Computer Science Journal of Moldova, vol.1, no.3(3), 1993

On the invariance of the Pareto optimal set

Vincentiu Dumitru Florica Luban

Abstract

In the previous paper presented at the 11th SOR, Darmstadt
1986, the authors had shown that the Pareto optimal set of a
multicriteria problem remains invariable if on the objective vector
function operates a strictly monotone operator of strictly mono-
tone kind. In the present paper we give new proofs of two main
theorems of this result and we show that the invariance of Pareto
optimal set takes place also in the case of a topological transfor-
mation of the problem’s variables. A possible interpretation of
the above results in decision theory is suggested.

Keywords: Pareto invariance, monotone operators and topologi-
cal maps in multicriteria optimization.

1 Introduction

Let R", R* be numerical finite dimensional metric spaces, and F(z) =
(fi(z),..., fe(x)) a vector function F : R" — R, upper semiconti-
nuous on the compact set X C R™.

Consider the multicriteria optimization problem:

tma 1 (z) (1
and let denote by P(F) = {z}, € X|z}, = argmax,ex F(z)} the set
of all nondominated, efficient or Pareto optimal points, i.e. the set of
points with the property that there is no 2’ € X, 2’/ # 7., such that
F(z') > F(z},), where the sign > has the meaning that F(z') > F(z73;)
is equivalent to F(z') > F(z},) and F(z') # F(z3,).
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In [2] and [5] it is shown that given two unicriterion problems

(1) max f(z)

11

(1) max g(u)

such that U = 7(X), where 7 is one-to-one map of the constraint set X
of (I) on to the constraint set U of (II), and f(x) = g(7(z)) then holds
the following:

Theorem 1 If the problem (I) attains a mazimum at x* € X, then
the problem (II) attains a mazimum at 7(z*) € U. If the problem (1)
attains a mazimum at u* € U then the problem (I) attains a mazimum
at 7"1(u*) € X. The problems (1) and (II) in this case are called T —
equivalent problems.

In the first part of the paper it will be shown that the above result
remains true in the case of the multicriteria problem.

If instead of applying a map to the problem’s variables we apply an
operator to the objective vector function, we have shown in previous
papers, [6, 7, 8], that the Pareto optimal set remains invariable. After
the presentation, in a slight different new proofs, of two main theorems
regarding this invariance property, we make some applications and we
suggest a possible use of the above results in management science.

2 The invariance of Pareto optimal set under
bijective maps

Let us consider now, together with the vectorial problem (1), the fol-
lowing vectorial problem:

max G(u) (2)
where G : R™ — RF and U C R™ such that U = 7(X) and 7 is an
injective map on X such that G(7(z)) = F(x).
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Theorem 2 Let P(F) and P(G) denote the Pareto optimal set to prob-
lem (1), respectively to problem (2). Then

P(G) = 7P(F) (3)
and if T is a continuous map then problem (2) has solutions and
P(F) =177 '[P(G)] (4)

Proof: 7 is an injective map on X, and surjective on U, by the defini-
tion of U, therefore 7 is a bijective map (one-to-one), and the inverse
mapping 77! with z = 77! (u) exists.

As X is compact and F(x) is upper semicontinuous on X then
P(F) #£ 0. Let be z* € P(F) and u* = 7(z*). Suppose that u* & P(G).
Then there exists @ € U, @ # u* such that G(a) > G(u*) or, equiv-
alently, F(77!(u)) > F(r=(u*)) and, as 7 in one-to-one map, there
exists T = 7 1(@), Z € X, T # x* such that F(z) > F(z*) which con-
tradicts the Pareto optimality hypothesis of z*. Therefore u* € P[G]
and 7[P(F)] C P(G).

Now, assume that z ¢ P(F), z € X, then z is a dominated point
and therefore exists T € X, T # Z such that F(z) > F(z). It follows
that G(z) > G(u), u # u, where u = 7(z) and u = 7(z) i.e. the image
of a dominated point Z on X is a dominated point % on U.

Suppose now that u* € P(G), u* ¢ 7[P(F)]. It follows that u* €
7[Cx P(F)] which contradicts the above. Then P(G) = 7[P(F)].

For the last part of the Theorem 2, let 7 be a continous map. Then
U = 7(X) is compact.

As RF is a metric space, then R¥ is a Haussdorff space, i.e. a
separable space. Then, [9], 77! is also continous on U, i.e. 7 is
a homeomorphism or a topological transformation. It follows that
G(u) = F(r'(u)) is uppersemicontinous on the compact U and prob-
lem (2) is well defined and has solutions. Then (4) holds. Theorem 2
is proved.

