even is already dealt with: this
means that the vertex angle is T with h >4 and p = 2h. In the proof

of the theorem 4, we made no hypothesis on the differences between p,
q and 7, so that the same proof holds also in the present case. Indeed,
a specific simpler proof works here:

We easily see that:
(4.a) (h) = [h, h].
(4.0) [h, h] = (h—2)(h) + [h,2 * h],
(4.c) [h,2 % h] = [2 % h, h] + (h—3)(h),
and we loop on that point. Notice that by taking the symimetric relation
to (4.c) we obtain the following one:
(4.d) [2 % h,h] = (h—3)(h) + [h,2 * h],
which leads back to (4.c).
Counsider now that p is odd.

In this case, we change the definition of the regions which are used
for the splitting.

The reason of this change is the fact that 7 is not an integer multiple

2 . . L . .
of ZZ. Now, in order to obtain the splitting, in a relation as (4.c), for

. : 27y . . .
instance, we need to split (71'——) in an integral number of copies of
p

2
(—W) This is not possible when p is odd.
b

At least, this not possible with angular sectors. And so, we have to
define new regions if a solution is possible. An angular sector, respec-
tively a truncated sector, has two infinite borders which are straight
rays. Here, we define figures which can be seen as angular sectors,
respectively, as truncated sectors up to a distortion: it consists in re-
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placing the rays by a broken line which is defined in an appropriate
way. Above, the figure 5 indicates the basic principle which lies in the
counstruction of the new borders.

Figure 5. Constructing the border of a region
The border is in bold: notice the deviation to
left.

The broken line is constructed as follows: it starts from a vertex of
a copy of T" and, running along one side, it arrives at a vertex V where

2
the interior angle of the triangle is il By the tessellation process, this
side is shared by two copies of T" and the side is also shared by two

2
angles of T with V as a vertex. As p is odd, the continuation of the
p
2
side is not a side of one of the angles of =" which lie around V: the

2
continuation of the side is the bisector of the angle («) of =" which is

opposite to the side with respect to V, see the figure 5. We assume
that an orientation of the plane is fixed and the border is continued
by taking the side of («) which is reached clockwise from the inner
bisector of («).

311



Maurice Margenstern

Notice that if p > 5, this process defines broken lines which goes
to infinity by taking lines of the tiling only. This does not hold for
p = 3: whatever side we take for the next element of the initial side o,
we obtain another side of this copy of 1" or of its reflection in ¢ and,
by fixing the choice according to the orientation, the broken line goes
cyclically around the considered triangle.

Now, we consider that the new regions are defined from the angular
sector and from the truncated one by replacing the straight rays by the
broken line which we just define: see Figure 6, below.

Figure 6. Two examples of the new regions:
an angular one and a truncated one.
Notice the deviation to left.

As the borders of the regions are clearly defined, we make use of the
same symbolism as previously in order to represent the splittings of the
regions. However, in the symbolism for angular sectors and truncated

2
ones we shall denote the angle nll by 1.), while p still represents the
b

angle T

The previous splitting cannot be used with the new regions which
are associate with an odd value for p: the main difference is that the
definition of the border, making use of a fixed orientation of the space
breaks the symmetry. Indeed, [p,2 * p] is not a copy of [2 * P, D].
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We now obtain the following splitting:
(4a1) ()= [p.ptol.

(4b) o Bel = ptpp B+ (15123,

(der)  [pBptd] = (151-2@) + .2 Pl

(4dy) [ 2% pp] = D045+ (151-3) ().

and, from that point, we go back to (4.c1).H

The case of an isosceles triangle

Theorem 6 — The recursive replication of an isosceles triangle with

2
vertex angle —W, p > 3, and basis angle z, with
p q

() 1 n 1 < 1
* — — —
P oq 2
gives rise to a quasi-combinatoric tiling for all possible values of p and

q which satisfy (x). The tiling is combinatoric when p > 5.

Proof. As indicated by the statement of the theorem, first consider
the case when p > 5.

In this case, we apply the technique of the broken lines which was
introduced in the proof of the theorem 5, each time the line arrives on

2
a vertex which is shared by p copies of the angle . When the border
p

i
of a sector crosses vertices being shared by 2¢ copies of the angle —

and only them, we go on straightforward, see the figure 7, below.

