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HT-graphs: centers, connected r-domination

and Steiner trees

F.Dragan

Abstract

HT -graphs have been introduced in [11] and investigated with
respect to location problems on graphs. In this paper two new
characterizations of these graphs are given and then it is shown
that the central vertex, connected r-domination and Steiner trees
problems are linear or almost linear time solvable in HT -graphs.
Keywords: HT-graph, vertex elimination ordering, center, con-
nected domination, Steiner tree, linear-time algorithm.

1 Introduction

All graphs in this paper are connected and simple, i.e. finite, undi-
rected, loopless and without multiple edges. In a graph G = (V,E) the
length of a path from a vertex v to a vertex u is the number of edges in
the path. The distance d(u, v) from vertex u to vertex v is the length
of a minimum length path from u to v.

The eccentricity e(v) of a vertex v is the maximum distance from
v to any vertex in G. The radius r(G) is the minimum eccentricity of
a vertex in G and diameter d(G) is the maximum eccentricity. The
Center(G) is both a set of all central vertices of G, i.e. vertices whose
eccentricities are equal to r(G), and the subgraph induced by this set.
The well known location problem in graphs is to find a central vertex
of graph G.

Suppose G = (V, E) is a connected graph with n vertices and
(r(v1), r(v2), . . . , r(vn)) is a n-tuple of nonnegative integers. A con-
nected r-domination set of graph G is a set of vertices D such that
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the subgraph induced by D is connected and for every vertex u in V
there exists some vertex v in D satisfying d(v, u) ≤ r(u). The con-
nected r-domination problem is to find for a graph G the connected
r-dominating set with minimum cardinality.

For a given graph G and set R ⊂ V of terminal vertices, a Steiner
tree of G ( with respect to R ) is a tree which is a subgraph of G con-
taining R. The Steiner tree problem is to find the minimum cardinality
Steiner tree in graph G.

A graph G is triangulated ( chordal ) if every cycle of length greater
than three possesses a chord, i.e. an edge joining two nonconsecutive
vertices on the cycle. A clique of G is a set of pairwise adjacent vertices.
For a graph G and nonnegative integer r the r-neighborhood of a vertex
v is the set

Nr[v] = {u ∈ V : d(v, u) ≤ r}.
Usually, N [v] is used for N1[v]. A vertex v of G is called simplicial if
its neighborhood N [v] is a clique. It is well known that a graph G is
triangulated iff it has a perfect elimination ordering, i.e. an ordering
v1, v2, . . . , vn of V such that vi is a simplicial vertex of the subgraph
Gi induced by vertices vi, . . . , vn ; see [15].

A k-sun Sk (k ≥ 3) is a graph whose vertex set V can be partitioned
into X = (x1, x2, . . . , xk) and Y = (y1, y2, . . . , yk) such that X is a
clique in G, 0 < d(yi, yj) ≤ 2 iff i = j ± 1(mod k) and (xi, yj) ∈ E if
and only if i = j or i = j + 1(mod k). For triangulated graphs, this
definition coincides with the usual definition of k-sun [13]. Triangulated
graphs without induced k-suns ( k ≥ 3 ) are called strongly chordal
graphs by Farber [13]. A vertex v is simple if the set {N [u] : u ∈ N [v]}
is linearly ordered by inclusion. A simple vertex is simplicial, but the
converse is not necessarily true. Farber [13] proved that a graph G is
strongly chordal iff it has a simple elimination ordering, i.e. an ordering
v1, v2, . . . , vn of V such that vi is a simple vertex of Gi.

To find a central vertex of a strongly chordal graph we used the
simple elimination ordering [8]. Also, using the same ordering, sev-
eral authors gave efficient algorithms for solving the Steiner tree prob-
lem [23] and the connected r-domination problem [4] in a strongly
chordal graph. All these algorithms are linear if we do not count the
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time of finding a simple elimination ordering. Note that this ordering
can be obtained by algorithm for doubly lexical ordering of graph [19]
with running time O(|E|log|V |).

