Computer Science Journal of Moldova, vol.10, no.2(29), 2002

The Analysis of Experimental Results of
Reinforcement Learning Systems

Jaroslav E. Poliscuk

Abstract

In this article a reinforcement learning method is analyzed,
in which a subject of learning is defined. The essence of this
method is the selection of activities by a try and fail process and
awarding deferred rewards. If an environment is characterized
by the Markov property, then step-by-step dynamics will enable
forecasting of subsequent conditions and awarding subsequent re-
wards on the basis of the present known conditions and actions,
relatively to the Markov decision making process. The relation-
ship between the present conditions and values and the potential
future conditions are defined by the Bellman equation. Also, the
article discussed a method of temporal difference learning, mech-
anism of eligibility traces, as well as theirs algorithms TD(0)
and TD(Lambda). Theoretical analysis were supplemented by
the practical studies, with reference to implementation of the
Sarsa(Lambda) algorithm, with replacing eligibility traces and
the Epsilon greedy policy.

Keywords:Algorithm TD(0), algorithm TD(Lambda), Bell-
man equation, Markov decision making process, mechanism of
eligibility traces, method of temporal difference learning, rein-
forcement learning method.

1 Introduction

Ounly intelligent systems have the possibility of adapting to new, un-
known and rapidly changing situations. Namely, intelligence is the

(©2002 by Jaroslav E. Poliscuk

143

Jaroslav E. Poliscuk

feature of systems capable of adapting to changes in environment. Con-
sequently, the more marked the feature, the greater is the intelligence
of the system.

System features improve through the process of adaptation. This
process takes place through a few different features of intelligence, such
as dialog imitation, the solution of all problems variants, non-trivial
task solving, extrapolation and learning.

The computer is the only man-made machine with the potential to
acquire some of the characteristics of intelligent systems. Sociological,
cultural, psychological and other aspects, not directly related to the
technical assumptions necessary to achieve this aim, will not be dealt
with in this article.

The main characteristics of such artificial intelligence should be:
data acquisition, data storage and data processing rate, efficiency and
changeability of computer programimes, learning possibilities, extrapo-
lation and non-trivial tasks solving.

The intelligent systems should be placed in a very complex environ-
ment which can hardly if at all be defined and modelled. For example:
car driving, flight control, supervision of very complicated technolog-
ical process, etc. In these situations standard programming methods
yield only approximate, partial, and, quite often, inadequate results.
Machine learning should make it possible to take a different approach
to problem solving, i. e. it should provide the system with the tools
to learn and solve a problem. The system is expected to be capable to
solve the problem routinely at a later stage.

A computer programme or a machine or a system can be consid-
ered capable of learning if they can enhance their features by gaining
experience in problem solving for given environment. The enhance-
ment of system features defines the processes of knowledge acquisition
and knowledge extension. The system should be capable to get new
knowledge and to use it more efficiently. Moreover, the system has to
be robust enough and so defined as to be able to accept environmental
dynamic changes. These requirements could be fulfilled only in the
systems whose learning processes are based on interaction between the
student and the environment.

144

The Analysis of Experimental Results . ..

2 System environment

In this paper the reinforcement learning method [1],[2],[3],][7],[8], based
on learning through the interaction determined by the student‘s given
goal, is analyzed. This method differs from the classical supervised
learning methods where the student has been explicitly told what to
do for given environment.

The point of reinforcement learning method lies in the idea of in-
volving the deferred awarding of rewards to the student. The student
receives the signal of the award every time when he/she manages to
put the system in an appropriate state. In this way the learning pro-
cess is strengthened. There is no predefined task list because it is on
the student to find out which actions will bring him/her the greatest
reward. In the most challenging cases the actions which have been
already taken bring immediate reward but also affect future actions.
According to the above mentioned, the essence of this method is the
selection of activities by the trial and error process and awarding of
deferred awards.

The reinforcement learning method defines the subject of learning
rather then the algorithm of learning. This means that any algorithm
made to solve a given task will be the algorithm of reinforcement learn-
ing method. The Agent (‘agent‘ is a much broader term than ‘student’
because it has to learn and make decisions simultaneously) should take
into consideration the most important aspects of the real problem fac-
ing them during the process of accomplishing the given goal.