Here also, the borders of the regions are clearly defined. Conse-
quently, we make use of the same symbolism as previously in order to
represent the splittings of the regions. However, in the symbolism for

2
angular sectors and truncated ones we shall denote the angle il by _7.),
p

7
the angle — by p, as in the equilateral case.
b

First, assume that p > 7 and ¢ > 4 or that p > 7 and g > 3.
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Figure 7. Two examples of the new regions in
the case of an isosceles triangle:
an angular one and a truncated one.

Accordingly, we have the following relations:

(5.0) ()= lgql-

[g,9] = (¢—2)(q) + [p, 2 % ¢,

[p,2 % q] = [D+p,q] + (¢-3)(q),
A [p.d = (5)-20) + 0.2 % q)

(

5

(5

(5.)  [q,2%q] = [2% ¢ p+p] + (¢—3)(q),
(5 2% q.p+p] = (¢—3)(q) + [q. 2+D+p),
5

(

[0, 2] = 2 % q,0) + (15]-3)(D),

5.h) [2 *dq, Q] = (q_3)(q) + [p’ 2 x q]v

and from that point, we are led back to (5.c).

Notice that the sufficient conditions of the basic lemma are satisfied
without problem from (5.a) up to (5.e). They are also satisfied for
[¢,2 % p+p] in (5.f) when p = 7 if ¢ > 4 and if ¢ = 3 when p > 7.
Notice that when ¢ = 3, [¢,2 * ¢] is still an infinite region: the two
infinite rays are non-secant.

When p = 7 and g = 3, the sufficient condition of the basic lemma
is not satisfied for [g, 2 ].)+p]. However, the splitting which is indicated

314



Poincaré’s theorem and the splitting method

by (5.g) is still possible. As [2%g, ¢] is an infinite region for p = 3 as we
already noticed, so is [g, 2 * ].)+p]. And so, we conclude that the above
splittings are valid also for the case when p =7 and ¢ = 3.

We have to go on with the splitting of (¢). Indeed there are two
cases, depending on which side is the angle (). As the border is defined
only with respect to the orientation of the plane, the difference of sides
is here relevent. See the difference on the figures 8.

Figure 8. The two cases for (q):
on the right hand: (¢)~
on the left hand: (¢)*

First, let us consider the case when (p) is on the left side of the
angle (q). We have the following splitting:

(54) (9" = [p.al
(5.4)  [p.al = [P+p,d + (a-2)(a),
and so, we are led to the case of (5.d).

Second, consider the case when () is on the right side of the angle
(¢). Now, the splitting becomes the following:
(5.k) (@) = [ap+pl,
(5.0)  lab+pl = 2% q.q+ (15]-2)(),
and so, we are led to the case of (5.h).
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Notice that in both these cases, the sufficient condition of the basic
lemma is satisfied when p > 7 and g > 3.

Now, we turn to the case when p = 5. This entails that ¢ > 4.

Simple computations show us that the relations (5.a) up to (5.d)
hold, the last one also being included. The relation (5.e) gives a correct
splitting if [2 * ¢,p+p] is infinite. We cannot use (5.f) because the
splitting has no meaning, due to the fact that 2 x ].)+p = 7. However,
when p = 5, it is not difficult to see that:

(5.f1)  [2*adtp] = Brad+ (E]-2)@),
and next, that:
(5.91) [Bxq,q = (¢—4)(q) +[p,2x4q|

and this leads us to the case (5.c)
This completes the proof for the case when p = 5.

At last, we consider the case p = 3.

In this case, the splitting which we considered gives no answer. The
first reason is that the way in which we defined the continuation of a
broken line does not work for p = 3: the rule which we defined has
as a consequence that the broken line takes a side of the originating
angle. The second reason is that redefining the basis gives no answer:
we may define the continuation of the line by taking the outer bisector
of the angle. But in that case, we obtain first, that (p) = [3 g, ¢], but
[3 * g, ¢] cannot be split in 7" plus infinite domains: we have additional

copies of T' because of the angle ?ﬁ

And so, the situation is very similar to the situation of the case
p = 2 and ¢ = 3 of the theorem 4. As in the theorem 4, we have an
alternative solution by noticing that if we glue together three copies
of T around the vertex with the angle (p), we obtain an equilateral

2
triangle with T as the interior angle. And so, from the theorem 5, the

q
proof of the theorem 4 is completed. l
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4 Conclusion

It seems to me that there are a lot of possible continuations of the
researches on which this paper is based.

