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Abstract

In this paper some problems arising in the interface between
two different areas, Decision Support Systems and Fuzzy Sets
and Systems, are considered. The Model-Base Management Sys-
tem of a Decision Support System which involves some fuzziness
is considered, and in that context the questions on the manage-
ment of the fuzziness in some optimisation models, and then of
using fuzzy rules for terminating conventional algorithms are pre-
sented, discussed and analyzed. Finally, for the concrete case of
the Travelling Salesman Problem, and as an illustration of deter-
mination, management and using the fuzzy rules, a new algorithm
easy to implement in the Model-Base Management System of any
oriented Decision Support System is shown.

Keywords: Decision Support System, Fuzzy Rules,
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1 Introduction

From a broad point of view the interface between two different areas,
Decision Support Systems and Fuzzy Sets and Systems, is considered
in this paper. On the one hand, the term Decision Support System
(DSS) was coined at the beginning of the 70s to feature the computer
programs that could support a user in making decisions when facing
ill-structured problems. Nowadays, software for supporting decision-
making is available for almost any management problem. On the other
hand, in the early sixties, based on the fact that classical logic does
not reflect, to the extent that it should, the omnipresent imprecision
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in the real world, L. A. Zadeh proposed the Theory of Fuzzy Sets and
Fuzzy Logic. Nowadays Fuzzy Logic is employed with great success in
the conception, design, construction and utilisation of a wide range of
products and systems whose functioning is directly based on the ways
human beings reason.

But, in spite of the high levels achieved in these two fields, there
is a gap in the interface between them, i.e., Fuzzy Logic-Based DSS
has been not so widely exploited, although in this interface context
there are a number of important problems to be solved. Among
them, and for the sake of the interest that for the authors of this
paper this kind of problems exists, the following questions are to be
pointed out: the practical determination of membership functions,
which will be not considered here (interested readers are invited to
consult 3,7,8,12,13,15,16,17,19), the numerical accuracy need in that
fuzzy environment, the use of new algorithms to find good enough so-
lutions, instead of optimal ones, etc. Consequently the primary aim
of this paper is to describe briefly some of these problems as well as
their solution ways in a DSS framework, in order to bridge the above
mentioned gap and help to produce more effective and friendship Fuzzy
Logic-based DSS.

In order to structure the contents of the paper, let us consider
first of all the concept of DSS. In a very general meaning a DSS is
a system that supports technological and managerial decision mak-
ing by assisting in the organisation of knowledge about ill-structured,
semi-structured or unstructured issues, and its main components are
a Data-Base Management System, a Model-Base Management System
and a Dialog Generation and Management System [10]. Consequently
DSS are especially useful in areas providing problems with an unfa-
miliar structure, and much more specifically, in situations where the
knowledge available from experts has a human nature, i.e., it is either
imprecise or vague. At this juncture, as is well known, the Theory of
Fuzzy Sets and Fuzzy Logic is the most appropriate tool for dealing
with this kind of lack of precision. Amongst the three components de-
scribed for a DSS, all with an equal level of importance, for the sake of
convenience here only the second one will be considered. Therefore as
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follows, the Model-Base Management System (MBMS) will be focused
on, and an imprecise framework assumed.

Consequently, in Section 2 the management of the corresponding
and omnipresent fuzziness in the existing models in the MBMS is to
be considered. Among all the possible development areas that could
be approached, only that one considering optimisation problems, in
particular Linear Programming (LP) problems, will be discussed. The
reason for this is twofold. On the one hand, it is well known that in
the framework of DSS, LP provides a very powerful context that has
been used in a range of different applications, and has a documented
history of success [14]. On the other hand, LP problems assuming fuzzy
parameters, i.e., Fuzzy Linear Programming (FLP) problems is one of
the best studied topics in the field of Fuzzy Sets and Fuzzy Logic [2,
5]. Finally, as a matter of illustration showing the relevance of the
presented way to manage the fuzziness in the previous section, and
bridging the announced gap between DSS and Fuzzy Sets and Systems,
in Section 3 the Travelling Salesman Problem will be considered, and a
new algorithm proving the efficiency of using fuzzy rules as termination
criteria and being able of implementation in some oriented DSS will be
provided.

