Computer Science Journal of Moldova, vol.1, no.3(3), 1993

Distributed operating systems for
multiprocessors and networks

E.Trakhtengherts

1 Introduction

An idea of parallel computational, that makes it possible to raise com-
puters capacity and organize data exchange among the sources and
destinations of information, has led to multiprocessors and networks
with distributed resources appearance. They were called ”distributed
systems”, i.e. the systems with resources distributed in space. Dis-
tributed systems gained wast ground.

Not only essential expansion of software potentialities but also a
new understanding of the computational process were necessary to im-
plement concurrent calculations. The computational process came to
be considered as a totality of asynchronous processes but not as a set
of consecutive actions.

Asynchronous concurrent processes may be implemented in three
types of computing systems.

The first type is represented by computing complexes with common
memory for a few processors. Those are well-known systems of the type
BURROUGHS, ELBRUS, GRAY X-PM et al.

So, the computer GRAY X-MP includes two or four highly produc-
tive processors, a common main memory, an input-output system and
external devices.

Complexes with separate memory are of the second type. They are
represented by a group of processors possessing local main memories
connected by a fast communicative network. The IBM corporation’s
computing complex ICAP /3090, for example, is the system of the type
mentioned.

(©1993 by E.Trakhtengherts

E.Trakhtengherts

This is a very powerful system combining multiprocessors IBM 3090
and vector processors in various conjunctions. Connection is realized
with the help of a fast bus through which data exchange takes place.
Besides local memories in IBM 3090 the complexes have also a great
common memory of about several hundred Mb, the direct access to the
latter occuring either through special channels (in ICAP /3090, model
300) or through a common bus (in ICAP /3090,model 400). In addition,
every processor has access to the whole of the disk memory.

Recently the transputers are being more and more widely spread,
which the computing complexes of the second type are made of. The
main reasons causing transputer efficiency as to its productivity and
implementational simplicity are reasonable selection of the instruction
set and the possibility of multiprocessing systems creation put in trans-
puters.

These transputers are often called reduced instruction-set compu-
ters (RISC). An idea of an instruction-set selection is that any RISC-
instruction is to be fulfilled at a clock cycle. The advantages of RISC-
processors are indeed used in transputers. But the latter include usu-
ally a small number of non-RISC instructions , related to the control
and message transmission.

Any transputer may be used as a monocrystal system containing a
processor and a volume of main memory. In such a form they are often
used in embedded systems.

To combine two transputers it is enough to connect them with a
bus, because some special means for message exchange called links are
built in the transputer crystal. Existing transputers have four links
each. Links are a very important mechanism for systems with multiple
data and instructions flows creation. Links are compatible in different
types of transputers, so the latter may be unified in one system. We
can choose link speed independently of processor speed, as the links of
the same crystal can work with different speeds. There is no standard
configuration suggested, when combining transputers; they may have
quite diversed linkage topologies.

Oune of the most widespread 32-bit transputers is T800 which has
an arithmetic unit operating on floating point numbers and achives

4

Distributed operating systems for. ..

the speed of ten millions RISC-operations and one million float point
operations.

A transputer is intended to work with its own main memory. Data
exchange among the transputers working in parallel is realized through
message movement. Message exchange among adjacent transputers is
carried out in hardware.

To built the systems possessing maximal concurrency a topology of
connections named ”hypercube” is widely used.

A hypercube node contains a processor unit, a processor main me-
mory and communication facilities. Each node of hypercube of power
n is connected with other (n — 1) nodes. All the memories are local,
and remote nodes interact by means messages transmitted through
intermediate nodes. Since messages are passing over a lot of nodes,
transmition delay is a serious problem for the systems with hypercube
architecture. The Ncube and Intel Scientific Computers companies ac-
tively take their bearing on this architecture . The latest system of the
Intel company, ISPC/2, is built on the base of the 32-bit microproces-
sor Intel 80386 and may contain 8-128 nodes. Each node may have
a main memory 1-16 Mb and a cash-memory up to 64 Kb. In each
node a linkage module with eight duplex serial channels is installed,
possessing a throughput of 2,8 Mb/sec in one direction. MicroVax or
Sun-3 may be used as an input/output processor.

The most widespread type of multiprocessing systems with sepa-
rate memory is computer networks. The networks become as usual
as, for example, telephone, mail, telegraph, so there is no need to deal
with their organization. It should be noticed only that multiprocessing
systems with separate memory are also a sort of a network.

To organize computational process in multiprocessors and networks
an extension of the operating system functions was needed. Due to
this a new class of operating systems has appeared called “distributed
operating systems”.

The latter control resources spread all over the computer or network
in a distributed (decentrelized) or concentrated (centrelized) manner.

Processors, channels, external devices, files, tasks, jobs etc. are
usually reffered to as resources.

E.Trakhtengherts

The principal characteristics of the distributed operating systems
are the control of several simultaneous processes, the presence of mes-
sage exchange and of synchronizing aids for these processes.

The operating systems organization in multiprocessors with com-
mon main memory has a number of substantial distinctions in contrast
to their organization in complexes with separate memory and in net-
works. The principles of operating systems construction for these two
kinds of multiprocessors are considered below.