The Agent must do the following:

e find out the state of the environment,
e take actions to affect the given state,

e have the given goal or goals which are closely connected to the
state of the environment.

Besides the agent and the environment, four subelements of rein-
forcement learning method can also be defined as follows [3],[7]:

145

Jaroslav E. Poliscuk

e policy, which translates the state of the environment into an ac-
tion to be done within that environment, and, which determines
behavior of the agent,

e reward function, which defines the goal that the agent has to
achieve. This function transforms the current state of environ-
ment into a scalar, i.e. a reward, which gives to the agent the
feedback on the validity of that state,

e wvalue function, which defines the long-term validity of the par-
ticular state of the environment, also taking into account the
states which follow that environment and possible rewards in
those states, and, optional.

e model of the environment, which purpose is to reflect the envi-
ronment. This model makes it possible to plan the process, i.e.,
to make decisions on which action has to be taken into account
depending on the possible future states before they are actually
reached.

The agent is in permanent communication with the environment, as
shown in figure 1. The task, which is an instance of the reinforcement
learning method‘s problem, is defined by the complete specification of
the environment.

The agent and its environment communicate one to another in dis-
crete parts of time ¢t = 0,1,2,.... At any time ¢ the agent receives the
information on the state of the environment, s; € S, where S represents
the assembly of all possible states of environment. The appropriate ac-
tion, a; € A(sy), is chosen in the same way, where A(s;) represents
the assembly of all possible actions at the particular time. In the next
time moment ¢ + 1, the environment changes its state into s;y1, as the
consequence of the action which has already been taken, and sends the
scalar reward ryy1 € R to the agent.

At any step of the procedure the agent will choose the action on the
basis of the policy 7, where m;(s, a) represents the probability that for
the state of environment s; = s, there is an action a; = a. Algorithms

146

The Analysis of Experimental Results . ..

of the reinforcement learning method show how the agent changes its
policy in the course of the process of gaining experience. It is important
to emphasize that main goal of the agent is to maximize given rewards
in a long-term period.

Figure 1. The interaction between the agent and its environment

The boundary between the agent and its environment can be estab-
lished according to the general rule that everything the agent cannot
affect directly makes part of its environment. In practice this bound-
ary can be established after states, actions and rewards are determined,
i.e., after the definition of the task.

3 Rewarding and independent way method

During its activity, the agent tends to maximize the total of the re-
ceived rewards. The reward is the scalar whose value varies for every
step of the interaction between the agent and the environment. The
above mentioned definition of the reward determines the place of its
calculation, and that is the agent's environment. Besides, the agent
should not by any means influence the process of reward calculation.

147

Jaroslav E. Poliscuk

The assumption is that the agent has received the following se-
quence of rewards after the time ¢: 711, 7442, re+3, ... and it wants
to maximize the total expected reward R;. The total expected reward
depends on the above mentioned sequence, and, the simplest, it is just
a sum of the members of the sequence:

Ry =11+ 12+ 13+ o+ rp (1)

where 1" represents the last time period.

This approach is meaningful only in case of problems where the last
time period is defined, i.e. when the interaction between the agent and
the environment can be divided into parts like in games. Each part has
own end and after this it returns into the beginning state. The tasks
which have the parts in the above-mentioned sense are called part tasks.

The second type of tasks is the continual tasks. The control of
processes is an example of this type of tasks. In this case, the expected
total reward function can be calculated by using the concept of discount
factor in the following way:

(0.)
Ry=rip1 + e + Vs 4= Y Y i (2)
k=0

where 7y represents the discount factor and 0 <y < 1.

Discount factor determines the value of future rewards as it is now
, i.e. the reward obtained in k step will have the value of #+1
lower than in the present.

The environment informs the agent about its state in every moment.
Oun the basis of that information, the agent makes necessary decisions.
The ideal state signal should provide information on both previous
and present states, without diminishing the agent‘s prediction feature.
It can be said that this signal has Markov property or the independent
way method, because all relevant data are included into the information
about the present signal state.