Theorem 2 can be stated also as it follows:

The topological transformations of the feasible compact set of a mul-
ticriteria problem leave invariable the Pareto optimal set in the sense
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of (3) and (4). Multicriteria problems for which conditions of Theorem
2 are satisfied will be called also, as in the case of a single criterion,
multicriteria 7 - equivalent problems.

3 Monotone operators and the invariance of
Pareto optimal set

Let R®) and R®) be partially ordered linear metric spaces, and T an
operator, T : D — W, D C R, W ¢ R,

Definition 1 [4]. The operator T is called isotone if
v<w=Tv<Tw (5)
for all v,w € D, and antitone if
v<w="Tv>Tw (6)

We say that T is monotone if T is either isotone or antitone. The
operator T is said to be of isotone kind if

Tv<Tw=v<w (7

for all v,w € D.

If the inequality (5), (6) or (7) are satisfied with the sign < (>) then
the operator T is strictly isotone (antitone) and/or of strictly isotone
(antitone) kind.

Let us consider also, together with problem (1), the problem

ma TF(z) ®)

where T : R — RP, is an operator defined on F(z), RP a numerical
real space, and let us denote by P(T'F) the set of all Pareto optimal
points to problem (8).

It is easy to see that if T is an isotone operator and F(x) is a
m-vector function uppersemicontinuous on X, then TF(x) is also up-
persemicontinuous on X. Then, if X is compact, problem (8) is well
defined and P(TF') # ¢. Moreover, the following invariance theorem
[8], holds:
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Theorem 3 If P(F) and P(TF) denote the sets of all Pareto optimal
points to problem (1) and to problem (8), respectively, and T is a strictly
isotone operator defined on F(X), i.e.

F'<F?=TF!' < TF* 9)

then
P(TF) C P(F) (10)

If problem (8) is well defined and T is an operator of strictly isotone
kind, 1i.e.
TF' < TF? = F' < F? (11)

then
P(TF) D P(F) (12)

If T satisfies both (9) and (11), then
P(TF) = P(F) (13)

Proof: As we have mentioned, in the stated conditions for both prob-
lems, (1) and (8) are well defined and P(F) # ¢ as well as P(T'F') # ¢.

Let z € CxP(F) &z € X,z ¢ P(F) i.e. T is a dominated point
in X with respect to F. If follows that d% € X,z # Z, such that
F(z) > F(z). If T is a strictly isotone operator, then from (9) we have
that TF(z) > TF(z), i.e. T is a dominated point in X with respect to
TF, hence T € Cx P(TF). 1t follows that

CxP(F) C CxP(TF) < P(TF) C P(F)

and (10) holds.

Let now z* € P(F') and suppose that «* ¢ P(TF'). Thent there ex-
ists & # «* such that TF (%) > TF(x*). As T is of monotone kind then
by (11) we have that F(z) > F(z*) which contradicts the Pareto opti-
mality hypothesis of z*. Therefore z* € P(TF) and P(F) C P(TF),
i.e. if T' is an operator of strictly monotone kind then every nondomi-
nated point in respect to F is also a nondominated point in respect of
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TF and (12) holds. From the above, it follows that if T satisfies simul-
taneously (9) and (11) then we have P(T'F) = P(F), and the Theorem
3 is proved.

An example of a strictly isotone operator of strictly monotone kind
is provided by the following:

Theorem 4 Let F : R® — R* be a vector function on X C R" and
¢ : R — R a function defined on F(X).
Then the operator T, : R¥ — R**1 defined by

(14 F)' = (F' o(F)) = Fy (14)
s a strictly isotone kind operator, i.e.
T, F'<T,F*= F' < F? (15)

If in addition ¢ is an isotone functional on F(X), then T is a strictly
1sotone operator. i.e.

F'<F*=T,F'<T,F% (16)
Proof: If

(FH' @(F) < (F*)', o(F?)) (17)

and ((F) is a function of F, then either F! < F? and therefore we have
(15) or F! = F? and therefore o(F!) = ¢(F?) which contradicts (17).

On the other hand, if ¢ is an isotone functional then (16) is obvious.
This completes the proof of Theorem 4.

Remark 1 The first part of the Theorem 4 does not remain true if ¢
is a point to set map or if ¢ is function of x but not a function of F(X).