A possible continuation deals with the implementation of cellular
automata on triangular grids of the hyperbolic plane. This paper,
together with its second part, provides basic tools for that but it is
not complete. Indeed, when we deal with cellular automata, it is not
enough to have a tiling. We have also to easily locate the neighbours
of a cell. This means that we need also a convenient description or
access to the dual graph of the tiling. In the cases of the pentagrid and
of regular tilings with right angles, also in the case of the rectangular
dodecahedral tiling of IH3, {5,3,4}, it appears that the spanning tree
of the splitting is a sub-graph of the dual graph of the tiling being
restricted to Sg. In the planar cases which we quoted, it is easy to
restore the dual graph from the spanning tree, see [2] and [6]. In the
case of the tiling {5,3,4}, it is still easy, but not so straightforward,
see [7]. In the case of the triangular tilings of IH?, in most cases,
the spanning tree is not a sub-graph of the dual graph of the tiling.
However, it is also possible to restore the dual graph from the spanning
tree, by using rather simple rules. A forthcoming paper which will be
published after the second part of this paper, will give the details about
this issue.

A second possible continuation is to investigate other combinatoric
tilings. Indeed, I suspect that the spectrum of combinatoric tilings is
very large and not especially attached to hyperbolic geometry. It is
easy to provide examples of euclidean tilings with a single tile which
are not tessellations but which are combinatoric: consider the example
which is given in section 2. Also, it would be interesting to consider
combinatoric tilings with more than a single generating tile.

Acknowledgement

The author is especially indebt to Constantin GAINDRIC and to Yurii
ROGOJIN for urging him to present a paper for the present issue of

317



Maurice Margenstern

the journal. He hopes that this paper together with its second part,
which he presented at the International Conference on Geometry and
Topology, Bolyai 2000, held in Cluj, Romania, at the occasion of the
two centenary birthday of Jinos BOLYAL, is worth of their confidence.

References

[1]

2]

[4]

[5]

C. Carathéodory. Theory of functions of a complex variable, vol.11,
177-184, Chelsea, New-York, 1954.

Margenstern M., New tools for Cellular Automata in the Hyperbolic
Plane, Journal of Universal Computer Science, vol 6, issue 12, 1226—
1252, (2000).

Margenstern Maurice, A contribution of computer science to the
combinatorial approach to hyperbolic geometry, SCI'2002, July, 14-
19, 2002, Orlando, USA, (2002).

Margenstern Maurice, Morita Kenichi, NP problems are tractable
in the space of cellular automata in the hyperbolic plane. Technical
report, Publications of the I.U.T. of Metz, 38p. 1998.

Margenstern Maurice, Morita Kenichi, NP problems are tractable in
the space of cellular automata in the hyperbolic plane, Theoretical
Computer Science, 259, 99-128, (2001)

Margenstern Maurice, Skordev Gencho, Locating cells in regu-
lar grids of the hyperbolic plane for cellular automata, Techni-
cal report, N° 455, July 2000, Institute fir Dynamische Sys-
tem, Fachbereich Mathematik/Informatik/Technomathemtik, Uni-
versitat Bremen, 2000, 38p.

Margenstern M., Skordev G., Tools for devising cellular automata in

the 3D hyperbolic space, I - The geometric algorithm, Proceedings
of SCI'2002, Orlando, July, 14-18, 2002, (2002).

318



Poincaré’s theorem and the splitting method

[8] Margenstern Maurice, Skordev Gencho, Grigorieff Serge, Two appli-
cations of the splitting method: the 3D tiling of the rectangular do-
decahedra and cellular automata on infinigrids of IH?, Bolyai’2002,
July, 8-12, 2002, Budapest, Hungary, (2002).

Maurice Margenstern, Received October 11, 2002

L LITA, EA 3097,

Université de Metz,

Ile du Saulcy,

57045 Metz Cédex, France

E-mail: margensQlita.unvi — metz. fr

319



