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Discrete Control Processes, Dynamic Games

and Multicriterion Control Problems∗

Dumitru Lozovanu

Abstract

The discrete control processes with state evaluation in time
of dynamical system is considered. A general model of control
problems with integral-time cost criterion by a trajectory is stu-
died and a general scheme for solving such classes of problems
is proposed. In addition the game-theoretical and multicriterion
models for control problems are formulated and studied.

1 Introduction

We study the discrete control processes with state evaluation in time
of dynamical system. We consider that the state evaluation of the
system at every moment of time is determined uniqualy by the state
evaluation and control parameters of the system at the previous mo-
ment of time. Such processes conduct to a generalization of the control
problems with integral-time cost criterion by a trajectory from [1–3].
We formulate the states evaluation control problems (SECP), which
represent a general model for mentioned class of problems. A general
scheme for solving the SECP is proposed and some details concerning
the computational complexity of the algorithms for different classes of
problems are discussed. In addition the game theoretical and multi-
criterion models for considered class of problems are formulated and
studied.
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2 The State Evaluation Control problem and
algorithm for its solving

Let L be the dynamical system with the set of states X ⊆ R where at
every moment of time t = 0, 1, 2, . . . the state of L is x(t) ∈ X, x(t) =
= (x1(t), x2(t), . . . , xn(t)). The dynamics of the system L is described
as follows

x(t + 1) = gt(x(t), u(t)), t = 0, 1, 2, . . . (1)

where
x(0) = xs (2)

is the starting point of system L and u(t) = (u1(t), u2(t), . . . , um(t)) ∈
∈ IRm represent the vector of control parameters [1–3]. For vectors of
control parameters u(t), t = 0, 1, 2, . . . the admissible sets Ut(x(t)) are
given by

u(t) ∈ Ut(x(t)), t = 0, 1, 2, . . . . (3)

We assume that in (1) the vector functions

gt(x(t), u(t)) =
(
g1
t (x(t), u(t)), g2

t (x(t), u(t)), . . . , gn
t (x(t), u(t))

)

are determined uniquely by x(t) and u(t) at every moment of time
t = 0, 1, 2, . . .. So, x(t + 1) is determined uniquely by x(t) and u(t).

Let
x(0), x(1), . . . , x(t), . . . (4)

be a process generated by (1) – (3) with given vectors of control pa-
rameters

u(0), u(1), . . . , u(t− 1), . . .

For each state x(t), t = 0, 1, 2, . . . of the process (4) we define the
numerical evaluation Ft(x(t)) by using the following recurrent formula

Ft+1(x(t + 1)) = ft

(
Ft(x(t)), x(t), u(t)

)
, t = 0, 1, 2 . . .

where
F0(x(0)) = F0
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is a given evaluation of the starting state x(0) of the system L; ft(·, ·, ·);
t = 0, 1, 2, . . . are arbitrary functions.

We consider the following two problems:
Problem 1. For given T to find the vectors of control parameters

u(0), u(1), . . . , u(T − 1), which satisfy the conditions




x(t + 1) = gt(x(t), u(t)), t = 0, 1, 2, . . . , T − 1;
x(0) = x0, x(T ) = xT ,

u(t) ∈ Ut(x(t)), t = 0, 1, 2, . . . , T − 1;
Ft+1(x(t + 1)) = ft

(
Ft(x(t)), x(t), u(t)

)
, t = 0, 1, 2, . . . , T − 1;

F0(x(0)) = 0

(5)

and minimize the object function

Ix0x(T)(u(t)) = FT (x(T )) (6)

Problem 2. To find T and u(0), u(1), . . . , u(T − 1) which satisfy
the condition (5) and minimize the function (6).

Obviously that if for the problem 2 the interval [T1, T2] for parame-
ter T is given, i.e. T ∈ [T1, T2], then the optimal solution of problem 2
can be obtained by reducing to problem 1 fixing each time T = T1,
T = T1 + 1, . . . , T = T2. Choosing the best of the solutions of the
problems of type 1 with T = T1, T = T1 + 1, . . . , T = T2 we obtain
the solution of the problem 2 with T ∈ [T1, T2].

It is easy to observe that if

ft

(
Ft(x(t)), x(t), u(t)

)
= Ft(x(t)) + ct(x(t), u(t)),

where
F0(x0) = 0

and ct(x(t), u(t)) represent the cost of system’s passage from the state
x(t) to state x(t+1), then we obtain the discrete control problems with
integral-time criterion by a trajectory [1–3]. Some classes of control
problems from [1–2] may be obtained if

F0(x0) = 1,

Ft

(
Ft(x(t)), x(t), u(t)

)
= Ft(x(t)) · ct(x(t), u(t)), t = 1, 2, . . .
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and if

F0(x0) = 0,

Ft

(
Ft(x(t)), x(t), u(t)

)
= max{Ft(x(t)), ct(x(t), u(t))}.