Corollary 1 If o(F) : R¥ — R is any real valued function of F and
FL = (F',(F)) then P(F) C P(F,).
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4 Some applications of the invariance theo-
rems

Let us consider the nonlinear multicriteria fractional problem

min ¥(z) (18)

where X is a compact set and ¥(x) is upper semicontinuous on X, of
the form h@) B B
th=<1x,”,...,”> 19
(@ ()] I (@) (@) () (19)
with hj(z) > 0,Vz € X,Vj € 1,...,k, and the problem

max N;iY(z) (20)

where

[Ny U(2)]t = (f1(), f2(x), ..., fe(z), —hi(z), —h2(x),..., —h(z))

Proposition 1 Let P(V) and P(N¥) denote the Pareto optimal sets
to problem (18), respectively to problem (20). Then P(¥) C P(N4 V).

Proof: The Proposition 1 is a consequence of Theorem 3 and of the
following:

Lemma 1 The operator N. : RF — R defined by [N, U] =

(Fis Fareeos fr =y —ha, o =hg)t with W0 = (£, i) e RF

hj >0,5=1,...,k, is a strictly monotone kind operator, i.e. N, Ut <
N, U2 = Ul < p2

Proof of Lemma 1: Denote by F' = (fi, fo,..., fx) and by H' =
(h1,hay...,ht). Now, if N, Ul < N,U? then either F! < F? and
H' > H? or F! < F? and H' > H?. In both situations, taking into
account that H > 0, then ¥! < U2, The Lemma 1 is proved.

Let us denote the denominator of the vector criteria (19) by n(z) =
[1%, hi(z) and consider the following change of variable:

1(z) = Uiy (21)
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1

Unp41

xr =

The change (21) of variables is a one-to-one map on X and if 7(z)
is continuous on X, then (21) is topological. Let us denote by u =
(y,unt1) € R™, by 71 the map defined by (21), and consider the
problem:

where

Ur = 1(X) = {uly/unt1 € X,n(y/uny1 = u;-il—l}
and

fi () = f3(y/unt1)nj(y/tns1)uns1

with

0 (Y tns1) =TT ipj i)

Proposition 2 Let P(V) and P(G1) denote the Pareto optimal sets
to problem (18), respectively to problem (22). Then P(G1) = 11(P(¥))
and P(9) = 7, Y(P(GY)).

Proof: The problems (18) and (22) are 7; - equivalent and according
to Theorem 2. Proposition 2 holds.

Remark 2 Problem (22) is not any more a fractional multicriteria
problem but is not automatically more easier to solve. On the contrary,
[5], if n(x) is not linear, then Uy is not convex even if X is convex. The
conditions in which G remains convezx can be found in [1,11,12,13].

5 A possible decision analysis application

Let us consider a state governed at time ¢; by the vector valued func-
tion Fj(z,t;) = (fi(z, i), fa(z, i), ..., fx(z,t;)), where x € H C R",
H = { the population of the state }, an element z of H being con-
sidered as a point in the space of life’s goods, such as income, edu-
cation, health etc., and f;,7 = 1,...,k are some functions of this
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goods that govern the different aspects of the people’s life. In re-
spect to Fj(x) at time t¢;, we distinguish in H the P; set, P; =
{the set of nondominated people in respect to F;}.

We will say that the state is politically stable in period E if P; =
P14 for all t;, ;41 € E. It follows from our Pareto invariance theorems
that a “kind government team” may allow to act in the society any
activity whose output is an isotone functional of the components of
the present governing vector function, without fear that the present
political situation will change. More over, they may act to introduce
by educational persuassion an infinity of such objectives in the people’s
life. The same kinds of speculations can be made if F is the caracteristic
vector function of a product and the stability problem is seen in respect
with the evolution of the competitive market products. Concluding, in
order to change a situation, the producer or the govern must activate
some nonisotone operators.

Regarding Theorem 2, one may interprete it as follows: any topo-
logical transformation of admissible goods of the state’s people, leave
the state politically stable in the sense of the above definition. Only
nontopological transformations, consequences of the fusions, nation-
alizations, epidemic deseases, wars or revolutions may destabilize a
society.

6 Notes and bibliographical references

Theorem 2 is an extension, given by V. Dumitru, to the multicrite-
ria problem of Theorem 1, applying to the unicriterion optimization
problem, presented in [2] and [5].

Theorem 3 and 4 were firstly presented in [8]. In the present paper
a new proof to Theorem 3 is given and Theorem 4 is restated in a slight
generalized form.

The results of section 4, refind in this general frame, as a conse-
quence of the invariance theorems, known results regarding the nonlin-
ear fractional programming problem, given in [3] and [5].

The results regarding the invariance of the Pareto optimal set under
bijective maps had been noticed in the Abstract of the 12-SOR, Passau
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Operations Research Symposium 1987, Germany.
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