2 Operating systems for multiprocessors with
common memory

2.1 Operating system structure

When describing the operating systems it is convenient to structurize
them by the levels of hierarchy. Such structurizing pursues usually two
aims:

a) to determine the effectiveness level of program implementation:
the lower the level the more effective are to be the programs of
the level;

b) to simplify program interfaces interaction and determination:
programs of the higher levels have to use services of the lower
level programs.

The hierarchical structures of different operating systems are dis-
tinguished from each other. The hierarchical structure depends on the
system purpose, ideology and on the hardware used for implementa-
tion.

The structure of the operating systems in multiprocessors with com-
mon memory is close to the traditional structure of the monoprocessing
operating systems. Table 1 shows, as an example, a monoprocessing
operating system structurized by levels for the computer MULREG
with common memory.

Distributed operating systems for. ..

In accordance with structurizing principles the low level of the ope-
rating system cannot use the services of higher levels. That is why
the programs of the 7th Jevel must be resident. The programs of the
6t1 level realize the exchange on the physical level and must be also
resident. The programs of the remaining levels may be resident or may
be inputted from external devices, depending on the demands of the
system and the possibilities of its computational resources.

On the 7-th level — the level of processes — a process control program
realizes process initialization, halt and synchronization.

The 6-th level — the external devices management — is rather tra-
ditional. Its characteristic property is that the concurrent processers
may adress the same external device simultaneously. In this case they
are put in the queue attended by a discipline given in advance.

1 Applied programs
User’s interface
3 | Loader and Linkage | System subroutine
Editor Control
4 | File control | Scheduling | Exclusive
situation
control
) System memory management
6 | External External
devices devices
management management
7 | Process Process
control countrol
The 1-st processor The 2-nd processor
Table 1

Other levels are purely traditional. Their functions are clear from
Table 1 and need no comments.

E.Trakhtengherts

We must notice that all processes of the levels 1-5 may run on
either of the processors. This increases the system reliability, because
the failure of one of the processors does not lead to the failure of the
operating system as a whole. So, the operating system routines binding
to the processors shown in Table 1 is not fixed.

Organizing the concurrent processes interaction is a very complex
task, greatly affecting the system productivity. The time intervals spent
on the processes interaction may differ many times for the same com-
puter depending on the operating system algorithms.

So, for the microprocessor based on the Motorola 6800 using WME-
BUS buses two operating systems are considered the best ones, VER-
SAdos and PDOS. About one million of measurements of the time spent
on interaction in both systems were made. It turned out that in PDOS
the interaction is fulfilled almost 21 times faster than in VERSAdos.

Distributed operating systems differ from those for monoprocessing
computers in realization of the following three elements of the asyn-
chronous concurrent processes interaction: initiation, completion and
synchronization.

2.2 Initiation and completion of concurrent processes

In multiprocessors with common memory the task to be solved may
consist of a few sections (processes) running in parallel. Inside every
such section all the instructions are executed consecutively. During
execution every process may initiate (under corresponding request to
the operating system) one or more processes which will run in parallel
with the first process if the computational resources allow it. Processes
created in such a way may generate in their turn other processes etc.

The function of process generation is in many respects the same
as the function of task generation but is being fulfilled faster in most
cases.

At the moment of the task initiation the operating system may,
although not obligatory, expreme the task as the only (initial) process
possessing all the task attributes. This initial process may be repre-
sented by an organizing program, controlling all other processes of the

Distributed operating systems for. ..

task without the use of the operating system mainly, but it may be sim-
ply the head process addressing the operating system for the resources
needed, if new processes generation is necessary.

When initiating a process, it may be given some factual parame-
ters which are to be processed. Therefore, the process initiation is
semantically close to the subroutine call (although substantially more
complex). That is why the linguistic constructs for the process initia-
tion are like the linguistic constructs for the subroutine call. The same
may be said about the process termination.

In some systems the process created may obey the master process
or to the other processes of the higher level. Obeying means that
the control does not re-enter into the calling process from the process
created until the work with all the other obeying objects (files, other
processes etc.) is finished.

After initiation the process is functioning independently, synchro-
nizing its actions and iteracting with other processes by its own initia-
tive or by the initiative of other processes.

To control each created process in the interval of its existence a
process control block is created which contains all the information ne-
cessary for the process functioning and, in particular: the process state
word; entry address; an address of the queue of the non-served de-
mands for synchronization ; an address of the area keeping the process
registers during interrupts; pointers connecting the given process con-
trol block with other such blocks of the same task; addresses of the
lists of processes, files and other objects obeying the given process; the
priority of the process; execution time; the readiness bits (is not ready
means waiting for some event termination); information necessary for
re-entry into the calling process or subroutine etc.

A queue of processes ready to run and a queue of processes waiting
for some events completion are created for the control blocks. The
queues may be created inside the tasks or may be common for all of
the tasks. The queues are arranged in a mode accepted when generating
the operating system or by the programmer’s instruction. The modes
may be the following: first in — first out, corresponding to the priorities
and others. In the cases when the mode of the selection from the queue

E.Trakhtengherts

is given by the linguistic construct, for example, by the widely used
FORK-instruction, the operating system must garantee parallel (if the
resourses allow it) or parallel-consecutive execution of the processes
whose identifiers are listed in the linguistic construct.