The answer to the question on how the environment in the moment
t+1 will respond to the action taken in the moment ¢ can be, in general,
that the response depends on all what has happened before the ¢ + 1
moment.

times

148

The Analysis of Experimental Results . ..

On the basis of the above mentioned the following conclusion can be
drawn: the state has the Markov property if and only if the probability
of the transition from one state into another [3],[4],[7] is the following:

PI'Ob.{St+1 - S‘,T’t+1 - T|St7at71rt,5t717at717"'7T1,307a0| (3)

Prob.{si41 = s',ri41 = 7|sy,a}

for each s‘,r and for all possible values of previous events.

If the environment, i.e. its state, has the Markov property, then
such one-step dynamics enables the prediction of the next state and
the next reward on the basis of the already known present state and
action.

The reinforcement learning method, which satisfies the Markov
property, is named Markov decision process [4],[7]. In case the spaces
of the states and actions are definite and determined with the one step
dynamics of the given environment, this type of the Markov decision
process (MDP) is called the definite Markov decision process.

For an arbitrary given state s and action a, the probability for each
possible following state s‘ is given as:

Pl =Prob{sii1 = s‘|sy = s,a; = a} (4)

Also, for the given present state s and action a, together with any
next state s, the expected value F of the reward is represented as:

Rl = E{ri1|se = s,ar = a, 8441 = s} (5)

These two values P2, and RY. respectively, determine the most

important dynamic features of the definite MDP.
4 State value functions and actions and their
optimization

Value functions are defined on the basis of the policy followed by the
agent. The policy 7 represents the transformation of the state s € S

149

Jaroslav E. Poliscuk

and the action a € A(s) into the probability 7(s,a) of action a sampling
when s represents the state of the environment.

In other words, the state value function for the policy w, V™(s)
represents the total reward expected by the agent which applies the
policy 7 since the state s.

The state value function V™ (s) for the MDP is defined as follows:

o
V™(s) = Ex{Ry|st = s} = By {Z 'ykrt+k+1|st = s} (6)
k=0
where E; represents the expected value of the reward when the agent
follows the policy .
The action value function for the policy w is defined in a similar
way:

(0.0
Q" (s,a) = Ex {Ry|sy = s,ay = a} = E; {Z’)’th+k+1|5t =Ss,a; = a}

k=0
(7)
The main role of value functions is to satisfy the following recurrent
relation. For any policy 7 and any state s, there is a relation between
the value of current state s and the value of the possible next state:

Vi(s) = Ex{Ris; = s} (8)
= E; {ZWth+k+1|St = S}
k=0

o
= BE{rip+v) Veriihyalse = s}

k=0
o<
Ris+vEx {Z Vorihgalsi = S‘H

— S0 X P
a s¢ k=0
= Z 71-(57 a) Z Psas‘ [Rgs‘ + 7V7T(S‘)]
a 5

150

The Analysis of Experimental Results . ..

The above equation is called the Bellman equation for the state
value function [2]. It represents the relation between the state value
and the successor state value. This can be illustrated by means of
”backup” diagrams.

The main role of these diagrams is to return the information on
the successor state value at a particular time. The Bellman equation
does the averaging of all possibilities, pondering each possibility with
its probability.

The policy 7 is equal or better than policy 7 if its total expected
reward is equal or greater, i.e., 7 > 7 if and only if the V™ (s) > V™ (5s)
for every s € S. There is always at least one policy which satisfies this
condition. Such policy is called the optimum policy ©*. Following this
definition it can be concluded that more than one optimum policy can
exist at the same time, but all of them share only one optimum state
value function V*:

Vi(s) = max V™ (s) 9)

for every s € S.
The same can be applied to the optimum action value Q*:

Q*(s,a) = max Q" (s,a) (10)

for every s € S and a € A(s).