2 Managing the lack of precision in the MBMS

It is absolutely clear that in real applications, and hence in the MBMS
of any DSS, the perfect knowledge of the exact data taking part into the
involved models is almost impossible, and then it is usual to approxi-
mate those values, data and/or models in different ways: for instance
by using heuristic algorithms instead of conventional and experienced
ones. From this last point of view amongst the many reasons that
might justify the use of FLP in DSS [1, 13], and more specifically in
the MBMS, here we are going to concentrate on the following two:

1) Because FLP is useful for accurately modelling the inherent
vagueness in the data which the user often has available, and

2) Because it may help to find solutions for problems in which to
find an optimum solution is not easy.
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The situation that we envisage, referring to the first aspect, in-
volves a decision-maker who has a DSS, and who faces the need to
solve a given LP problem with the pertinent MBMS, for which pur-
pose he must provide the numerical data with which he is going to
attempt to find the solution to the problem described. As it was told,
only on very few occasions will the decision-maker know precisely all
the readings for the parameters that he needs for the DSS to work.
Generally the information, that the decision-maker has, corresponds
rather to information of an imprecise nature, which he has to adapt to
the special characteristics of the system that he is using. Specifically,
to illustrate this, let’s assume that the problem, that is being dealt
with, is as simple as the following one:

max {x1 + 2x2/x1 + 5x2 ≤ 35; x1 + x2 ≤ b; 2x1 + x2 ≤ 17;

3x1 + x2 ≤ 24; x1, x2 ≥ 0}
Let’s assume that the real, and exact value of the parameter b is

b = 11.1. It is clear that in this case the optimum solution for the
problem above would be: x1 = 4.775 and x2 = 6.225, with a value for
the target function of z1 = 17.225.

Let’s admit, nevertheless, that what the decision-maker knows
about that parameter b is that it has a value very close to 11, but
never less than 11. The normal trend with a view of obtaining a so-
lution for this problem means that the value that is given to b is 11,
therefore using the process of “rounding off”, since generally the rea-
son is that there is no way to represent a value very close to 11 and
never less than it, if that piece of data is not accompanied by a proba-
bility distribution. But by acting this way, the nature of the problem
is altered, because it jumps from one problem that, due to the very
nature of the information held by the decision-maker, it has a clearly
imprecise approach, and therefore it is fuzzy, to another problem of a
conventional nature, i.e., it is precise in the values of its coefficients.

But the treatment given to the data here, by modifying its real value
to make it easier to match the data to the model that may be used,
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(i.e. the one that is available in the MBMS, though making it simpler
to solve the problem) it may really cause serious problems, since it may
lead us to propose the application of solution that are very far removed
from the authentic, optimum policies that should correspond to the
problem in question, if it had been approached in its original fuzzy
terms. It is clear that such action may lead to serious consequences
depending on the context that is being dealt with (economics, health,
etc..).

In particular, in the example that is being used to illustrate this
argument, the fact of forcing parameter b to take the value b = 11,
means that the optimum solution to the problem would be: x1 = 5
and x2 = 6, with a value for the target function of z2 = 17, which is
clearly much lower than (it is really just a question of scales) the one
obtained for the real problem.