As soon as one of the task processes is finished and a processor
given to the task is released, the first block is being chosen from the
queue of the process control blocks ready to run, and the processor
released changes over to the performance of the process for the block
chosen. If the task has no processes ready to run, the processor is given
to the other task by the operating system.

If the process waits for the occurence of an event, it is put in the
queue to the synchronization block (see 1.3), and its own control block
is transferred to the queue of the processes waiting for the occurence
of different events.

Readiness of the external device, sending the answer to the demand
of one of the parallel processes, a process or device call etc. are the
examples of such events.

There may be different interrelations among processes and subrou-
tines. A subroutine may be included in the process or identified with
the process. In some systems there are more complex logical relations
among the processes and subroutines. On the one hand, since any task
is represented by a set of parallel processes, any subroutine performed
when solving the task, belongs to one or another process as a com-
ponent; on the other hand, any operation on a process (the process
generation including) may be fulfilled only within the scope of some
subroutine. Hence, we can talk about the process obeying the subrou-
tine generating this process.

A process when being created may obey either a subroutine gene-
rating it (by default), or any pointed subroutine of a higher level.

The case when a process obeys a subroutine is similar to the case
of a process obeying a process.

There exist two ways of the program performance termination:

e a subroutine is completed normally when executing the sequence
of instructions organizing return to the calling subroutine from
the current subroutine;

10

Distributed operating systems for. ..

e a subroutine is completed under abnormal conditions when pro-
cessing the interruption.

At the normal completion of a subroutine a check is made first of
all, if there exist the processes obeying the subroutine. If there are
such processes, then the completing subroutine switches to the state
of waiting up to the moment when all the processes obeying to are
abandoned.

On the process exit from the state of waiting, the memory occupied
by other objects obeying the subprogram in view is released, and an
analysis is made whether the subprogram which has returned control
is in the separate load module. If this is the case and if all the subpro-
grams of the load module given completed their work, then the main
memory segment occupied by the load segment is released; only after
that the control is returned to the calling subprogram. If the control
is returned to the head subprogram, the task as a whole is considered
completed.

There are three ways of the process completion:

e the process is completed if the highest level subprogram of this
process is completed (the normal completion of the process);

e an emergency completion, in some cases;

e completion on the special demand to the operating system (forced
process completion).

In either case, at the process completion the block controlling this
process and all the references to it are cancelled.

On the forced process completion the operating system halts the
task solving and destroys the following data: the process indicated as
the parameter (if the process is not indicated, then the current process
is taken off); the processes obeying subprograms of the given process, if
any; the processes obeying the subprograms of the obeying processes,
if there are any, and so on. Besides the processes all other objects
obeying the subprograms of the processes are destroyed, and all the
segments of the main memory used for these subprograms to function
are released.

11

E.Trakhtengherts

The processors released change over to the other processes perfor-
mance, if there are processes ready to run on the processor in this task.
Otherwise the processors are redistributed by the operating system.

In the case of the forced completion of the head process of the task
the latter, as a whole, is considered completed.

2.3 Concurrent processes synchronization

In the multiprocessors with a multiple flow of instructions a mecha-
nism of events is widely used for process synchronization, as in the
multiprogramming monoprocessors. It appeared when the first multi-
programming systems were created where input/output of information
was realized in parallel with calculations.

The ideology of the mechanism of events is similar to the widely
spread semaphors ideology. They may be implemented with the help
of the well-known instructions of the type WAIT and POST.

Macroinstruction WAIT switches the process to the state of waiting
for the completion of the needed number of events. Each event is
represented by the separate event control block (ECB). In each ECB a
check is made if the related event has occured. If so, then the counter
of events expected in the block of demands is being diminished by 1
and then the check of the next ECB follows. If the event did not
happen, it is flagged as an expected one and the next ECB is checked.
If the counter of events expected is equal to 0 as a result of looking
through all the ECB, then the control is returned to the point in the
task (or process) program where the macroinstruction WAIT occured.
Otherwize the rest of the events expected are placed in the block of
demands, and the task or the process are switched to the state of
waiting.

To take the task or the process out of the state of waiting the
macro- instruction POST is used. The address of ECB representing
the event and the event completion code are given as the operands of
the macroinstruction POST. If an event was fullfiled, the counter of
the events expected is diminished by 1. If the number received is not
equal to 0, then the task or the process remains in the state of waiting;

12

Distributed operating systems for. ..

if it is equal to 0 then the task or the process is taken out of the state
of waiting, switches to the state of readiness and proceeds to run when
the processor is given to it.

Of course, other disciplines are also possible, for example, the disci-
pline when a task or a process is being taken out of the state of waiting
for the occurrance of only one of the set of events indicated etc.