3 The main result

We propose a general scheme for finding the optimal solution of the
formulated problems in the case when ft(F, x, u), t = 0, 1, 2, . . . are
non-decreasing functions with respect to first argument F . So, we shall
consider that for fixed x and u the functions ft(F, x, u), t = 0, 1, 2, . . .
satisfy the condition

ft(F ′, x, u) ≤ ft(F ′′, x, u) if F ′ ≤ F ′′. (7)

Then the following algorithm finds the optimal solution of problem 1.

Algorihm

1. Set F ∗
0 (x(0)) = F0; F ∗

t (x(t)) = ∞; x(t) ∈ X, t = 1, 2, . . .;
X0 = {x0}.

2. For t = 1, 2, . . . , T find:

Xt+1 = {x(t + 1) ∈ X |x(t + 1) = gt(x(t), u(t)), x(t) ∈ XT ,
u(t) ∈ Ut(x(t))}

and

F ∗
t+1(x(t + 1)) = min

x∈Xt,u(t)∈Ut(x(t))

{
ft

(
F ∗

t (x(t)), x(t), u(t)
)}

,

∀x(t + 1) ∈ Xt+1;

3. Find the sequence

xT = x∗(T ), x∗(T − 1), x∗(T − 2), . . . , x∗(1), x(0)) = x0

and
u∗(T − 1), u∗(T − 2), . . . , u∗(1), u(0),
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which satisfy the conditions

F ∗
T−t(x

∗(T − 1)) = fT−t−1

(
F ∗

T−t−1(x(T − t− 1)), x∗(T − t− 1),

u∗(T − t− 1)
)
, t = 0, 1, 2, . . . , T.

Then u∗(0), u∗(1), u∗(2), . . . , u∗(T − 1) represent the optimal solution
of the problem 1.

Theorem 1 If ft(F, x, u), t = 0, 1, 2, . . . , T are non-decreasing
functions with respect to first argument F , i.e. the functions ft(F, x, u),
t = 0, 1, 2, . . . , T satisfy the condition (7), then the algorithm finds
the optimal solution of problem 1. Moreover, an arbitrary leading
part x∗(0), x∗(1), . . . , x∗(k) of the optimal trajectory x∗(0), x∗(1), . . .
. . . , x∗(k), . . . , x∗(T ) is optimal one.

Proof. We proove the theorem by using the induction principle
on number of stages T . In the case T ≤ 1 the theorem is evident.
We consider that the theorem holds for T ≤ k and let us prove it for
T = k + 1.

Assume toward contradiction that

u′(0), u′(1), . . . , u′(T − 2), u′(T − 1)

is an optimal solution of problem 1, where

F ′
t+1(x

′(t + 1)) = ft

(
F ′

t(x
′(t)), x′(t), u′(t)

)
, t = 0, 1, 2 . . . , T − 1;

x′(0) = x0, F0(x′(0)) = F0, x′(T ) = x(T )

and
F ′

T (x′(T )) < F ∗
T (x′(T )). (8)

According to induction principle for the problem 1 with T − 1 stages
the algorithm finds the optimal solution. So, for arbitrary x(T−1) ∈ X
we obtain the optimal evaluations F ∗

T−1(x(T − 1)) for x(T − 1) ∈ X.
Therefore

F ∗
T−1(x

′(T − 1)) ≤ F ′
T−1(x

′(T − 1)).
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According to algorithm

fT−1

(
F ∗

T−1(x
∗(T − 1)), x∗(T − 1), u∗(T − 1)

)
≤

≤ fT−1

(
F ∗

T−1(x
′(T − 1)), x′(T − 1), u′(T − 1)

)
. (9)

Since ft(F, x, u), t = 0, 1, 2, . . . are non-decreasing functions with
respect to F then

fT−1

(
F ∗

T−1(x
′(T − 1)), x′(T − 1), u′(T − 1)

)
≤

≤ fT−1

(
F ′

T−1(x
′(T − 1)), x′(T − 1), u′(T − 1)

)
. (10)

Using (9) and (10) we obtain

F ∗
T (x(T )) = fT−1

(
F ∗

T−1(x
∗(T − 1)), x∗(T − 1), u∗(T − 1)

)
≤

≤ fT−1

(
F ∗

T−1(x
′(T − 1)), x′(T − 1), u′(T − 1)

)
≤

≤ fT−1

(
F ′

T−1(x
′(T − 1)), x′(T − 1), u′(T − 1)

)
= F ′

T (x(T )),

i.e.
F ∗

T (x(T )) ≤ F ′
T (x(T )).

