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On link diameter of a simple rectilinear polygon

V.Chepoi F.Dragan

Abstract

The rectilinear link distance between two points inside a sim-
ple rectilinear polygon P is defined to be the minimum number
of edges of a path consisting of axis-parallel segments lying in-
side P. The link diameter of P is the maximum link distance
between two points of P. We present an O(n) time algorithm
for computing the link diameter of a simple rectilinear polygon
P, where n is the number of vertices of P. This improves the
previous O(nlogn) time algorithm.

1 Introduction

A path 7 between two points  and y in a simple polygon P is a poly-
gonal line inside P connecting « and y. The length of 7 is the number
of line segments in this path. The link distance between two points in
a simple polygon P is the length of a minimum length path connecting
them [11]. This distance is used to model problems concerned with
robot motion planning or broadcasting problems, and there is substan-
tial literature on such issue (see [11,12,3-8,2]). Recently, a number of
classical shortest path problems for the link measure of distance have
been solved [4-8, 11,12]. In particular, a linear time algorithm for com-
puting the link distance between any pair of points [11,12], an O(nlogn)
time algorithm for calculating the link diameter [11] and an O(nlogn)
algorithm for finding the link center of a simple n-vertex polygon [6,7]
have been developed.

De Berg [3] consider some of these problems for rectilinear link
distance inside a simple rectilinear polygon P (i.e., a simple polygon
having all edges axis-parallel). A rectilinear path 7 is a polygonal line
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consisting of axis-parallel segments lying inside P. The length of the
path, as in the case of simple polygons, is the number of segments in
the path. The rectilinear link distance d(z,y) between two points
and y of a simple rectilinear polygon P is the length of a minimum
length rectilinear path connecting them [3]. The link diameter d(P) of
P is the maximum link distance between two points of P. Besides the
algorithm for calculating the rectilinear link distance between any two
given points within P, De Berg [3] presents an algorithm for computing
the link diameter of P in time O(nlogn), using a divide-and-conquer
approach.

In this paper we study the properties of link diameters of the recti-
linear polygons. We prove that d(P) > 2r(P)—2, where r(P) is a radius
of P (for link diameter of simple polygons a similar inequality was es-
tablished in [8]). Using this fact we improve the De Berg algorithm and
present an optimal algorithm for computing the link diameter of a sim-
ple rectilinear polygon without applying a divide-and-conquer method.
Our algorithm essentially uses the linear algorithm for computing the
link central point presented in [2] and the merging step of De Berg
algorithm which runs in linear time too. Throughout in our paper, let
P be a simple rectilinear polygon with n sides.

2 Properties of a rectilinear link distance

In this section we recall a few results about properties of rectilinear
link distance, used in our algorithm. An axis-parallel segment is called
a cut of P if it connects two sides of P and lies entirely inside P. By a
maximal cut we will mean any maximal by inclusion cut of a polygon
P. For a cut segment ¢ and a point z of P the (rectilinear link) distance
from z to ¢ be defined as the distance from z to a closest point on c:

d(z,c) = min{d(z,p) : p € ¢} = d,.

By a farthest neighbor of a cut ¢ we will mean a point of P whose link
distance from c¢ is maximal. The distance from ¢ to any its farthest
neighbors is called the eccentricity e(c) of c.
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Following [3], let ¢(z,d) be the part of ¢ that can be reached from
x with a (rectilinear) path 7 of length d such that the last segment of
7 is perpendicular to ¢. If we allow the first link of the path to have
length zero, we always have c¢(z,dy) C c(z,d; + 1). Notice also that
for any integer d the set c¢(xz,d) is a segment. The cut ¢ separates two
points z and y if x and y lie in different subpolygons defined by c.

Lemma 1 ([3]) Let the cut ¢ separates two points x and y, and let
d(z,c) = dy and d(y,c) = dy. Then we have

d(z,y) =ds +dy + A

where
-1 'Lf C(.T,dw) ﬂc(y7dy) ?é @
0 i (,ds) Nely,dy) = B and
A= c(z,dy +1)Nely,dy) #0 or
c(z,dg) Nely,dy +1) # 0

+1 otherwise

Let s be any vertical or horizontal segment of a polygon P. The
visibility region V R(s) of s in P consists of the set of all points z in P
visible from s, i.e. there is a cut of P perpendicular to s which passes
through z.