For each state — action (s, a) pair the above mentioned function
gives the total expected reward for the processing of the action a in
the state s and allows to apply the optimum policy later on. For this
reason the optimum action value function can be defined by using the
optimum state value function:

Q" (s,a) = E{repr + 4V (ser1)lse = a, a0 = a} (11)

The Bellman equations for the optimum value function are as fol-
lows:

V* - Pa: .Ra ¢ V* ¢].2

(s) agljé)z g5t [Bgse £V (s')] (12)

151

Jaroslav E. Poliscuk

Q' () = X Pl [Bty ymax (s a) (13)

These equations have a unique solution which is independent of
the policy. The advantage of these equations is in the fact that when
V* and Q* are obtained, the process of policy determination is much
simpler.

It is very useful to analyze the basic algorithms that make decisions
as well as the concepts allowing such analysis. The starting points are
the results obtained through practice, without taking into account the
theoretical disputes on the convergence of known methods and their
countability.

The calculation of the optimum state functions is performed on the
basis of Bellman optimum equations (12) and (13). In this case there
are two fundamental constraint factors:

e the necessary time factor and

e the necessary space factor.

The necessary time factor is related to the time necessary for the
calculation process, and the necessary space factor is related to the
memory space necessary for the calculation process. If n is the number
of possible states and m is the number of possible actions in these states,
then Bellman equations define the system of nm non-linear equations
with nm unknown variables. In complex problems the numbers n and
m can be very large and their solution by using some of the known
methods is unacceptable. For all these reasons the approximate solu-
tion method is applied.

The iteration methods using the reinforcement learning method
are called the temporal difference learning methods (TD methods) [6].
These methods are acceptable in solving of the time factor problem,
but they still use the backup mechanism which involves the space factor
problem.

All iteration methods for policy definition consist of two iterative
simultaneous processes:

152

The Analysis of Experimental Results . ..

e the first process does the value function iteration consistently
with the momentary policy — policy evaluation,

e the second process makes the policy become greedy in relation to
the momentary value function — policy improvement.

The policy is greedy if:

m'(s) = arg, max Q" (s, a) (14)

where arg, max denotes that this term represents the maximum for the
action a.

The agent permanently encounters the problem of how to define
the optimum policy on the basis of the available state, i.e. how to pick
the optimum action from the assembly of possible actions.

The first method is a simple sampling of the action of the greatest
value. The action value is evaluated by the iteration process. This
method is termed as ’greedy’ because it follows the greedy policy and
it has the property of exclusive exploitation because it does not bring
any new knowledge.

The above mentioned method can attain a certain level of research
by a slight intervention. Namely, with the small specific probability
€, a random action will be selected instead of the best action. This
method is used very often in practice and it is called € - greedy method.
The selection is conducted according to the rule of uniform probability
distribution which sometimes can lead to unexpected results.

The above mentioned disadvantages can be resolved by applying a
different probability distribution rule for actions selection. The meth-
ods using the different distribution rule are named softmaz methods
and are mostly based on the Bolcman’s distribution rule:

Qs.07)/T

Prob.(s,a”) = Caea QG

(15)

where the parameter 1" > 0 called temperature indirectly controls the
level of researching. When 7" — 0 softmax method is equal to greedy

153

Jaroslav E. Poliscuk

method, research becomes dominant for high temperature values. So-
phisticated heuristic algorithms are much more complex and can influ-
ence the changes in the architecture of learning [5].

5 Algorithms of temporal difference methods

The main feature of the temporal difference learning method is the
iterativeness of the value function evaluation process. The iterative
method follows the idea of the generalization of policy iteration and it
consists of two parts. In the first part the initialization of the value
function based on arbitrary estimated values is performed, while in
the second part the approximate value approaches the real value after
updating the estimated values using error signal. This can be written
as follows:

New Estimation < Old Estimation + step = (Goal - Old Estimation)

where (Goal - Old Estimation) is the estimation error.

The rule for updating the values is derived from Bellman’s equa-
tions. TD(0) is the simplest TD algorithm and its updating rule is
[7]:

Vi(st) < Vis) + alren + 9V (sira) = Vise)] (16)

The term 7441 + 7V (s441) — V (s¢) is called TD error.
The algorithm in the pseudo code is as follows:

INITIALIZE V(s),r
REPEAT (x for each episodex)
INITIALIZE s
REPEAT (x for each step in episodex)
a < action on the basis of the policy @ for s
PERFORMED ACTION a, OBSERVE REW ARD r
and next state s

Vis) < V(s)+alr+~(s) —V(s)]
s — s

154

The Analysis of Experimental Results . ..