This is in contradiction with (8). So the algorithm finds the optimal
solution of the problem 1 with T = k + 1. 2

Theorem 2 Let X and Ut(x), x ∈ X, t = 0, 1, 2, . . . , T − 1, be the
finit sets, and M = max

x∈X, t=0,1,2,...,T−1
|Ut(x)|. Then the algorithm uses

at most M · |X| ·T elementary operations (excluding the operations for
calculation the values of functions ft(F, x, u) for given F, x and u).

Proof. It is sufficient to prove that at step t the algorithm uses
no more than M · |X| elementary operations. Indeed, for finding the
value Ft+1(x(t + 1)), for x(t + 1) ∈ X it is necessary to use

∑

x∈X

|Ut(x)|

operation. Since
∑

x∈X

|Ut(x)| ≤ |X| · M then at step t the algorithm

uses no more than |X| · M elementary operations. So in general the
algorithm uses no more than M · |X| · T elementary operations. 2
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4 The discrete optimal control problem on net-
work

Let L be a dynamical system with a finite set of states X, |X| = N , and
at every discrete moment of time t = 0, 1, 2, . . . the state of the system L
is x(t) ∈ X. Note that here we associate x(t) with an abstract element
(in sections 1 and 2 x(t) represents a vector from IRn). Two states
xs and xf are chosen in X, where xs is a starting state of the system
L, xs = x(0), and xf is the final state of the system, i.e. xf is the state
to which the system must be brought. The dynamics of the system is
described by a directed graph of passages G = (X,E), |E| = m, an edge
e = (x, y) which signifies the possibility of passage of system L from
the state x = x(t) to the state y = x(t + 1) at any moment of time t =
= 0, 1, 2, . . .. That means that the edges e = (x, y) ∈ E can be regarded
as the possible values of the control parameter u(t) when the state of
the system is x = x(t), t = 0, 1, 2, . . . . The next state y = x(t + 1)
of the system L is determined uniquely by x = x(t) at the moment
of time t and an edge e = (x, y) ∈ E(x), where E(x) = {(x, y) ∈
∈ E \ y ∈ X}. So E(x) = E(x(t)) corresponds to the admissible set
Ut(x(t)) for the control parameter u(t) at every moment of time t. To
each edge e = (x, y) a function ce(t) is assigned, which reflects the
cost of system’s passage from the state x(t) = x ∈ X to the state
x(t + 1) = y ∈ X at any moment of time t = 0, 1, 2, . . .

We consider the discrete optimal control problem on network for
which the sequence of system’s passages (x(0), x(1)), (x(1), x(2)), . . .
. . . , (x(T − 1), x(T )) ∈ E which transfers the system L from the state
xs = x(0), to the state xf = x(T ) with minimal integral-time cost of
the passages by a trajectory xs = x(0), x(1), x(2), . . . , x(T ) = xf must
be found.

Here may be two variants of the problem:
1) the number of the stages (time T ) is fixed;
2) T is unknown and it must be found.
It is easy to observe that for solving these problems we could use

the algorithm from section 3.
We put F0(x(0)) = 0 and Ft+1(x(t+1)) = Ft(x(t))+c(x(t),x(t+1))(t)
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for (x(t), x(t + 1)) ∈ E. So we obtain the algorithm of dynamic pro-
graming, which solves the problem in time n2T .

5 The game control model with p players

In this section we formulate the game control models with p players,
which represent a generalization of the problem from section 2. We
shall give the game theoretical model in the cases when T is fixed and
in the case when T is not fixed. First we formulate the discrete control
process with p players.

Let L be a time-discrete system with the set of states X ⊆ IRn. We
consider that the dynamics of the system L is controled by p players
and it is described as follows

x(t + 1) = gt(x(t), u1(t), u2(t), . . . , up(t)), t = 0, 1, 2, . . . (11)

where

x(0) = 0

is the starting state of the system L and ui(t) ∈ IRmi represents the
vector of control parameters of player i, i = 1, p. So, the state x(t+1) of
the system L at the moment of time t+1 is obtained uniquely if the state
x(t) at the moment of time is known and the players 1, 2, . . . , p fix their
vectors of control parameters u1(t), u2(t), . . . , up(t), respectively. We
shall consider that the players fix there vectors of control parameters
independently and for each player i = 1, p the admissible sets U i

t (x(t))
are given by

ui(t) ∈ U i
t (x(t)), t = 0, 1, 2, . . .