The models and techniques offered by the FLP allow these miss-
function to be solved without any difficulty. In fact, the modelling of
the imprecision in the values of the parameters may be approached from
the viewpoint that the latter are fuzzy numbers. In this sense, regard-
less of the wide range of different models that may be considered for
implementing in an MBMS (fuzzy constraints, fuzzy objectives, etc.)
the above mentioned problem could be dealt with using the following
model:

max{cx/Afx ≤f bf , x ≥ 0}
where Af an bf refer to the fact that we are considering fuzzy numbers
in the coefficients that define the restrictions (thereby allowing, as a
trivial case, there also to be real numbers when there are no ambigui-
ties), and symbol ≤f means that the way of comparing both members
in the inequality, due to formal coherence, must be done by using a
relationship for ordering the fuzzy numbers. This comparison relation
≤f may be any one from the extensive list available [19], which in turn
would also allow the decision-maker to have a greater degree of freedom
when it comes to establishing preferences. In more specific terms, in
order to provide that theoretical model with a way for operating, let’s
briefly refer back to the different indices for comparing fuzzy numbers
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that have been described in the literature [19]. Amongst the different
approaches described for comparing these amounts, for the sake of sim-
plicity, here we shall only deal with the one that is derived from the
use of indices for comparison.

Hence, by denoting as it is usual by F (R) the set of fuzzy numbers,
if

I : F (R) → [0, 1]

is a comparison index for this kind of numbers, then

∀Xf , Y f ∈ F (R), Xf ≤f Y f ⇔ I(Xf ) ≤ I(Y f )

whereby, according to index I that is used, different auxiliary models
may be obtained for effectively solving the problem described above
from the practical viewpoint. So, in general, the auxiliary model that is
used to solve the problem described above from the practical viewpoint,
would be approached as:

max{cx/I(Afx) ≤ I(bf ), x ≥ 0}.
As a trivial example of that setting, consider two fuzzy numbers

Xf , Y f ∈ F (R), denoted as usually as Xf = (X,Xi, Xd) and Y f =
(Y, Yi, Yd), and the form of comparison is that given by Yager’s First
Index [19],

Xf ≤f Y f ⇔ (1/3)(X + Xi + Xd) ≤ (1/3)(Y + Yi + Yd).

Then the previous model takes the following operating form,

max{cx/(A + Ai + Ad)x ≤ (b + bi + bd), x ≥ 0}
which, with a sufficiently clear denotation, obviously does not involve
any theoretical hindrance for solving it.

Therefore, and referring to the example for illustration that has
been used so far in this Section, one possible approach might be the
following:
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max
{
x1 + 2x2/x1 + 5x2 ≤ 35; x1 + x2 ≤f 11f ; 2x1 + x2 ≤ 17;

3x1 + x2 ≤ 24; x1, x2 ≥ 0} .

Assuming the simplest case, i.e., that 11f is a triangular number
with a membership function (11, 11, 11.3), we may obtain a whole range
of auxiliary problems that solve the previous example by providing
different solutions. Specifically, by means of an example, the auxiliary
model that would be obtained would be:

max {x1 + 2x2/x1 + 5x2 ≤ 35; x1 + x2 ≤f 11.1

2x1 + x2 ≤ 17; 3x1 + x2 ≤ 24; x1, x2 ≥ 0} .

From which we would obviously obtain the optimum solution to the
problem in question.

With regards to the second reason that we use in this article to jus-
tify the use of the FLP models in DSS, i.e., its help in finding solutions
for those in which it is not easy to find their optimum solution, the
question posed is the following.

As it is well known, there are a lot of NP problems (Knapsack,
Travelling Salesman, etc.) which cannot effectively be solved in all
cases, but which are of the utmost importance in a number of different
DSS. In these problems the decision-maker must usually accept approx-
imate solutions instead of optimum ones. At this point the aim here
is to show how the FLP can help classical MP models and techniques
by providing approximate (fuzzy) solutions that may be used by the
decision-maker as help to quickly obtain a good enough solution for
these problems.