TOTHE LAST STATE s
END

Generally speaking, there are two versions of temporal difference
method [1],[3],[7]. The first version of the method improves the policy
it applies in action selection. The most significant form of this version is
Sarsa algorithm. The second version of the temporal difference method
applies one policy responsible for action selection, which is most often
greedy policy, but improves the policy which succeeds it. Q algorithm
is a representative of this version.

Sarsa algorithm applies the action value function @(s,a) rather then
the state value function V(s) in the process of iteration. Yet, the
rule of updating is very similar to the previous one with regard to the
expression (11) and it is as follows:

Q(s¢,a1) < Q(s¢,a¢) + a[rep1 +vQ(S¢41, a041) — Q(se,ae)] (17)
The algorithm is:

INITIALIZE Q(s,a)
REPEAT (x for each episodex)
INITIALIZE s
a < action on the basis of the policy © for s
REPEAT (x for each step in episode *)
PERFORMED ACTION a, TO OBSERVE
REW ARD r and next state s
a' < action on the basis of the policy w for s
Q(57 a) - Q(Su a) + a['r + 7@(5‘7 a‘) - Q(57 a)]
s+ s5a + a
TO THE LAST STATE s
END

The Sarsa algorithm converges with the probability value 1 to op-
timum policy and optimum action value function if all state - action
pairs are visited for an infinite number of times and if the policy con-
verges to greedy policy. This can be achieved by using € - greedy policy
where ¢ = 1/1t.

155

Jaroslav E. Poliscuk

The implementation of Sarsa(A) algorithm, where 0 < A < 1 is
the decay trace parameter, with the replacing eligibility traces and €
greedy policy for the given labyrinth is as follows:

/ * SARSA Start * /

/* Initialize Q function */

InitQfunc (Q);

/* For each episode */

for (i = 0; 4 < (Trials); i + +)

{
s = InitState (&x, &y);
InitTraces (e);
cnt = 0;
StepsUntilGoal [i] = 0;
/* Repeat to end or each step in episode */
while (((z! = GoalX)||(y! = GoalY)) &&(cnt <

{

/* Select action *)
a = SelectAction (Q, Epsilon, s);
/* Performed action and determine next state */
NextS = NextState(&x,&y,a);
/* Accept reward */
r = Reward(x,y,a);
/* Select next action */
NextA = SelectAction(Q,Epsilon,NextS);
/* Update Q*/
UpdateQfunc(s,a,r,Q,Alpha,NextS,NextA e,
Gamma,Lambda);
/* Update state */
s = NextS;
cnt++;
StepsUntilGoal[i]++;
}

¥
/* SARSA End */

MazxSteps))

156

The Analysis of Experimental Results . ..

/* To write essential results */
end(StepsUntilGoal);

}

The @ algorithm is certainly a breakthrough in machine reinforce-
ment learning method. It approximates the optimum action value
function immediately and independently on followed policy. Its rule
of updating is as follows:

Qs @) Qst,ar) + a [t + ymax Q(srr,ar) — Qse,ar)| - (18)

INITIALIZE Q(s,a)
REPEAT (x for each episode %)
INITIALIZE s
REPEAT (x for each step in episode x)
a < action on the basis of the policy @ for s
PERFORMED ACTION a, OBSERVE REW ARD r
and next state s
Q(s,a) < Q(s,a) + a[r + ymax, Q(s',a‘) — Q(s, a)
5 ¢ s
TO THE LAST STATE s
END

All visited condition - action pairs have to be updated correctly,
which is the only convergence condition for Q algorithm. In fact, this
is a requirement in all machine reinforcement learning methods.

6 The activity traces

Activity traces (eligibility traces) [2] represent one of the fundamental
mechanisms of machine reinforcement learning methods. The main
idea is to provide memory location for each state which has to trace
the statistics of its attendance. Every time when the state is attended,

157

Jaroslav E. Poliscuk

its activity increases greatly and then it falls until the new attempt.
The rule of updating the activity traces e;(s), is:

YAr-1(8) if s# s

er(s) = YA-1(s) +1 if s=s

(19)
where 0 < A < 1 is the decay trace parameter. The efficiency of the
above mentioned algorithms increases with the involvement of activity
traces.