Lemma 2 Let ¢, " be the cuts perpendicular to the cut ¢ and let the
point z lies in the region R bounded by these cuts. If d(z,c') < d(z,¢) =
k then d(z,c") =k + 1.

Proof. Assume for example that c is a horizontal cut. Let s be the part
of ¢ which bound the region R. Then the point z lies in some pocket of
R (by a pocket we will mean a connected component of R defined by a
side of the visibility region V R(s) of a segment s in R). Let ¢* be the cut
of P that separates this pocket from the rest of the region R. Evidently,
d(z,¢) = d(z,¢*)+1. Since z and ¢’ lie in different subpolygons defined
by ¢* and d(z,c¢*) = d(z,¢') then by Lemma 1 we deduce that for any
point z € ¢'(z,k—1) we have ¢*(z,1) () ¢*(z,k—1) # (). This is possible
only if ¢*(¢,2) = () for any point ¢ € ¢’. By Lemma 1 we immediately
obtain that d(z,¢") = k + 1.
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Lemma 3 ([2]) For any cut ¢ of P among its farthest neighbors there
exists at least one vertex of a polygon P.

Given a point € P, its farthest neighbor is a point of P whose
link distance from z is the maximum over all other points of the poly-
gon P. The distance from z to any its farthest neighbor is called the
eccentricity e(z) of . The radius r(P) is the minimum eccentricity
of a point in P. The center C(P) of P is the collection of all central
points, i.e. points whose eccentricities are equal to r(P).

Lemma 4 ([2]) For any point z of P among its farthest neighbors there
exists at least one vertex of a polygon P.

Now we establish the relation between the link radius and link di-
ameter of a rectilinear polygon P.

Theorem 1 For any simple rectilinear polygon P
2r(P) —2 < d(P) < 2r(P).

Proof. Let ¢ be the maximal cut with minimal eccentricity. Note
that 7(P) — 1 < e(¢) < r(P). If e(¢c) = r(P) then the intersection
NA{c(v,r(P)) : vis a vertex withd(v,c) > r(P) — 1} is empty, otherwise
the cut perpendicular to ¢ which passes through the point from this
intersection has eccentricity r(P) — 1. By Helly property there exist
two disjoint segments c(v,r(P)) and c(w,r(P)). Let y be the point
of ¢ that separates these segments. Then the cut ¢’ perpendicular to
¢ and which passes through y separates v and w and d(v,c') > r(P),
d(w,d) > r(P). By Lemma 1 we obtain the inequality d(v,w) >
2r(P) — 1.

Now assume that the minimal eccentricity of cuts is 7(P) — 1. For
any point x € P let V(x) be the set of all vertices v of P for which
d(v,z) <r(P)—1. Let z* be the point with maximal set V (z*) among
the points which lie on cuts with minimal eccentricity. By invoking the
definition of radius and from Lemma 4 there exists a vertex w with
d(z*,w) = r(P). Let ¢ be the maximal cut of P with e(c) = r(P) —1
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which passes through the point z*. Note that the last link of some
shortest path from w to x* belong to ¢, and z* is a point of ¢ which
belongs to maximal number of metric projections of vertices situated at
distance 7(P)—1 from c. We claim that there exists a vertex z € V(z*),
such that

c(z,m(P) —1) ﬂ c(w,r(P) —1) = 0.

To show this first observe that z* ¢ c(w,r(P) — 1) and z* €
N{c(v,r(P) — 1) : v € V(z*)}. Hence, if ¢(w,r(P) — 1) intersects
any segment c(v,r(P) — 1), v € V(z*), then by Helly Theorem there
exists a point

pE ﬂ{c(v,r(P) —1):veV(z")} ﬂ c(w,r(P) —1).
Since V(p) D V(z*) U {w} we obtain a contradiction with our choice.

Let ¢’ be a maximal cut perpendicular to ¢ and which separates the
segments c¢(z,r(P) — 1) and ¢(w,r(P) — 1). Denote by = the common
point of cuts ¢ and ¢’. Let P’ and P” be the subpolygons defined by ¢’
and suppose that z € P/, w € P". Since z ¢ ¢(z,7(P)—1)U ¢(w, r(P)—
1) then d(z,') > r(P) — 1 and d(w, ') > r(P) — 1. If

e(d)>r(P) or d(w,r(P)-1) ﬂc’(z,r(P) -1)=0

then by Lemma 1 we obtain d(P) > 2r(P) — 2. So assume that e(c') =
d(w,d)=r(P)—1and (w,r(P)—1)N(z,7(P) — 1) # 0.
For any vertex v put

di(v) ={ped:dv,p) <r(P)—1}.