Let‘s justify this fact as follows. As it is well known, an algo-
rithm for solving a general classical optimisation problem can be viewed
as an iterative process that produces a sequence of points according
to a prescribed set of instructions, together with a termination crite-
rion. Usually we are interested in algorithms that generate a sequence
x1, x2, ..., xN that converges to an overall, optimum solution. But in
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many cases however, and because of the difficulties in the problem, we
may have to be satisfied with less favorable solutions. Then the iter-
ative procedure may stop either 1) if a point belonging to a prefixed
set (the solution set) is reached, or 2) if some prefixed condition for
satisfaction is verified.

But, the conditions for satisfaction are not to be meant as universal
ones. In fact they depend on several factors such as the decision-maker,
the features of the problem, the nature of the information available, ...
In any case, assuming that a solution set is prefixed, the algorithm will
stop if a point in that solution set is reached. Frequently, however,
the convergence to a point in the solution set is not easy because, for
example, of the existence of local optimum points, and hence we must
redefine some rules for terminating the iterative procedure.

Roughly speaking, the possible criteria to be taken into account for
terminating the algorithms are no more than control rules. From this
point of view, the control rules of the algorithms for optimisation prob-
lems can be associated to the two above points: the solution set, and
the criteria for terminating the algorithm. As it is clear, fuzziness can
be introduced in both points, not assuming it as inherent in the prob-
lem, but as help for obtaining, in a more effective way, some solution
for satisfying the decision-maker’s wishes. This is meant so that the
decision-maker might be more comfortable when obtaining a solution
expressed in terms of satisfaction instead of optimisation, as is the case
when fuzzy control rules are applied to the control processes.

Therefore, and in the particular case of optimisation problems [4,
18], it makes sense to consider fuzziness

a) In the Solution Set, i.e., there is a membership function giving
the degree with which a point belongs to that set, and

b) On the conditions for satisfaction, and hence Fuzzy Control rules
on the criteria for terminating the algorithm.

In the particular and easy case of Linear Programming problems,
and hence of the very well known Simplex Algorithm, if a conventional
problem is assumed
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min{cx/Ax = d; x ≥ 0}
the Simplex Algorithm, with the conventional denotation, can be sum-
marised as follows,

1) Find an initial extreme point x with basis B.
2) Let x be an extreme point with basis B, and let R be the matrix

corresponding to the nonbasic variables. Compute cBB−1R− cR.
If this vector is non positive then stop, x is an optimal extreme

point.
Else select the most positive component cBB−1aj−cj and compute

yj = B−1aj :
If yj = B−1aj is less than or equal to 0 Then stop. Objective

unbounded.
If yj = B−1aj is neither less than nor equal to 0 Then go to step 3.
3) Find the new extreme point by changing the current basis. Re-

peat step 1.
Therefore, as may be seen, in the Simplex Algorithm control rules

appear mainly in the second step as
- The non positivity of the vector cBB−1R− cR could be meant in

a soft sense,
- The positivity of the component cBB−1aj − cj could be measured

according to some membership function, and
- The accomplishment of yj = B−1aj ≤ 0, if this is viewed as a

constraint, could be fuzzified.
If the first possibility is considered, a new second step can be for-

mulated,
2’) Let x be an extreme point with basis B. Compute cBB−1R−cR.

If

∀j = 1, ..., n, cByj − cj <f 0, cj ∈ cR

Then stop.
Thus this condition is stated as a fuzzy constraint, meaning that the

decision-maker can accept violations in the accomplishment of the con-
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trol rules, cByj − cj < 0, to obtain a near, and therefore approximate,
optimal solution instead of a full optimal one.

3 Using fuzzy rules for terminating algorithms
in MBMS.

The above fuzzy rules, meant as termination criteria in the algorithms
used in practical realisations of the MBMS, will be illustrated here by
means of a very well known problem, to which a great deal of work is
devoted in DSS: the Travelling Salesman Problem (or Travelling Sales-
person Problem, TSP) [13]. TSP finds application in a variety of situ-
ations: postal routes, tightening the nuts on some piece of machinery
on assembly lines, etc. In short TSP is addressed as follows: Let G be
a directed graph in which the nodes represent cities and each edge has
assigned to a positive cost (the distance between each two cities). If a
route of G is defined as a directed cycle that includes every vertex in
G, and the cost of a route is the sum of the cost of the edges on the
route, the TSP is to find a route of minimum cost.