The activity traces defined by the rule (19) are called accumulating
eligibility traces, and they are different from the replacing eligibility
traces which are actually their modification. The rule for the replacing
eligibility traces is as follows:

YAt-1(8) if s# st

et(s) = 1 if s=s (20)

These two kinds of activity traces can be seen in figure 2.

Figure 2. The eligibility traces

158

The Analysis of Experimental Results . ..

The activity traces can be easily implemented in basic TD methods
which are then termed as T'R(\) mehtods. TR(A) methods represent a
generalization of TD methods because in case of A = 0, the methods
become basic.

The modified updating rules and modified algorithms are explained
in the next section.

The algorithm TD()\) has the updating rule as follows:

V(st) < V(sy) + ade(sy) (21)

where § = 441 + YV (s441) — V(s¢) represents TD error.
The algorithm is:

INITIALIZE V(s)ie(s) =0 for each s € S
REPEAT (x for each episode %)
INITIALIZE s
REPEAT (x for each step in episode x)
a < action on the basis of the policy w for s
PERFORMED ACTION a, OBSERVE REW ARD r
and next state s
d—r+yV(s)—=V(s)
e(s) < e(s)+1
For each s:
V(s) < V(s) + ade(s)
e(s) < yXe(s)
5 ¢ s
TO THE LAST STATE s
END

The Sarsa(A) algorithm has the updating rule:

Q(st,ar) « Q(s¢,a¢) + ade(st, ar) (22)

where § = 41 + YQ(St41,a1+1) — Q(s¢, ay) represents TD error.
The algorithm in pseudo code is as follows:

INITIALIZE Q(s,a) and e(s,a) = 0 for each s € S, a € A(s)
REPEAT (x for each episode *)

159

Jaroslav E. Poliscuk

INITIALIZE s
a < action on the basis of the policy w for s
REPEAT (x for each step in episode x)
PERFORMED ACTION a, OPSERVE REW ARD r
and next state s
a‘ < action on the basis of the policy w for s
0+ r+7Q(s',a') — Q(s,a)
e(s,a) «+ e(s,a) +1
For each s, a:
Q(s,a) + Q(s,a) + ade(s,a)
e(s,a) < yAe(s,a)
s+ s'a<+af
TO THE LAST STATE s
END

The Q(A) algorithm has the updating rule:

Q(st,a) < Q(st,a¢) + ade(ss, aq) (23)

where § = 141 + ymax Q(s¢41,a1+1) — Q(s¢, at) represents TD error.
The algorithm is:

INITIALIZE Q(s,a) and e(s,a) for each s € S, a € A(s)
REPEAT (x for each episodex)
INITIALIZE s,a
REPEAT (x for each step in episodex)
a < action on the basis of the policy © for s
PERFORMED ACTION a,OPSERVE REW ARD r
and next state s
a* = argymaz Q(s,b)
§ «—r+vQ(s',a*) — Q(s,a)
e(s,a) «+ e(s,a) +1
For each s,a:
Q(s,a) + Q(s,a) + ade(s,a)
if a' =a*then e(s,a) < yAe(s,a) else e(s,a) < 0

s+ s,a + a

160

The Analysis of Experimental Results . ..

TOTHE LAST STATE s
END

Oun the basis of the above mentioned it can be concluded that esti-
mations of value functions are kept as table data with the entries for
each state and each state - action pair. In cases of constrained and
small number of states and actions this approach gives acceptable re-
sults. Otherwise, there is the problem of the lack of memory space.
Even if there were infinite memory space, the table problem still re-
mains because of the necessary time search and access to the necessary
location.

The solution of the above mentioned problem is in the generalization
of state and action spaces. The idea is to generalize the small subset
of state space and action space through experience in order that they
can represent much larger subset of the same space. Even though the
idea of generalization is simple, its realization is a huge problem and
will be the subject of future researches.