Note that if the set ¢/ (v) is non-empty then either ¢, (v) =
d(v,r(P)—1) or ¢ (v) = ¢'. We claim that either d(P) > 2r(P)—2 or
for any vertex v € V(z*) we have !, (v)Nd!, (w) # 0. If z € ¢(v,r(P)—1)
then d(v,d’) < 7(P) — 2 and therefore ¢, (v) = ¢. So assume that
z ¢ c(v,r(P) —1), ie. d(v,d) > r(P) —1. If v € P’ then
dv,d) = r(P) — 1 and d(v,r(P) — )N (w,r(P) — 1) # 0, oth-
erwise by Lemma 1 we have d(v,w) > 2r(P) — 2. Now suppose
that v € P”. Since z ¢ c(v,7(P) — 1) and d(v,z*) < r(P) —1
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this yields that d(v,c¢) = r(P) — 2. Hence d(v,c) = r(P) — 1 and
z € d(v,r(P)—1). Let ¢ (v) N (w) =0 and c¢* be a cut perpen-
dicular to ¢’ that separates the segments ¢/, (v) = ¢/(v,7(P) — 1) and
i (w) = ¢ (w,r(P) — 1). Denote by y the intersection of cuts ¢’ and
¢*. Since y ¢ ¢ (v,7(P) — 1)U (w,r(P) — 1) then d(v,c*) > r(P) —1
and d(w,c*) > r(P) — 1. This is possible only if the cut ¢* sepa-
rates the cut ¢ and the vertex w, otherwise d(v,c*) < r(P) — 1. So
the vertex v lies in the region bounded by the cuts ¢, ¢’ and ¢* and
d(v,¢) = r(P) -2, d(v,d)=r(P)—1. By Lemma 2 we conclude
that d(v,c*) > r(P). Using Lemma 1 for cut ¢* and vertices v and w
we obtain

d(v,w) > d(v,c*) + d(w,c*) — 1> 2r(P) — 2.

This proves the claim.

Finally we will show that either d(P) > 2r(P)—2 or for any vertices
o', 0" € V(2*) we have ¢, (v')Nc!, (v") # 0. It is enough to consider only
the case when d(v', ¢') = d(v”, ') = r(P)—1 and vertices v’ and v" lie in
the same subpolygon P’ defined by the cut ¢/, otherwise we immediately
obtain the required property. Suppose that ¢, (v') N ¢!, (v") = 0 and let
¢’ be the maximal cut perpendicular to ¢’ which separates the segments
d (W) =W, r(P)—1) and ¢ (v"") = (v, r(P) —1). If " = ¢ then
we obtain that the cut ¢’ separates the vertices v',v"” and the vertex w.
Since v' and v” lie in different subpolygons defined by ¢ then this cut
separates the vertex w and one of the vertices v' and v"” too. Assume
for example that ¢ separates vertices w and v'. Since c¢(v',r(P) —
)N e(w,r(P) — 1) = 0 then by Lemma 1 d(v',r(P) — 1) > 2r(P) — 2.
So ¢ # . Assume for example that the cut ¢ and the vertex v" lie in
different subpolygons defined by ¢”’. Now recall that d(v', z*) < r(P)—1
and d(v",2*) < r(P) — 1. According to Lemma 1 this is possible only
if d(v",c") =r(P) — 1 and " (z*,1) N " (v",r(P) — 1) # 0. Let y* be
the point from the last intersection. Observe that the whole rectangle
bounded by the cuts ¢,c, ¢’ and the segment z*y* is contained in P.
If d(v',¢) = r(P) — 1 then d(v',z*) = r(P) — 1 and the last link of
any shortest path from v’ to z* is a part of a segment z*y*. In this
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case we obtain a path of length r(P) — 2 from v’ to some point z* of
a cut ¢, contradicting our assumption that d(v',¢’) = r(P) — 1. On
the other hand if d(v',¢) = r(P) — 2 then by Lemma 2 we deduce that
d(v',d") > r(P). Since d(v", ") > r(P)—1 then by Lemma 1 we obtain
d(v',v") > 2r(P) — 2.