3 Operating systems for multiprocessors with
separate memory and for networks

Multiprocessors with separate memory and multiple flows of instruc-
tions and data are created on the principle of local networks with
strongly simplified protocols. Because of this, operating systems for
such complexes and networks may be considered jointly, excluding the
hierarchical system of protocols characteristic only of networks.

The main component of a distributed program (the program run-
ning on the multiprocessor or in the net) is usually a process, performed
asynchronously and in the definite sense independently of other pro-
cesses. It is nameed differently in the systems: agent, task, actor etc.

Every process is running on a computer which is a local network
node under the control of its own local computing system. A local com-
puting system proceeds under the control of the distributed computing
system which distributes all resourses and organizes exchange among
processors.

Operating systems for the local computing networks may be either
created on the base of ready monocomputing operating system (for
example, in the Ethernet and Token-ring nets) or designed anew as a
single whole (for example, nets CHORUS).

The following variants of the distributed operating systems struc-
ture are possible:

I. Every computer in the local net may fulfill all the functions of the

distributed operating system, i.e. to keep in its main memory the
whole of the resident part and to have access to any non-resident

13

E.Trakhtengherts

part of the distributed operating system kept on the external
storage media.

II. Copies of the programs implementing the most usable functions
of the distributed operating system are present in all computers
in the net, and in one computer only(or in a few of them) — for
the functions rarely used.

ITI. Each computer performs a definite set of functions of a distributed
operating system, and these functions may differ in various com-
puters and may overlap.

The distinguished feature of operating systems for multiprocessors
with separate memory and networks in comparison with the ones for
computers with the common memory is a layer of operating systems,
which garantees the data exchange among computers.

The principal distinction of distributed operating systems in net-
works and multiprocessors from the ones in the monoprocessors is new
functions appearance. The latter include: initiation and completion
of the user’s concurrent processes, message exchange among them and
their synchronization. Let’s consider these functions.

3.1 Asynchronous concurrent processes interaction

Asynchronous concurrent processes in the systems with separate me-
mory (networks and transputer complexes) may interact only through
messages.

The effectiveness of the message exchange for the same hardware
depends on the type of exchange protocol and operating system. Table
2 shows the time of exchange with the same 2-pares of messages between
two processors under different protocols and different operating systems
control is shown. The experiment was carried out on two computers
Sun 3/75s, connected by means of Ethernet network.

14

Distributed operating systems for. ..

Protocol | Operating | Execution
system time
(msec)
UDP z-kernel 2.0
UNIX 5.4
Spite 7.5
TCP z-kernel 3.3
UNIX 6.1
Mach 11.0
Table 2

UDP (User Datagram Protocol) — the standard protocol for the Inter-
net network, which allows an applied program running on one computer
to send a message to an applied program running on the other com-
puter.

TCP (Transmission Control Protocol) — the standard protocol of the
transport level for the Internet network, which garantees reliable du-
plex (two-side) data flow transmission from one process to another.

The processes interaction counsists in initiating some processes by
others, in synchronizing and completing the processes.

A process may be initiated by a message transport to a local opera-
ting system of another network node. Interaction related to a message
transport and to processing it by the processor is often called “remote
procedure call”. This name is connected with the fact that the sender
is calling a procedure which in principle may be performed on a remote
computer.

Linguistic construction of the remote procedure call is usually ana-
logous to the traditional (sequential) procedure call.

A remote procedure call is performed in the following way: input
arguments are sent to the corresponding addressee, and the calling
process is delayed until the procedure called is fulfilled and results are
transferred to the calling process in the form of output parameters.
Therefore a remote procedure call is one of the synchronizing media.

15

E.Trakhtengherts

There exist at least two approaches to a remote procedure descrip-
tion. At the first approach a remote procedure is commonly described
as a procedure in consequtive languages. For example,

REMOTE PROCEDURE <procedure_name> (<parameters_list>)
<procedure_body>
END.

Such a procedure is run as a process. This process waits for the call-
ing process message, performs the procedure body and returns output
parameters.

At the second approach a remote procedure is considered as an
operation which may be placed at any place in the process. In the ADA
language this operation may be written, for example, in the form:

ACCEPT <procedure name> (<parameters_list>) —
<procedure_body>.

If the call-operation is ready to start earlier than the called process
is ready to accept it, then the calling process performance is delayed
until the called process accepts the call.

If the reception-operator is ready to the receipt earlier than the
relative call has appeared, then on its appearance this call may be
processed immediately, but the calling process will be delayed till the
answer is produced. In such a way the process synchronization called
“randevu” is achived.

Processes completion is realized, so as in the traditional monopro-
cessing systems, through the message, that the process performance is
stopped, sent to all interacting processes. The process may be stopped
also by the message sent from the interacting process.

In the most cases each node in local networks is a monoprocessor.
So the task control inside the node is usual, taking into consideration
message exchange between tasks. In this case the task may be viewed
as a process. Its performance is initiated by the local operating system,
or after receiving a message from other nodes or tasks, or through the

16

Distributed operating systems for. ..

instruction of the user or device to communicate with an object (for
example, through the signal of the initiating transducer).