In this paper we investigate a generalization of strongly chordal
graphs, namely HT -graphs (Sections 2,3). They have a weaker vertex
elimination ordering ( called extremal elimination ordering ) and are in
general even not triangulated. This ordering can be obtained in linear
time. In Sections 4,5, we show that if graph G has an extremal elim-
ination ordering then both the connected r-domination problem and
central vertex problem are linear-time or almost linear-time solvable.
We also show that the Steiner tree problem is a connected r-domination
problem for some special n-tuple (r(v1), r(v2), . . . , r(vn)). This gener-
alizes the results for strongly chordal graphs.

Notations and terminology not explained here may be found in
[3,15,24].

2 HT -graphs

Let N = {Nr[v] : v ∈ V, 0 ≤ r ≤ d(G) and r is integer}, N1 = {N1[v] :
v ∈ V }, and C is the family of all maximal cliques of graph G. The
hypergraphs C(G) = (V, C) and N(G) = (V,N1) are called respectively
the clique hypergraph and the neighborhood hypergraph of graph G.

Intersecting graph L(M) of a family of sets M = {M1, . . . ,Mk}
is defined in the following way: elements of M are the vertices of
L(M), and two vertices are adjacent if and only if the corresponding
sets intersect. A family M of sets is said to have a Helly property if
every subfamily of M having empty intersection contains two disjoint
members.

A graph G is Helly graph if the family N of G has the Helly prop-
erty. A Helly graph G is HT -graph if the graph L(N ) of G is triangu-
lated [11].

The kth power of a graph G = (V, E) is the graph Gk = (V, Ek)
with (v, w) ∈ Ek if and only if 1 ≤ d(v, w) ≤ k in graph G. Clearly,
G2 = L(N1).

A vertex v of G is extremal if there exists a vertex u 6= v in V ,
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called maximal neighbor, such that N2[v] = N1[u]. A simple vertex is
extremal, but the converse is not necessarily true.

A hypergraph H = (V, E) is a hypertree or arboreal if there exists
a tree T on V such that each edge of H induces a subtree in T [3].

The following characterizations of HT -graphs are obtained in
[11,12]. For other characterizations see [9].

Theorem 1 Let G = (V, E) be a graph. Then the following statements
are equivalent:

1. G is HT -graph;

2. G2 is triangulated graph and the family N1 of G has the Helly
property;

3. Neighborhood hypergraph N(G) of G is hypertree;

4. Clique hypergraph C(G) of G is hypertree;

5. G has an extremal elimination ordering, i.e. an ordering
v1, v2, . . . , vn of V such that vi (i < n) is an extremal vertex
in Gi.

The dual hypergraph of H = (V, E) is the hypergraph H∗ = (V ′, E ′)
where the vertices and the edges in H∗ correspond to the edges and
the vertices of H respectively, and a vertex v in H∗ belongs to an edge
E in H∗ if and only if the edge corresponding to v in E contains the
vertex corresponding to E in V .

Theorem 2 Let G = (V, E) be a graph. Then the following statements
are equivalent:

1. G is triangulated HT -graph;

2. both its clique hypergraph C(G) and the dual hypergraph C(G)∗

are hypertrees;

3. G has a perfect elimination ordering which is also an extremal
elimination ordering.
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We note that since the triangulated graphs and hypertrees are
recognized in linear time [21] then HT -graphs and triangulated HT -
graphs are also recognized in linear time.

In the remaining part of this section we consider two new character-
izations of HT -graphs. The first of them is closely related to cyclomatic
number of hypertree; see [3].

Let G = (V,E) be a connected graph; n and m are the numbers
of vertices and edges of G respectively. Put to any edge e ∈ E the
weight w(e) which equals the number of triangles (cycle of length 3)
containing e. Denote by ∆(G) the total weight of maximum spanning
tree of weighted graph G. From the definition of cyclomatic number of
a simple connected graph G we conclude

2(m− n + 1) ≥ ∆(G).