We denote by i = 1 the first city of the route and by 2, 3, ...n the
other cities, dij – the distance between the city i and the j one, the
value of the variable xij is 1 if j is the next city in the route to city
i and 0 otherwise. If N = 1, 2, ..., n, the mathematical formulation of
the TSP is:

min z =
n∑

i=1

n∑

j=1

dijxij

s.t.
n∑

i=1

xij = 1 j = 1, ..., n,

n∑

j=1

xij = 1 i = 1, ..., n,

∑

i∈Q

∑

j∈Q̄

xij ≥ 1 ∀Q ⊂ N
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xij ∈ 0, 1 i, j = 1, 2, ..., n.

In order to introduce fuzzy termination criteria in the exact algo-
rithms of the TSP, we consider that the value of a TSP optimal solution
is not a crisp unknown value, but a vague value, because in a great di-
mension TSP, for which the exact algorithms known need a lot of time
to obtain an optimal solution, the decision maker can be comfortable
in having an almost optimal solution instead of the very optimal one.
In such a situation the optimal value can be seen as a fuzzy set on
[L0, U0] defined by a membership function as:

µ(z) =





1 if z < L0

f(z) if L0 ≤ z ≤ U0

0 if z > U0

where f(z) ∈ [0, 1]∀z ∈ [L0, U0], is a not increasing continuous function,
L0 a lower bound and U0 an upper bound of the optimal value of the
TSP which shall be determined “a priori” as it will be shown. As
usual, this membership function shows that if the value z of a TSP
route is greater than U0 then it is not allowed by the decision maker.
A lower value to L0 can be a good solution and values between L0 and
U0 are admissible, but the level of admission will be increasing when z
decreases. Obviously, the highest level of admission is obtained when
z is equal to L0.

If the decision maker accept a not optimal solution with a mem-
bership degree not lower than α(0 < α < 1), a termination criterion
is:

µ(z) ≥ α or z ≤ f−1(α) (1)

The values of L0, U0 and the function f must be the correct ones in
order to provide the expected results by the decision maker. Unsuitable
values of L0, U0 can produce solutions with great errors. Equally, an
incorrect function f can cancel out the flexibility.

From [18] it follows that in such situations a good option is to
use a concave function in the definition of the membership function,
concretely a function as
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f(z) = n

√
U0 − z

U0 − L0
(2)

for which the bounds L0 and U0 can be computed by suitable efficient
existing algorithms.

In order to illustrate the use of fuzzy termination criteria in the
TSP, the well known algorithm by Little et al. [6], that here is denoted
by LMSK algorithm in short and that is specially designed for solving
TSP, has been considered.

4 Solution method

4.1 LMSK algorithm

This is a branch and bound algorithm that uses relaxation of TSP
as a matching problem denoted by PA (TSP). The algorithm starts
by solving the PA (TSP) by the Hungarian Method; if the obtained
solution does not possess sub-routes then it is an optimal solution of the
TSP. Otherwise the algorithm proceeds the branch. In each iteration,
one chooses a sub-problem TSPk, the most recent among the unsolved
sub-problems. If the optimal value is lower than the best current value,
then it is saved as the best current value, or alternatively one branch
according to this problem has sub-routes or does not have. If the
optimal value is equal to or greater than the best current value, then
one rejects the sub-problem and starts another iteration. The rule for
branching consists in choosing a variable xij and to obtain two sub-
problems by assigning 0 and 1 values to the selected variable. The
process terminates when no unsolved sub-problem does exist.