There exist two basically different approaches in the synchronizing
methods. At the first approach beating is used — that is the subscription
of the moments of time in which messages may be transported from
one node to another in the network. By the moment of exchange all the
messages specified for the given beat are to be prepared for transport,
and all the addressee are to be ready to receipt. This approach found
its application in specialized networks only.

At the second approach the asynchronous sending of the control
messages is made, which initiates, completes and synchronizes concur-
rent processes. In such cases, any synchronizing operation always leads
to intercomputer exchanges requiring relatively much time.

It follows that the number of intermachine exchanges needed to
implement each operation of synchronization is to be minimized to
increase effectiveness of the synchronizing mechanisms. Therefore all
the information related to any operation of synchronization is to be
situated in the main memory in the form of a number of continuous
sections,as small as possible, which is achieved, for example, by special
blocks creation named transfer control blocks (TCB) or exchangers.

The synchronizing methods based on the mechanism of events in
the systems with separate memory, as in the systems with common
memory, differ in many details which depend on both hardware and
the operating systems destination and ideology. But all of them have
a common peculiarity of using message transport for synchronization.
The mechanism of synchronization uses three,not two operations. Be-
sides the operations WAIT and POST discussed above (the latter is
named ACCEPT in some systems), one more operation is needed to
synchronize events in the systems with separate memory, which is the
operation of message transport named usually PASS or SEND. The
PASS-operation passes the demand on the asynchronous operation per-
fomance from the process, fulfilling the operation PASS, to the process
addressed in the call, and switches the latter in the active state, if it
is waiting for this call. When the operation PASS completes its work,
the control is returned to the calling process.

17

E.Trakhtengherts

To implement a call or message transport a special transport con-
trol block is created, which contains: the indentifier of the process to
which this call or message are passed; call code determining the asyn-
chronous operation called (from the number of operations performed
by the addressed process); the address of the factual parameters list
(if they exist); return address including the identifier of the process
which passed the call; return code to transfer a message about the
asynchronous operation completion. In the same block the fields of
links are contained to include it in the lists of subordination and in the
queues.

On getting control the PASS-operation checks if the addressed pro-
cess is able to accept the call passed (i.e. if it is in the state of waiting
for a call of asynchronous operation with the transmitted call code).
If this is the case, then the addressed process is taken out of the state
of waiting and gets the transport control block and a list of factual
parameters of the call.

If the addressed process cannot accept the call transmitted then the
corresponding transfer control block is put in the queue to the given
process for serving. The heading of the queue for the asynchronous
operations serving is in the control block representing the process.

Transfer control blocks are put in queue for to the accepting process
for serving in the order of their coming in. Asynchronous operation calls
may be passed to one accepting process from several calls belonging
both to the same task and to other tasks without taking into account
whether these processes are situated in the same physical memory or
not. Asynchronous operation calls receipt is garanteed for every process
in the system.

At the moment when accepting process is able to receive an asyn-
chronous operation new call, it has to perform WAIT-operation with
indication of the call code for an asynchronous operation to be served.
If at the moment there is at least one transfer control block with the
code given in the queue, then the first of these blocks is excluded from
the queue and transmitted to the process. Then, if there is transfer con-
trol block with the given call code, the accepting process is switched
to the state of waiting.

18

Distributed operating systems for. ..

There are also variants of WAIT-operation for the transfer control
block with any code receit from the list of call codes or for the first
transfer control block receipt from the queue for serving without the
analysis of the call code.

On completion of the asynchronous operation call processing, the
accepting process informs the process which passed the call about this
using POST-operation.

Owing to the mechanism described above the synchronization of
the receipt and transfer of the messages SEND, RECEIVE and the
like, may be made. So, the synchronizing methods in local networks
are based on the message exchange.

Each message or a remote procedure call defines some actions be-
ginning, i.e. synchronizes the sender and the addressee actions. Finally,
the synchronizing methods play a particular role in the operations with
distributed data bases.

Information exchange in networks demands some linguistic media
and serious system support.

At least two quite independent sides take part in the exchange, as
it was mentioned above: the sender and addressee. The addressee may
be occupied when receiving a message and unable to accept it at once,
the sender has then to delay its process performance and to make sure
that its message is received by the addressee, and in the most cases
it has to receive the answer with the results of its message processed
by the addressee. Thus some elements of synchronization are always
present in the information exchange among asynchronous concurrent
processes in local networks. Message transfer always includes at least
two operations: an operation in the process sending a message and
an operation in the process accepting the message. Therefore in the
message transport system it is inportant: who is the partner(process,
module, task etc.); how the connection is established (statically or dy-
namically); the method of data transport (using parameters, by an
assignment operation etc.); what is the object of addressing (process
name, procedure name, entry name, port name etc.); conditions of mes-
sage receipt (unconditional, from the definite source only, depending
on the accepting process etc.); where the answer is contained (in the

19

E.Trakhtengherts

reception comfirmation, in the results of the message processing) etc.
Of course, it is far away from all these factors to be reflected in the
linguistic constructs. They are defined partly by the system means,
but in any event they find their reflection in the programming system.
Operations of sending and accepting messages contain correspond-
ingly reserved words of a language, the sender and addressee addresses
and a list of variables whose values are transferred from one process
to another. Some examples of the simplest linguistic constructs for
operations of message sending and accepting are given below:

SEND <variablelist> TO <addressee-acceptor>,

where <variable_list> contains values of variables or data arrays at the
moment of message transfer, and <addressee—acceptor> defines the
addressee of the message and the operation sending the message

RECEIVE <variable list> FROM <addressee-acceptor>

where <variable list> does not demand any commentary, and
<addressee — acceptor> is the message sender address and the
operation-destination.