We shall consider the sets U i
t (x(t)), i = 1, p, t = 0, 1, 2, . . . non-empty

and U i
t (x(t)) ∩ U j

t (x(t)) = ∅ for i 6= j, t = 0, 1, 2, . . .

Let

x(0), x(1), . . . , x(t), . . . (12)
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be a process generated by (9) – (11) with given vectors of control pa-
rameters 




u1(0), u1(1), . . . , u1(t), . . .
u2(0), u2(1), . . . , u2(t), . . .
. . . . . . . . . . . . . . . . . . . . . . . .
up(0), up(1), . . . , up(t), . . .

(13)

For each state x(t), t = 0, 1, 2, . . . of the process (12) we define the
numerical evaluation F i

t (x(t)) for the player i, i = 1, p, by using the
following recurrent formula

F i
t+1(x(t + 1)) = f i

t

(
F i

t (x(t)), x(t), u(t)
)
, t = 0, 1, 2, . . . (14)

where
F i

0(x(0)) = F i
0 (15)

is a given evaluation of the starting state x(0) for the player i, i = 1, p,
here f i

t (·, ·, ·), t = 0, 1, 2, . . . , i = 1, p, are arbitrary functions.
The discrete process described by using (11) – (15) we name the

discrete control process with p players.
Now let us state that each player i, i = 1, p has the aim that the

system L will reach a given final state xf ∈ X, but each of them have
the interest to minimize its final state evaluation F i

T(xf )(xf).
We denote by

Ii
x0,x(T (xf ))(u

1(t), u2(t), . . . , up(t) |F i
0(x0)), i = 1, p

the evaluation F i
T(xf )(xf) of the final state xf when the players fix their

vectors of control parameter u1(t), u2(t), . . . , up(t), t = 0, 1, 2, . . . T (xf)
and when the starting evaluations F i

0(x0), i = 1, p are given. Here
T (xf) represent the time-moment when the state x(f) is reached by sys-
tem l when the players fix their vectors of control parameters ui(t), i =
= 1, p.

If T (xf) = ∞ then we put

Ii
x0,x(T (xf ))(u

1(t), u2(t), . . . , up(t) |F i
0(x0)) = ∞.
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So, the functions

I1
x0,xf

(u1(t), u2(t), . . . , up(t) |F 1
0 (x0)),

I2
x0,xf

(u1(t), u2(t), . . . , up(t) |F 2
0 (x0)),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ip
x0,xf

(u1(t), u2(t), . . . , up(t) |F p
0 (x0)),

define a dynamic game. For this dynamic model we could formulate
the problem of finding the optimal solution in the sense of Nash or in
sense of Pareto.

Note that in the presented model we have considered that T (xf) is
not fixed. We formulate the game model with fixed number of stages
in the following way. We state that each player has the aim to reach
the final state by using exactly T stages. Then we denote by

Ii
x(0),x(T)(u

1(t), u2(t), . . . , up(t) |F i
0(x0)), i = 1, p

the evaluation F i(xf) of the final state when the vectors of control
parameters ui(t), t = 1, p, generate a trajectory, which contains exactly
T stages; otherwise we shall consider

Ii
x(0),x(T)(u

1(t), u2(t), . . . , up(t) |F i
0(x0)) = ∞, i = 1, p.

The presented models generalize the problem from [2–4].

6 The multicriterion Control Problems

The problems 1 and 2 from section 2 can be extended as multicriterion
models if for each state x(t) of the process (1) – (3) we introduce p
evaluations

F ′
t+1(x(t + 1)) = f i

t

(
F i

t (x(t)), x(t), u(t)
)
, t = 0, 1, 2 . . . , T − 1, i = 1, p

with given starting evaluations

F i
0(x(0)) = F i

0, i = 1, p.
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So, we obtain the restrictions




x(t + 1) = gt(x(t), u(t)), t = 0, 1, 2, . . . , T − 1;
x(0) = x0, xf = x(T );

u(t) ∈ U(x(t)), t = 0, 1, 2, . . . , T − 1;
F ′

t+1(x(t + 1)) = f i
t

(
F i

t (x(t)), x(t), u(t)
)
, t = 0, 1, 2 . . . , T − 1;

F i
0(x(0)) = F i

0, i = 1, p

and p object functions

Ii
x0,xf

(u(t)) = F i
T (x(t)), i = 1, p.

For this model we could formulate the problem of finding the optimal
solution in the sense of Nash or in other sense [4].
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