The most frequently used type of generalization in the systems
of machine reinforcement learning methods is function approxzimation.
This generalization takes particular values of the desired function and
tries to generalize them to the degree at which they represent the ap-
proximation of that function. The approximation of function represents
the instance of learning with supervisor class. The artificial neuron
nets, the decision trees, pattern recognition are the members of this
class.

7 The analysis of experimental results of ma-
chine learning

The above mentioned theories will be illustrated by the results of ex-
periments. For example, the labyrinth problem is one of the trivial
problems but still very useful in order to get to the very essence of the
examined theories.

The agent task goal is to reach the end of the labyrinth even if it
does not know where the end is. In an indirect way, i.e. by means

161

Jaroslav E. Poliscuk

of the reward, the agent finds out that it has reached the end of the
labyrinth. For the purpose of making the example as illustrative as
possible as well as to reduce the execution time of the programime, the
labyrinth is very simple as can be seen in figure 3.

Once the agent has found the end of the labyrinth (just one episode),
it returns to the start position. The system of rewarding for the episode
tasks is given in expression (1). But, the method with the reduction
factor represented in expression (2) is most frequently applied because
for v =1 it becomes the first method.

Stare: vﬂ'rr l'-Fr ﬁ'_;l l'}_r
T by — down
by = right
“— Ap —» by = lefi
b: —» up
(! b = 0 = track
b,=1 - wall

Figure 3. The labyrinth problem

For the implementation of the learning algorithm it is necessary to
determine how the state and action will be coded and how the value
function and the labyrinth will be stored in the memory.

The labyrinth is stored in the memory as the matrix (8 x 8) of
zeroes and ones. Each zero marks the track of the labyrinth and each
one marks the wall of the labyrinth. The state is coded with four bits.
Each bit represents the position in the labyrinth plane and, also, each
bit represents the passable or impassable part of labyrinth track (figure
4). For example, when the agent reaches position 1000, it can continue
to the right, left or upwards, as long as the wall is below it. This coding

162

The Analysis of Experimental Results . ..

makes it possible for the number of states to depend on the nature and
number of possible actions rather then the size of the labyrinth. There
are only four actions: down, right, left and up.

Tt‘. (5} | |
i
L

rime when rhn.': stare is attended

Sl

accumulating eligibility traces

e

replacing eligibility traces

Figure 4. To determine how the state and action will be coded

The value function is stored in memory as the table where the
number of rows matches the number of state and the number of columns
matches the number of actions.

The implementation of Sarsa(\) algorithm with the replacing eli-
gibility traces and e greedy policy for the given labyrinth is conducted
by using C programming language. The programme consists of about
100 programme instructions and it is used for the necessary experi-
ments. Naturally, the advantage was given to the reinforcement learn-
ing method in these experiments. There is a logical sequence inside the
programme which generates the file according to episodes are stored.
The result given in figure 5 is a graphical representation of the de-
pendance between the number of steps necessary to find the end of
labyrinth and the number of episodes.

163

Jaroslav E. Poliscuk

T € (5) |
| I',_
time when the state is attended
TE: () M
t
accumulating eligibility traces
T B - K l\
I

replacing eligibility traces
Figure 5. The dependance between the number of steps necessary to
find the end of labyrinth and the number of episodes

~

The implementation eligibility traces:

void IntTraces(float e[S][A]

{
init 1.j;
for (1 =0;i<S;i++)
for (j=0;j<A;j++)
elili] = 0.0;
}

and e greedy policy:
int SelectAction(float Q[S][A], float Epsilon, int s)

{
int i;
int Action;
int GreedyAction = 0;
/* Select action with maximum values for state s */

164

The Analysis of Experimental Results . ..

for (i=1;i< A;i++)
if (Qs][7] > Q[s][GreedyAction])
GreedyAction = i;
/*Select greedy action with probability 1-epsilon %
else select random action */
if (rand() j Epsilon)
Action = rand()%A;
else
Action = GreedyAction;
return (Action);
}

The chart gives the pace at which the agent approaches to the
optimum policy. The most interesting part of chart are the peaks in
particular episodes. These peaks have resulted from the search for the
optimum solution using the trial and error and research methods as
applied in the machine reinforcement learning method.