The SEND-operation transforms the message into the form corre-
sponding to the protocol of information transfer along communication
channels adopted in the distributed system, but the operation RE-
CEIVE carries out transformation of the message received to the form
which conforms to the given node demands.

Conditions may be imposed on the receipt, for example, with the
help of the operation WHEN L. Then the message will be accepted
only in the case if the value of the logical variable L is true.

When interacting the processes may explicitly refer to one another.
Explicit reference means that any applyed or system process transfer-
ring information must indicate explicity the process-addressee name.

Such method of addressing gives rise to definite complications when
introducing new processes with new names into the system, but it is
simnple enough for implementation, therefore it is used in many systems,
for example, in DECNET, VAX/VMS, in ADA language etc.

20

Distributed operating systems for. ..

To escape explicit identification, the communication intermediates,
or ports (buffers in the main memory with names), are introduced in
some systems. Ports introduction allows one to indicate port names
only in programs. Messages may be transported from one port of a
process to one or a few ports, depending on the addressee number.
Ports may be “two-way ports”, i.e. may both accept and send messages.
For example, the CHORUS operating system may create, open, close
and cancel ports by means of operations of the type:

CREATE PORT (port_name) — to create a port, i.e. to allocate
memory sector for a buffer (port), to enter its identifier into the
operating system catalog etc.

OPEN PORT (port_name) — to open a port, i.e. to make it acces-
sible for the process

CLOSE PORT (port_.name) — to close a port, i.e. to make it unac-
cessible for the process

DESTROY PORT (port-name) — to cancel a port.

Distinguishing of port opening and closing operations allows one to
open ports with the same name in two different processes consecutively.
The possibility to create and to cancel ports in the process of computa-
tion makes it possible to realize dynamic system configuration and to
economize on the main memory. Nevertheless, in many systems static
port creation is used, because dynamic port creation and cancelling
make port and data transfer control complicated.

In distributed systems it is important to provide maximal produc-
tivity of intermachine data transfer channels. The channel character-
istics in many respects define the distributed system time reaction,
the measure of concurrency and the other important parameters in
many respects. Therefore the broadcasting way of information transfer
is spread in distributed systems by which information from one source
may came in a few receivers at once. Notice, that dynamic port creation
and cancelling complicate the broadcasting transfer implementation.

21

E.Trakhtengherts

3.2 Network protocols

In the process of impetuous network software progress two tendencies
have appeared: software structuring (the definite hierarchy creation)
and standardization of different kinds of algorithms and data transfer
conventions.

To achive the aims mentioned considerable efforts were applied and
certain success was achieved. International standardization organiza-
tion (ISO) proposed an hierarchical structure of network software de-
velopment and worked out partly the standards of system conventions,
formats and algorithms for every level of the hierarchy. This structure
and protocols were called “Standard model for open systems interac-
tion”. The term “open” means that all the devices and processes of
the system (networks) interact according to some set of standards and
are open therefore to interaction with other networks. This approach
is due to the necessity to link in one system a great variety of technical
devices and programs used in networks.

It should be noticed that hierarchical structuring is not something
unusual in programming. It is traditional for program complexes deve-
lopment. Hierarchical structuring makes independent program design,
local modification and/or replacement of the programs possible. In
networks it allows one also to organize processes interaction relative to
the levels of hierarchy, providing flexible networks construction.

A new notion, protocol, is introduced for networks software. It is a
special convention about formats, algorithms and methods of synchro-
nization of the instructions and data transfer and receipt in networks.
Protocols define the order of different divices and network programs
interaction. So the protocols are partitioned by the levels of hierarchy.

Each level of a protocol implements a definite set of data transfer
functions in networks. It is very important to notice that every level
of protocol, except the most upper one, provides functioning of the
nearby upper level.

In the standard model seven levels of hierarchy were specified. The
number of levels is not some mystical number. Since networks had been
created long before the standard model appeared, there are networks

22

Distributed operating systems for. ..

with more or less than seven levels. Network protocols are divided
into seven levels due to purely pragmatic considerations. Such divi-
sion proved to be the most convenient one and became the standard
that all the net designers are aiming at. The delivers of networks and
data transfer media are strongly oriented on the standard model of
the open system interaction. Many firms began to produce appara-
tus implementing protocols of “the standard model for open systems
interaction”.

In different existing local networks various protocols and services
are used. Different partitioning on levels is carried out in them. In
many of the nets it is close to “the standard model for the open sys-
tems interaction”. As it was already mentioned the idea of hierarchical
structuring is traditional for program complexes development.

It is neccessary to note that the collection of protocols and services
on every level is superfluous. Therefore in every real network some
subset of it is being chosen.