For the HT -graphs we have

Theorem 3 G is HT -graph if and only if ∆(G) = 2(m− n + 1)

Proof. The inequality 2(m − n + 1) ≤ ∆(G) for HT -graph G we
shall prove by induction on the vertex number of G. Let x be the first
vertex in extremal elimination ordering of HT -graph G, and y is the
vertex such that N2[x] = N1[y]. By the induction’s assumption for the
graph G′ = G− x we have

∆(G′) ≥ 2((m− (|N [x]|−1))− (n−1)+1) = 2(m−n+1−|N [x]|+2).

To prove the inequality ∆(G) ≥ ∆(G′) + 2|N [x]| − 4, we show that
among all spanning trees of graph G− x with maximum weight ∆(G′)
there exists a spanning tree T ′ for which any vertex from N [x] \ {x, y}
is adjacent to y. Assume that there is a vertex z in N [x]\{x, y}, which
is not adjacent to y. Let P = (y, v1, . . . , vk, z) be a path connecting the
vertices y and z in tree T ′. Since

N [z]
⋂

N [vk] ⊂ N [z]
⋂

N [y],

then weight of edge (z, vk) is no more than weight of edge (y, z) in
graph G − x. Therefore the edge (z, vk) can be replaced with edge
(y, z) to obtain a new spanning tree with total weight ∆(G′).
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So, each vertex from N [x] \ {x, y} is adjacent to y in T ′. Then we
obtain the spanning tree T from T ′ by adding vertex x and edge (x, y).
Total weight of T is equal to ∆(G′) + |N [x]| − 2 + |N [x]| − 2. Hence

∆(G) ≥ ∆(G′) + 2|N [x]| − 4 ≥ 2(m− n + 1).

Conversely. Let for a graph G we have ∆(G) = 2(m − n + 1).
By Theorem 1 it is sufficient to prove that the neighborhood N [v] of
every vertex v ∈ V induces the connected subgraph in spanning tree
T of weight ∆(G). The proof proceeds by induction on the number of
vertices of G.

Let x be a pendant vertex of T , and y is its neighbor. Obviously,
the tree T ′ = T − x is a spanning tree of graph G′ = G− x. Let w(T ′)
be the total weight of T ′. Then

w(T ′) ≤ ∆(G′) ≤ 2(m′ − n′ + 1) = 2(m− |N [x]|+ 1− n + 1 + 1) =

2(m− n + 1)− 2(|N [x]| − 2) = ∆(G)− 2(|N [x]− 2).

On the other hand, ∆(G) ≤ w(T ′) + 2(|N [x]| − 2). Hence,

w(T ′) = ∆(G′) = 2(m′ − n′ + 1) = ∆(G)− 2(|N [x]− 2).

This is possible only in case when in tree T all vertices from
N [x] \ {x, y} (N [x] is taken in G) are adjacent to y. From the in-
duction’s assumption and the form of tree T it follows that the neigh-
borhood N [v] of every vertex v ∈ V induces connected subgraph in
T .[]

An isometric subgraph of a graph G is an induced subgraph in
which the distance between any two vertices v, w equals the distance
d(v, w) taken in G. Let Ck be the induced cycle of length k.

For another characterization of HT -graphs we need a lemma:

Lemma 1 Let G = (V,E) be a Helly graph. Then the following state-
ments are equivalent:

1. G2 has no cycles Ck (k ≥ 4), i.e. G2 is triangulated graph;
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2. G does not contain a sun Sk (k ≥ 4) as an isometric subgraph.

Proof. 1) ⇒ 2) Suppose that graph G contains a sun Sk

(k ≥ 4) with vertices {x1, x2, . . . , xk}
⋃{y1, y2, . . . , yk} as an isomet-

ric subgraph. Then the vertices y1, y2, . . . , yk induce in graph G2 a
cycle Ck (k ≥ 4).