Another experiment has also confirmed the assumption that the
system performance is much better if activity traces and trace decay
parameter A are involved. As previously mentioned, for A = 0 algo-
rithm Sarsa(\) becomes the basic algorithm version. The results of
the programme execution for three different values of this parameter
are shown in figure 6. What we can see is that system performance is
degraded with the decrease in parameter A. On the basis of the above
mentioned it can be concluded that for lower values of A, the algorithm
needs more time for convergence. For A = 0.65, the agent cannot find
the optimum solution in the first 100 episodes.

8 Conclusions

The method of reinforcement learning method is the most significant
form of adaptive machine learning systems. This method became very
popular in the last decade due to its thorough theoretical basis, appli-
cation areas as well as its particular ability to learn without previously
prepared knowledge database about the problem. In this method, the

165

Jaroslav E. Poliscuk

NTL steps 1000

] A =09
a0 |- e =R
Tiidi — A= 0hS

il i I 30 40 s TD K 9@ LW
N - eplsodes

Figure 6. The programme execution for three different values of pa-
rameter A

knowledge database is simply combined with the neuron nets and other
methods of supervision.

The main disadvantage of this method is a relatively slow process
of learning. This problem can be overcome in several ways. One of the
ways is to train the system by using problem simulation and then to
apply it in practice. Others use action models, planning models etc.
There are also two other problems besides the above mentioned. The
first problem is caused by the compromise between the research and
exploitation phases, and the second is concerned with the issue of the
approximation of the function which determines the size of the task
for which this method can be best applied. Particular solutions to the
mentioned problems already exist due to which it can be reasonably
expected to overcome them in the near future.

Despite the fact that these problems impose considerable limita-

166

The Analysis of Experimental Results . ..

tion, this method has proved to be very useful in all cases where it
was possible to apply the system of rewarding. The most important
applications are expected to take place in the fields of industrial con-
trol, autonomous and mobile robots, as well as in solving optimization
problems and resource distribution. This method can also be used for
making predictions in various aspects of economy and stock market
business.

References

[1]

2]

3]

J.A.Boyan, M.L.Littman, Packet Routing in Dynamically Chang-
ing Networks: A Reinforcement Learning Approach, Advances in
Neural Information Processing Systems: Proceedings of the 994
Conference, San Francisco, CA, USA, 1994.

K.Doya, Reinforcement Learning in Continuous Time and Space,
Neural Computation, Jan2000, Vol. 12, Issue 1, pp. 219-246.

L.P.Kaelbling, M.L.Littman, A.W.Moore, Reinforcement Learning:
A Survey, Journal of Artificial Intelligence, Vol. 4, 1996., pages
237-285.

M.E.Lewis, M.L.Puterman, A Probabilistic Analysis of Bias Opti-
mality in Unichain Markov Decision Process, IEEE Transactions
on Automatic Control, Jan2001, Vol. 46, Issue 1, pp. 96-101.

J.E.Poliscuk, A contribution to methodology of development of De-
ciston Support Systems and Expert Systems, Doctors Thesis, Fac-
ulty of Organization and Informatics, University of Zagreb, Croatia,
1992.

E.T.Rolls, T.Milward, L.Wiskott, A Model of Invoviant Object
Recognition in the Visual System: Learning Rules, Activation Func-
tions, Lateral Inhibition, and Information - Based Performance

Measures, Neural Computation, Nov2000, Vol. 2, Issue 11, pp.
2547-2573.

167

Jaroslav E. Poliscuk

[7] R.S.Sutton, A.G.Barto, Reinforcement Learning: An Introduction,
MIT press - Bradford Books, Cambridge, MA, 1998.

[8] C.Szepesvari, M.L.Littman, A Unified Analysis of Value - Function
— Based Reinforcement — Learning Algorithms, Neural Computa-
tion, 11/15/99, Vol. 11, Issue 8, pp. 2017-2061.

Dr. Jaroslav E. Poliscuk, Received April 12, 2002
Department of Electrical Engineering Podgorica,

University of Montenegro, Yugoslavia

E-mail: jaroslavQserverl.cis.cg.ac.yu

168