Moreover, the protocol functions of different levels of standard
model may overlap. In the most of real networks the functions on
each level are chosen so as not to overlap.

Let’s consider hierarchical structure of the standard model of
opened systems interaction.

The highest, 7-th level, called applied level, does not give services
to the other levels. Its main task is to provide various forms of inter-
connection for applied processes belonging to any computer or to some
of them. They may be the following: text messages exchange manage-
ment; file control, access and transfer media; means for task transfer
and manipulation, virtual terminal management, means for transact
processing etc.

The 6-th level is the representing level. It transforms data struc-
tures into a standard form used in the network and vice versa. Its main
purpose is to provide applied processes independence of the differences
in the forms of data representation.

For example, some means may be created on this level making it
possible to use Japanese writings (each symbol on this level is repre-
sented by 16 bits). The aim of the level introduction is to define a

23

E.Trakhtengherts

unified protocol which could permit either message syntax independ-
ing of whether or not the latter is standard. If the systems exchanging
information are aware in advance about the message syntax and se-
mantics then only exchange with the name of the given syntax and
semantics will suffice for them. In other words, the level garantees that
the data the devices exchange, will come in on the upper, applied level
or on the end-user’s divices in the understandable form. This makes it
possible to use different collections of data formats in different sets of
hardware without sacrifice of mutual understanding.

The 5-th, perfomance level is intended for organizing and carrying
out the dialog among applied processes. It organizes two-way simul-
taneous data exchange and two-way by-queue one, sets so-called main
and secondary synchronization points.

If two applied processes in the traditional computer are to exchange
information, this may be realized according to the form of exchange set
in advance. Function of the performance level is to set such kind of
link. It is called usually a performance.

The 4-th, transport level, provides transparent, reliable data trans-
port from one end-node to another end-node making the above situated
levels free of the task on reliable and economical data transfer. Finding
and, in some cases, correcting errors in packages, multiplexing a few
transport links onto one network link, fighting with overloads etc. are
among its functions.

The 3-rd, network level, provides route organization, virtual links
support and independence of the levels situated above on the data
transfer methods and the functions of data retranslating and routing. It
masks all the peculiarities of real data transport means off the transport
level. The network level provides connection among different networks.
Note that in small local networks the network level fulfills only the last
function, and as in such networks a common transferring environment
is often used, there are no transite nodes and therefore there is no
necessity of routing.

The 2-nd, channel level, is intended for block (package) transfer
through the physical network connections. It provides means for set-
ting, supporting and disconnecting the channel links among network

24

Distributed operating systems for. ..

objects. An important function of the channel level is to find and cor-
rect errors in channel links. On this level data selection occurs in the
local networks with the common transfer environment, i.e. the rou-
tine for sampling the data blocks received by the systems through the
addresses of destination.

The 1-st, physical level provides mechanical, electrical, functional
and procedural standards for systems conjugation by use of physical
data transfer means.

It must be noted that partitioning on levels by itself is only an
element of standardization. Protocols are developed for every level. In
many cases a few protocols are developed for every level.

It is by no means in all industrial networks that the software is
divided into the enumerated seven levels. But this is the standard,
approached by the network designers at present time.

The delivers of systems, network means and data transfer means
are strongly oriented on the standard model of the open systems inter-
action. Many of the firms began to produce the repeates by the first
level protocols, the bridges by the second level protocols, the routing
means by the third level protocols and the servers by the upper level
protocols.

3.3 Networks integration

Quite recently networks were a poorly investigated territory. Those
being encroached on it were making this at their own risk. Now it is
considerably investigated and strict standards appeared for it. And the
world of networks became by no means simpler, but only more regu-
lated. But the main point is that the role of network has changed. The
integration of computers in a network and networks integration opens
great new possibilities in computers use, but demands new hardware
and software application as well.

An enlargement or partitioning of the network is made with the
help of servers (they are called also gateway or bridges).

A server allows:

- to increase the network length and the number of nodes in it;

25

E.Trakhtengherts

- to decrease traffic in every net segment due to data flow filtration.

Let’s consider networks integration by the example of the Internet
network.

Internet’s servers are subclassified into central and local ones. Cen-
tral servers are under the Internet Operational Centre control. The
number of them is not great. Central servers keep information about
all existing addresses of Internet and all information exchanges passing
through them. Exchange among the central sluices occurs following
the special sluice-sluice protocol.

Local server control is done by different control systems of indepen-
dent networks responsible for communication withinf them (see Fig. 1).

In Internet an address includes a network identifier and a host-
computer identifier. There exist three groups of networks with the
following address formats:

8 31

group A ‘ 0 ‘network identifier ‘ host-computer identifier ‘
16 31

group B ‘ 1 ‘ 0 ‘network identifier ‘ host-computer identifier ‘
24 31

group C ‘ 1 ‘ 0 ‘network identifier ‘ host-computer identifier ‘

So, depending on the network class the number of networks sup-
ported and the number of host-computers may vary. Internet falls into
the class B.