Thus if we assume that d(P) < 2r(P) — 2 then for any vertices
o', 0" € V(z*) we have

do()nd (w) #0, d ()N (") #0.

By Helly Theorem there exists a point z** € N{cd (v) : v €
V(z*)} N (w). Hence V(z**) D V(z*) U{w}, contradicting to choice
of a point z*. This finishes the proof ||

Remark. The similar relation between link radius and link diameter
of a simple polygon was established by Lenhart et all [8]. Unfortu-
nately, their elegant proof using the Molnar Theorem for cells can not
be transfered to rectilinear polygons, since in the rectilinear link metric
the intersection of two disks may be not connected.

3 The algorithm

De Berg [3] gave a linear time algorithm which for any cut ¢ and sub-
polygons P’ and P” defined by ¢ compute the value max {d(v,w) : v €
P',w € P"}. On the other hand, in [2] the authors present a linear
algorithm for finding the central point and link radius of a rectilin-
ear polygon P. These algorithms, the results of the previous section
and of paper [3] lead to the following algorithm for computing the link
diameter of P.
For cut ¢ of a polygon P put

D(c) ={v vertex of P :d(v,c) =e(c)},
DT (c) ={v vertex of P:d(v,c) > r(P)—1}.

By a diametral pair of vertices we will mean any two vertices v, w

with d(v,w) = d(P).
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Algorithm. Computing the link diameter of a simple rectilinear
polygon P.

find a link central point z and radius r(P) of polygon P;
. find the eccentricity of a maximal cut ¢, which passes through the point z;
if (e(c) = r(P) — 1) then begin

if (N {c(z,r(P)):2 € DT(c)} # 0) then begin

find a maximal cut ¢* perpendicular to ¢ which passes through the
point from () {c(z,7(P)): z € DT (c)};

6. let P’ and P" be the subpolygons defined by ¢ and P| and P} be the
subpolygons defined by ¢*;

oo W on e

7. compute M = max {d(v,w):v € P',w € P"};
8. compute M, = max {d(v,w):v € P_,w € P\};
9. d(P) = max{2r(P) — 2, M, M, }; stop

end;

10. find two disjoint segments c¢(v,r(P)) and c¢(w, r(P));

11. d(P) = d(v,w) = 2r(P) — 1; stop
end;
(xe(c) = r(P)%)

12. if (N {c(z,7(P)): 2 € D' (c)} # 0) then begin

13. find a maximal cut ¢ perpendicular to ¢ which passes through the point
from () {c(z,7(P)): 2z € DT (c)};
14. c=ct; (xe(c) = r(P) — 1x)

15. repeat steps (3)—(11)
end;

16. find two disjoint segments c(v, r(P)) and c(w, r(P));
17. Mo = d(v,w);
18. find a maximal cut ¢t perpendicular to ¢ which passes through the point z;

19. let P’ and P"” be the subpolygons defined by ¢ and P| and P! be the sub-
polygons defined by ¢*;

20. compute M = max{d(v,w):v € P',w € P"};
21. compute M| = max{d(v,w):v € P|,w € P'};
22. d(P) = maz{Mo, M, M };

23. if (d(P) = 2r(P) — 1) then begin
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24. find a pair v, w of vertices from P; (i =1,2,3,4) such that
d(v,c) + d(w,c) = d(v,ct) + d(w,ct) = 2r(P) — 1 and
c(v,r(P)) N e(w,r(P)) = 0;

25. if (such pair of vertices v, w exists for some index 7) then
d(P) = 2r(P) = d(v,w)

end;

Theorem 2 The rectilinear link diameter of a simple rectilinear poly-
gon P on n vertices can be computed in O(n) time.

Proof. We first prove the correctness of our algorithm. So we distin-
guish two cases.

Case 1. e(c) =r(P) — 1.

From Theorem 1 it follows that either d(P) = 2r(P) —2 or d(P) =
2r(P)—1. So, if we find two disjoint segments c(v, r(P)) and c(w, r(P)
(see step (10)) then we immediately obtain that d(v,w) > 2r(P) — 1
and therefore d(P) = d(v,w) = 2r(P) — 1. To show this consider
any cut ¢ perpendicular to ¢ which separates these segments. Since
d(v,ct) > r(P), d(w,ct) > r(P) and c' separates vertices v and w
then by Lemma 1 we obtain the required inequality.

