About Shannon's problem for turing machines

Yu.Rogozhin

Abstract

Describe the universal turing machine with 3 states and 10 symbols and with 27 commands really used in the program.

Shannon [1] suggested to construct the simplest universal turing machine (a turing machine U is called universal if it can simulate each turing machine T). The measure of complexity the turing machine T using by Shannon is mn – number of command of machine T, where n – number of states of T and m – number of symbols of T. We don't consider Shannon's problem for variants of turing machines (see, for example, Lutz Priese [2] and K.Wagner[3]).

Lets $\mathrm{UTM}(n,m)$ – universal turing machine with n states and m symbols. It is known that UTM doesn't exist with 6 commands [4] and $\mathrm{UTM}(24,2)$, $\mathrm{UTM}(11,3)$, $\mathrm{UTM}(5,5)$, $\mathrm{UTM}(4,6)$, $\mathrm{UTM}(3,10)$ and $\mathrm{UTM}(2,21)$ exist [5]. All of these UTM use a construction similar to Minsky's $\mathrm{UTM}(7,4)$ using TAG-systems with deletion number P=2 [6], but $\mathrm{UTM}(5,5)$ and $\mathrm{UTM}(4,6)$ simulate the special classes of TAG-systems. Robinson [7] constructed $\mathrm{UTM}(7,4)$ with convenient form of answer: a simpler procedure is used which preserves the output, and leaves the answer immediately to the right of the head of the turing machines. Recently author [8] constructed $\mathrm{UTM}(10,3)$ which simplifies the $\mathrm{UTM}(11,3)$ in [5]. From results obtained early we conclude that it hasn't been studied yet (if there is a universal turing machine?) 54 classes of turing machines.

Robinson [7] considers the number of commands really used in the program of UTM. According to this way the author [5] used 26 commands in UTM(7,4) (in Robinson's UTM(7,4) - 27 commands), in

^{©1993} by Yu.Rogozhin

UTM(5,5) - 23 commands and UTM(4,6) - 22 commands (minimum of known by author).

UTM(3,10) [5] used 28 commands, in this paper we suggest variant of this machine using 27 commands.

Definition (see, for example [6]). TAG-system with P = 2 is a finite set of rules:

 $a_i \to \alpha_i \quad (i = 1, \dots, n); \quad a_{n+1} \to STOP,$ where $\alpha_i = a_{i1}a_{i2}\dots a_{im_i}$ is a finite word in the alphabet $A = \{a_k\}, \quad k = 1, \dots, n+1 \quad (\alpha_i \text{ can be empty}).$

TAG-system T with P=m transforms the finite word β in the alphabet A like that: in initial word β one remembers the first letter from the left side (let $a_l, l \in \{1, \ldots, n\}$), after that m letters from the left side of the word β deletes and on the right side of the transforming word one concatenates the word α_l . The process continues and stops when the length of transforming word becomes less than m or the first letter of that word becomes a_{n+1} .

Note. We take into consideration the proof of existence universal TAG-system with P=2 [6] and therefore propose that UTM simulates the TAG-system with P=2 with such properties:

- (i) the work of TAG-system stop only by a_{n+1} symbol;
- (ii) all α_i (i = 1, ..., n) are not empty.

Common scheme of function of UTM which simulates TAG-system is considered in [5], [6] and [7]. Let to describe the UTM(3,10).

Symbols of UTM(3,10) are -0 (black symbol), $1, \stackrel{\leftarrow}{1}, \stackrel{\rightarrow}{1}, b, \stackrel{\leftarrow}{b}, \stackrel{\rightarrow}{b}, c,$ $\stackrel{\leftarrow}{c}, \stackrel{\rightarrow}{c}, \text{ states are } -q_1, q_2, q_3.$

```
N_1 = 1, \quad N_{k+1} = N_k + 2m_k + 2 \quad (k = 1, \dots, n) Code the word \alpha_i = a_{i1}a_{i2} \dots a_{im_i} \quad (i = 1, \dots, n) is: P_i = b1bbb1^{N_{im_i}}bb1^{N_{im_i}-1}\dots bb1^{N_{i2}}bb1^{N_{i1}} P_0 = b P_{n+1} = \overset{\rightarrow}{c} b Code the word \beta = a_r a_s a_t \dots a_w of TAG-system is: S = 1^{N_r} c1^{N_s} c1^{N_t} \dots c1^{N_w} c
```