In a TSPk (node k) sub-problem, as a consequence of the above
branching, there are variables xij with fixed values (0 or 1). Speaking
in graph terms, there are an (i, j) edge included or not in the route.
We denote by I the included edge set and by E the excluded edge set.
Then, TSPk can be described as:
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min
∑

(i,j)∈I

dij +
∑

i∈S

∑

j∈T

d′ijxij

s.a.
∑

i∈S

xij = 1, ∀j ∈ T,

∑

j∈T

xij = 1, ∀i ∈ S,

xij ∈ 0, 1, ∀(i, j), i ∈ S, j ∈ T

where:

S = {i/(i, j) /∈ I ∀j} , T = {j/(i, j) /∈ I ∀i} ,

d′ij =

{
dij (i, j) /∈ E
∞ (i, j) ∈ E

furthermore dij are the coefficients of the matrix of reduced distance of
previous node, that is to say, the matrix that rests after the obtaining
the optimum assignation in the previous node.

This sub-problem is solved by using the Hungarian Method. If the
obtained solution has sub-routes one proceeds the branch. A rule for
branching is to choose a variable xrs where r ∈ S and s ∈ T , and to
make two nodes assigning value 1 or 0 each one. Little et al [6] suggest
to select a variable xrs with value 0 if this variable has the maximal
potential of increasing in the objective function of the sub-problem. In
order to make it, let

{
d̄ij

}
i ∈ S, j ∈ T

be the reduced cost of the optimum solution of the sub-problem. Then,
for each edge (i, j), i ∈ S, j ∈ T with reduced cost 0, we compute:

pij = min
{
d̄ik/h ∈ T − j

}
+ min

{
d̄hj/h ∈ S − i

}

which is the minimum amount to increase the optimum value of the
assignation to the subproblem, if the chosen variable is fixed to 0.
Therefore we can choose xrs such that:
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prs = max
{
pij/i ∈ S, j ∈ T, d̄ij = 0

}
(3)

when the variable of branching xrs is chosen, all the new nodes can be
obtained making xrs = 1 and xrs = 0. In the first new node, I has the
edge (r, s) as new element, and in the second new node, E has the edge
(r, s) as new element.

Steps of LMSK algorithm

Step 1: [Starting] Let U = ∞ (best bound and real value) and
L = TSP (subproblem list).

Step 2: [Selecting a sub-problem] If L = Φ then one terminates the
process, because the route associated to U is an optimal one (if U = ∞
, the TSP has not solution).

If L 6= Φ, one chooses the more recent sub-problem TSPi, and one
removes it from the list L. Go to step 3.

Step 3: [Upper bound determination] Solve PA(TSPi) by means of
the Hungarian Method. Let Zi be the obtained value.

If Zi ≥ U , go to step 2.
If Zi < U and the solution is a route for TSP (there are no sub-

routes) then make U = Zi.
If Zi < U and the solution is not a route for TSP (there are sub-

routes) go to step 4.
Step 4: [Branching] Choose xrs according to (3) and generate two

new sub-problems TSPi1 and TSPi2 by fixing xrs = 0 and xrs = 1.
Let L = L ∪ TSPi1, TSPi2.

Go to step 2.
Remark: Note that the termination criterion of this algorithm is

L 6= Φ.

4.2 Fuzzy termination criteria in the LMSK algorithm

To introduce a fuzzy termination criterion in the LMSK algorithm, we
make a change at the starting step in order to determinate the bounds
L0 and U0. L0 is computed by using the method proposed in [11], and
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the upper bound U0 is computed by means of the process described in
[9]. In the same starting step, the decision maker will choose and fix α
(the lowest level of admission). Finally, at step 2 one must include the
fuzzy termination condition (1). Therefore the following new algorithm
is obtained:

Step 1: [Starting] Let U = ∞ (best bound and real value) and
L = TSP (subproblem list). Solve by means of the Hungarian Method
PA(TSP). If optimum matching is a route of TSP go to step 2. Else,
go to 1’.