Now suppose that ({c(v,r(P)) : v € D" (c)} # 0 (steps (4)—(9)).
For a proof of correctness of these steps it is enough to show that if
d(P) = 2r(P) — 1 then max{M, M, } = 2r(P) — 1. Suppose this fails
and pick any pair v, w of diametral vertices. Without loss of generality
assume that v,w € P' N P|. Since e(c) = e(ct) = r(P) — 1 then

d(v,¢) = d(v, ) = d(w,¢) = d(w, ¢t) = r(P) — 1
and
c(v,r(P)—1) N c(w,r(P)—1)= 0,
ct(v,r(P) —1) N et (w,r(P) —1) = 0.

Let ¢ be the cut perpendicular to ¢ which separates the segments
¢t (v,r(P) — 1) and ¢ (w,r(P) — 1) and suppose that w and c lie in
different subpolygons defined by ¢’. Since d(w,c) = r(P) — 1 then by
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Lemma 1 d(w, ') = r(P)—1. Moreover, for any point z € ¢(w, r(P)—1)
we have d(z,¢') =1 and ¢ (z,1) N ' (w,r(P) — 1) # (). Pick any point
z' from this intersection. Denote by ¢’ the cut which passes through
the points x and z’. Then d(w,c”) = r(P) — 2. Observe also that
the rectangle bounded by the cuts ¢, ¢, ¢t and ¢ is contained in the
polygon P. Hence the cut ¢’ separates the vertex v and the cut c¢*.
Since d(v, ct) = r(P) — 1 then d(v,¢") < r(P) — 1. This yields

dv,w) <r(P)—14+r(P)—2+1=2r(P) -2,

a contradiction.

Case 2. e(c) =r(P).

It is enough to consider only the case when on step (12) we obtain
an empty intersection. Then as in preceding case we can show that for
vertices v, w € DT (c) with disjoint segments ¢(v, 7(P)) and c(w,r(P))
the inequality d(v,w) > 2r(P) — 1 holds. So d(P) > 2r(P) — 1.

Further, according to our algorithm we define the maximal cut ¢
perpendicular to ¢ which passes through the central point of P. Let
Py, P, P; and P; be the subpolygons defined by cuts ¢ and ¢*. Put

1

M = max{d(v,w): v and w lie in different
subpolygons defined by c}.
M, = max{d(v,w): v and w lie in different

subpolygons defined by c*}.

Now assume that max{M,M,} = 2r(P) — 1, however d(P) =
2r(P). Next we claim that for vertices v,w € P; we have d(v,w) =
2r(P) if and only if

d(v,¢) + d(w,c) = d(v,ct) + d(w,ct) = 2r(P) — 1

and either c(v, 7(P))Ne(w,r(P)) =0 or ¢+ (v, r(P))Nect(w,r(P)) = 0.
First assume that v,w € P, and d(v,w) = 2r(P). Observe that

c(v,m(P)) Ne(w,r(P)) =0, ctHw,r(P)) Net(w,r(P)) =0,
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otherwise if say z € ¢(v, 7(P))Ne(w, r(P)) then from two paths of length
r(P) from z to vertices v and w we obtain a path of length 2r(P) — 1
between v and w. On the other hand, since the point z = ¢N ¢t is a
central point and ¢ and ¢t are maximal cuts then

min {d(v, ¢),d(v, ¢t} = min {d(w, ¢), d(w,c)} = r(P) — 1.

Suppose that d(v,c) = r(P) — 1. Since d(v,w) = 2r(P) then
d(w,c) = r(P) and therefore d(w,ct) = r(P) -1, d(v,ct) =r(P).

For a proof of converse implication assume that v, w € P, be such
vertices that c¢(v,r(P)) Nc(w,r(P)) = @ and

d(v,¢) + d(w, ¢) = d(v, ") + d(w, ¢t) = 2r(P) — 1.

Let for example d(v,c) = r(P) — 1, d(w,c¢) = r(P). Since
d(w,z) < r(P) and the first link of any path from z to w is a seg-
ment of one of the cuts ¢ or ¢t then d(w,ct) = 7(P) — 1 and so
d(v,ct) = r(P). Let ¢ be the cut perpendicular to ¢ which separates
the disjoint segments c¢(v,7(P)) and c¢(w,r(P)). Then ¢ separates the
vertices v and w too and d(v,d) > r(P), d(w,d) > r(P). Since
d(w,ct) = r(P) —1 then by Lemma 1 this is possible only if the vertex
w lies in the region bounded by the cuts ¢', ¢ and ¢/. According to
Lemma 2 we have d(w, ') > r(P) 4+ 1 and by the same Lemma 1

d(v,w) > r(P)+r(P)+1+A >2r(P).