A central server assures connection with one or more central sluices
and, as a rule, with a few local ones (Fig. 1). Sluices classification on
central and local ones helps to reduce the volume of service information
circulating in the network, because only the central servers keep infor-
mation about the whole network. The central server protocol includes
three main parts:

26

Distributed operating systems for. ..

1. Protocol of the access to a neighbour. One central server is
permitted “to ask 7 another central server to be its neighbour,
i.e. to establish direct communication between a pair of central
servers.

2. Achievability protocol. It ascribes to a server a check of its
neighbour’s normal operation and achievability.

3. Network achievability messages. These are messages permit-
ting to set new routes among a central server and its neighbours.

Central server protocols are “interurban” protocols, they provide
information transfer among neighbouring sluices, which may be hun-
dreds of kilometers apart and may exchange information, because they
may exercise monitoring over the information exchange rate.

One of the peculiarities of Internet is that the central server message
may be passed to a neighbouring central and to a local server only, so
that it goes through one passage exactly between servers and the time
of the message existence in the channel of communication is not too
long.

As a consequence, there is no need in distance metrics use in the
messages concerning the changes of message transfer routes. Indication
of the route length reinforces the route existence only. So, the Internet’s
communication protocol is not a routing aid but only an aid for defining
the addressee achievability. This is because the Internet’s subnetwork
topology is a tree with a central server as a vertex. Therefore there are
the following restrictions for a protocol:

- the overall information achievability is violated in Internet if the
central server has failed

- a central server may be aware of only one way only to an inde-
pendent system, although there may exist a few physical ways

- a protocol has no cocern to the load balance among several servers
to an independent system.
It must be done by the independent system itself which may be
connected with a few central servers.

27

E.Trakhtengherts

- difficulties may arise when the physical channel between a central
server and an independent system fails, because only one of the
central servers may choose a new shortest way and declare it
along the network.

The protocol restrictions listed above are important and may de-
mand the revision of the protocol.

Local servers of an independent network are exchanging informa-
tion about routes. After the routes within the local network are set,
the network is considered created and declares itself to other networks
through the central server it is connected with. There is no single pro-
tocol of exchange among local servers, because in different networks
too many various topologies and apparatus are used. Nevertheless the
most spread protocol of routing is Routing Information Protocol (RIP).
We note that a server may use various protocols simultaneously. So, a
central server may perform information exchange with another central
sluice by one protocol and with an independent network by the other.
RIP was initially designed at Berkley University, California, to provide
local network functioning. The protocol was gaining wide acceptance
because of the operating system 4.X BCD Unix popularity, where it is
used.

Conclusion

So, a distributed operating system differs from an operating system for
monoprocessor in that in every moment it controls not one but a few
asynchronous processes of the user performed simultaneously and on
different processors.

Stormy development of these operating systems, especially for net-
works, is connected with the comparatively simple assembly of a net-
work because of strict standardization of the hardware used and system
software conventions (protocols), with the relative ease of data trans-
fer, low cost, possibility to use remote expensive computing resources
etc.

28

Distributed operating systems for. ..

independent system N.1 independent system N.2

local local
server 1 server 1
local central central
server 3 server 1 server 2

local local
server 2 server 2

Figure 1

References
[1] Clemonti E., Logan D., Saarinem J. ICAP /3090: parallel process-

ing for large-scale scientific and engineering problems. IBM system
journal vol. 27, N. 4, 1988, pp. 474-509

[2] Crimsdall C.H.R. Distributed operating systems for transputers.
Microprocessors and microsystems vol. 13, N. 2, 1989, pp. 79-88

[3] Day Y.D., Zimmerman H. The OSI reference model//Proc. IEEE.
Dec. 1983, vol. 71, N. 12, pp. 1334-1340

[4] ISO. Basic reference model for Open Systems Interconnection. ISO
7498, 1983

[5] Knowles A., Kantenev T. Message passing in a transputer system.
Microprocessors and microsystems vol. 12, N. 2, 1989, pp. 113-124

29

E.Trakhtengherts

[6] Mullender S.J., Rossum G., Tanenbaum A., Renesse R., Staveren
H. A distributed operating system for 1990 s. Computer vol. 23,
N. 5, May 1990, pp. 44-53

[7] Trakhtengherts E.A. Software for concurrent processes. Moscow:
Nauka, 1987 (Russian)

[8] Trakhtengherts E.A. Network protocols . Automation and remote
control, No.12, 1990 (Russian)

[9] Wexler R., Prior D. Solving problems with transputers: back-
ground and experience. Microprocessors and microsystems vol. 13,
N. 12, 1989, pp. 67-69

[10] Zambre R. Design considerations for extended local area networks.
Proceeding of the 10 international conference on computer com-
munications. New Delhi, 4-9 November 1990, pp. 432-442

[11] Zimmerman H., Gullemont M., Morriset G., Banino J.-S. CHO-
RUS: a communication and proceeding architecture for disrt-
ibuted systems. Rapport de recherche N 328, 1989, INRIA PARIS,
FRANCE

Prof. E.Trakhtengherts Received April 18, 1993
Institute of Control Sciences,

65 Profsoiuznaia str.,

Moscow, 117806, Russia

30