The program of UTM(3,10):

	\rightarrow	
$q_1 \ 0 \ cLq_3$	$q_2 \ 0 \ 1 \ L q_2$	$q_{3} \ 0$ –
$q_1\stackrel{\leftarrow}{b}Rq_1$	$q_2\stackrel{ ightarrow}{b}Lq_3$	$q_3 \stackrel{\leftarrow}{b} Rq_1$
$q_1 \stackrel{\leftarrow}{b} b L q_1$	$q_2\stackrel{\leftarrow}{b}\stackrel{\rightarrow}{b} Lq_2$	$q_3\stackrel{\leftarrow}{b}\stackrel{\rightarrow}{b} Lq_2$
$q_1\stackrel{ ightarrow}{b}\stackrel{\leftarrow}{b}Rq_1$	$q_2\stackrel{ ightarrow}{b}\stackrel{\leftarrow}{b} Rq_2$	$q_3\stackrel{ ightarrow}{b}b\ Rq_3$
$q_1\stackrel{ ightarrow}{1} Lq_1$	q_2 1 $\overset{\leftarrow}{1}$ Rq_2	q_3 11 Rq_3
$q_1 \stackrel{ ightarrow}{\stackrel{ ightarrow}{1}{1}} Rq_1$	q_2 $\overrightarrow{1}$ $\overrightarrow{1}$ Rq_2	$q_3 \stackrel{\rightarrow}{1} 1 R q_3$
$q_1 \stackrel{\longleftarrow}{1} \stackrel{\longrightarrow}{1} Lq_1$	$q_2\stackrel{\longleftarrow}{1}\stackrel{\rightarrow}{1} Lq_2$	$q_3\stackrel{\leftarrow}{1}1\ Lq_3$
$q_1\stackrel{ ightarrow}{c1} Lq_2$	$q_2 \stackrel{\leftarrow}{cc} Rq_2$	q_3 c_1 Rq_1
$q_1 \stackrel{\leftarrow}{c} -$	$q_2 \stackrel{\longleftarrow}{c} \stackrel{\longrightarrow}{c} L q_2$	$q_3\stackrel{\leftarrow}{c} c\ Lq_3$
$q_1 \stackrel{ ightarrow}{c} \stackrel{\leftarrow}{c} R q_1$	$q_2\stackrel{ ightarrow}{c}\stackrel{\leftarrow}{c} Rq_2$	$q_3\stackrel{ ightarrow}{c}$ –

References

- [1] Shannon C.E. A universal Turing machine with two internal states. Automata studies, Ann. of Math. Stud. 34, Princeton, Princeton Univ. Press, 1956, pp.157-165.
- [2] Lutz Priese. Towards a Precise Characterization of the Complexity of the Universal and Nonuniversal Turing Machines. SIAM J.Comput., Vol.8, No.4, November 1979, pp.508-523.
- [3] Wagner K. Universelle Turingmaschinen mit n-dimensionalem Band. Electron. Informations Verarbeit. Kybernetic, 9, 1973, pp.423-431.
- [4] Pavlostcaya L.M. Problemi kibernetiki, Moskva, Nauka, 1978, 33, pp.91-118, (Russian).
- [5] Rogozhin Yu.V. Seven universal Turing machines. Systems and Theoretical Programming, Mat. Issled. no.69, Academiya Nauk Moldavskoi SSR, Kishinev, 1982, pp.76-90, (Russian).

- [6] Minsky M.L. Size and structure of universal Turing machines using tag systems. Recursive Function Theory. Symp. in pure mathematics, 5.Amer. Math.Soc., 1962, pp.229-238.
- [7] Robinson R.M. Minsky's small universal Turing machine. International Journal of Mathematics, v.2, N.5, 1991, pp.551-562.
- [8] Rogozhin Yu.V. A universal Turing machines with 10 states and 3 symbols. Izvestiya Akademii Nauk Respubliki Moldova, Matematika, 1992, No.4(10), pp.80-82 (Russian).

Received July 22, 1993

Yu.Rogozhin
Institute of Mathematics,
Academy of Sciences of Moldova,
5 Academiei str.,
Kishinev, 277028, Moldova

Phone: (3732) 73-80-21,

e-mail: 25yurog@mathem.moldova.su