Now we pay attention to the complexity of the Algorithm. As we
earlier mention steps (1), (7), (8) and (20), (21) can be performed in
O(n) time. The finding of a cut or a maximal cut can be done in O(n)
time too. The eccentricity of any cut can be computed in linear time
; see [3, p.22]. Moreover, from the results of papers [1] and [3] follows
that for all vertices from the set D" (c) the segments c(z,7(P)) can be
computed in linear time in total. On steps (4), (10), (12) and (16) we
either establish that the intersection of a family of segments is non-
empty or find a pair of disjoint segments. This operation take O(n)
time; see, for example, [9,10]. The pair of vertices v,w € P; on step
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(24) may be found in the following way. Assume for example that ¢ be
a horizontal cut. Among the vertices u € P; for which d(u,c) = r(P)
choose a vertex v such that the right end of a segment c(v,r(P)) is
minimal. Now among the vertices u € P; with d(u,c) = d(u,ct) —1 =
r(P)—1 choose a vertex w such that left end of the segment ¢(w,r(P))
is maximal. As we already proof, if ¢(v,7(P)) Ne(w, r(P)) = (@ for such
pair v,w of a some subpolygon F; then d(P) = 2r(P). Otherwise, we
conclude that d(P) = 2r(P) — 1. From this it follows that the total
running time of the Algorithm is O(n). |]

Note added to proof. After the submission of this paper we learned
a paper of B.J. Nilsson and S. Schuierer “Computing the rectilinear
link diameter of a polygon”. In this paper the linear time algorithm
for finding the link diameter was also given. Their approach completely
differs from our and is based on the divide-and-conquer paradigm.

References

[1] B. Chazelle. Triangulating a simple polygon in linear time, Dis-
crete Comput.Geom., 6(1991) 485-524.

[2] V. Chepoi, F. Dragan. Linear-time algorithm for computing the
link central point of a simple rectilinear polygon (submitted).

[3] M. de Berg. On rectilinear link distance. Computational Geome-
try: Theory and Applications, 1(1991) 13-34.

[4] M. de Berg, M. van Kreveld, B.J.Nilsson, M.H.Overmars. Find-
ing shortest paths in the presence of orthogonal obstacles using
a combined L; and link metric. Proc. SWAT 1990, Lect.Notes in
Comp.Science, 447(1990) 213-224.

[5] M. de Berg, M. van Kreveld, B.J.Nilsson, M.H.Overmars. Short-
est queries in rectilinear worlds. Technical Report RUU-CS-91-20,
Department of Computer Science, Utrecht University, 1991.

73



V.Chepoi, F.Dragan

[6]

[7]

[9]

[10]

[11]

[12]

H.N.Djidjev, A.Lingas and J.Sack. An O(nlogn) algorithm for
computing the link center in a simple polygon. Proc. 6th An-
nual ACM Symp. on Theoretical Aspects of Computer Science
(STACS’89) (1989) 96-107.

Y. Ke. An efficient algorithm for link distance problems, Proc. 5th
Annual ACM Symp. on Computational Geometry. (1989) 69-78.

W.Lenhart, R.Pollack, J.Sack, R.Seidel, M.Sharir, S.Suri, G.Tous-
saint, S.Whitesides and C.Yap. Computing the link center of a
simple polygon, Discrete Comput.Geom. 3(1989) 281-293.

K.Mehlhorn. Data Structures and Algorithms 3:  Multi-
Dimensional Searching and Computational Geometry. Springer-
Verlag, Berlin, 1984

F.Preparata and M.Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag, New York, NY, 1985.

S.Suri. Minimum link path in polygons and related problems
Ph.D.thesis, Dep. of Comp.Sci., Johns Hopkins University, Au-
gust 1987.

S.Suri. On some link distance problems in a simple polygon, IEEE
Trans. Robotics and Automation, 6 (1990) 108-113.

Victor Chepoi,

Feodor Dragan Received March 17, 1993
Moldavian University,

A Mateevici str. 60,

Department of Mathematics and Cybernetics,

Kishinev, 277009, Moldova

ChepoiQuniversity.moldova.su

DraganQuniversity.moldova.su

74