Step 1’: Find L0 and U0, then make U = U0 (best real bound) and
go to step 1”;

Step 1”: Fix α(0 < α ≤ 1). If 0 < α < 1 let z0 = f−1(α) (bound
for the admissible solution, where f is as in (2)). If L 6= Φ go to step
2. Else, go to step 4.

If α = 1 (the decision maker do not want to improve an admissible
solution), let L = Φ and go to step 2.

Step 2: [Selecting a sub-problem] If L = Φ or U ≤ z0 stop the
process, as the associated route with U is admissible; if L 6= Φ go to
step 1”. Otherwise stop.

If L 6= Φ and U > z0, select the more recent problem TSPi, remove
it from the list L and go to step 3.

Step 3: [Upper bound determination] Solve PA(TSPi) by means of
the Hungarian Method. Let Zi be the obtained value.

If Zi ≥ U , go to step 2.
If Zi < U and the solution is a route for TSP (there are no sub-

routes) then let U = Zi.
If Zi < U and the solution is not a route for TSP (there are sub-

routes) go to step 4.
Step 4: [Branching] Choose xrs according to (3) and generate two

new sub-problems TSPi1 and TSPi2 by fixing xrs = 0 and xrs = 1.
Take L = L ∪ TSPi1, TSPi2.

Go to step 2.
The introduction of the fuzzy termination criterion on the algo-

rithm has made it more flexible. Now, the decision maker can control
the iterations because at step 1” he can introduce little values for α
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and to increase them if he want to improve the admissible solution.
Consequently the decision maker will take into account the time used
for obtaining admissible solutions.

For the sake of illustration, let us consider finally the following TSP
for 10 cities, with a distance matrix given by:

(dij) =




− 1 62 56 54 27 30 27 55 60
90 − 66 77 52 98 12 55 7 64
30 41 − 60 59 17 72 82 76 21
57 33 33 − 64 78 62 24 70 72
95 32 69 74 − 97 94 92 96 55
29 25 40 61 25 − 27 81 57 94
98 52 8 11 89 61 − 55 91 37
52 50 90 33 64 86 37 − 91 88
45 83 31 79 70 22 46 18 − 91
96 62 88 9 2 67 64 43 85 −




We consider the diagonal elements of the matrix and the distances
of excluded edges in the iterations with a value M = 10 × (max dij).
Then, dii = M and dij = M if the edge (i, j) is excluded of a possible
route. Then solving the problem with the exact algorithm LMSK, one
obtains the optimal route

1 → 2 → 9 → 6 → 5 → 10 → 4 → 8 → 7 → 3 → 1

with a total distance z = 218, after solving 15 sub-problems (original
problem included).

On the other hand when using the LMSK algorithm with a fuzzy
termination criterion, a function f as (2), n = 2, and bounds L0 = 208
and U0 = 308 (at the starting step 1’), the admissible solutions for the
different values of α is shown in the following table:

One can observe that for α = 0.8, an admissible solution is obtained
by solving only the 66% of all the sub-problems that the classical al-
gorithm solves. However, the admissible value obtained is very close
to the optimum. It is then evident that the saving in time is upper in
comparison with the difference between the admissible value and the
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α z0 = Admissible Admissible Sub-problems
f−1(α) route value solved (It.)

0.5 283 1-7-3-10-5-2-9-8-4-6-1 258 8
0.8 244 1-8-7-4-3-19-5-2-9-6-1 221 10
0.94 219.64 1-2-9-6-5-10-4-8-7-3-1 218 14

Table 1. Admissible solutions for the example with the LMSK algo-
rithm with fuzzy termination criteria

optimum value. Furthermore for α = 0.94 one obtains an admissible
solution which is the exact one, and by performing less iterations than
the original classical algorithm. The more the number of cities are in
the TSP, the more these advantages are evident.
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