2) ⇒ 1) The proof proceeds by induction on the number of vertices
of G. Since G is Helly graph, then there exists a pair of vertices v, y ∈ V
such that N [y] ⊂ N [v]; see [1,10]. It is easy to see that G − y is
also a Helly graph without isometric suns Sk (k ≥ 4). Therefore, by
induction, the graph (G− y)2 has no cycles Ck (k ≥ 4).

Now let G2 contains a cycle Ck with vertices y1, y2, . . . , yk (k ≥ 4)
and k be as small as possible. It is enough to consider only the case
when y1 = y. In graph (G− y)2 the vertices v, y2, . . . , yk form a cycle
of length k. Since (G − y)2 does not contain Ck (k ≥ 4), this cycle is
divided by chords into triangles. Note that one of the ends of these
chords is v.

Hence, in graph G we have

d(yi, v) = d(yi, y)− 1 = 2 for all i = 3, 4, . . . , k − 1;
d(yi, yj) ≤ 2 if and only if j = i± 1(modk);
d(y2, v) ≤ 2; d(yk, v) ≤ 2.

By Helly property for every three vertices v, yi, yi+1 (i = 2, 3, . . . ,
k − 2) there is a common neighbor xi. In the similar way for vertices
y, v, y2, x2 there exists a vertex x1 ∈ N [y]

⋂
N [v]

⋂
N [y2]

⋂
N [x2]. Let

us suppose, without loss of generality, that neither v nor x2 coincides
with x1. Now we consider the vertices y, yk, yk−1, xk−2. They form in
graph G2 a cycle of length 4. Since G has no isometric sun S4, this
cycle is not induced; see [9]. Hence, d(yk, xk−2) = 2. Then, by Helly
property, for the vertices v, yk−1, yk, xk−2 there is a common neighbor
xk−1 too. Among all sets M = {x1, x2, . . . , xk−1} we choose a set
inducing a subgraph with a maximal number of edges.

We claim that M is a clique. Assume the contrary and let xi be
the vertex with the smallest index for which there is a vertex xj such
that xi and xj are not adjacent, and j < i < k. Since d(xi, y) = 2, the
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vertices y, y2, . . . , yi, xi in case i < k−1 or the vertices y, y2, . . . , yi−1, xi

in case i = k − 1 form in graph G2 a cycle of length < k. By virtue of
minimality of k, this cycle is not induced. Hence, in graph G we have
d(xi, yt) = 2 for every t = 1, 2, . . . , i−1 and so the distance between any
two vertices from A = {N [xj ]

⋂
M}⋃{xi, yj , yj+1} is ≤ 2. By Helly

property there exists a vertex w adjacent to every vertex from A. Then
the subgraph induced by set M \ {xj}

⋃{w} has more edges than the
subgraph induced by M ; a contradiction.

Thus, the vertices x1, x2, . . . , xk−1 induce a clique. Further, con-
sider the family of neighborhoods {N [w] : w ∈ M

⋃{y, yk}}. Since
these neighborhoods pairwise intersect, then, by Helly property, there
exists some vertex xk adjacent to every vertex from M

⋃{y, yk}. Now
we conclude that the vertices {x1, . . . , xk}

⋃{y1, . . . , yk} induce an iso-
metric sun Sk.[]

From Theorem 1 and Lemma 1 we deduce one more characterization
of HT -graphs.

Theorem 4 G is HT -graph if and only if G is Helly graph without
isometric suns Sk (k ≥ 4).

From the preceding theorems it follows that G is strongly chordal
graph if and only if every induced subgraph of G is HT -graph. In other
words, strongly chordal graphs are exactly hereditary HT -graphs.

3 Some aspects of extremal ordering

Since G is HT -graph if and only if N(G) is hypertree, we can apply
the maximum cardinality search [21] on hypergraph N(G) to obtain an
extremal elimination ordering of graph G. So, we have the following
variant of maximal cardinality search, which operates directly on G.

Algorithm 1. Find an extremal elimination ordering of HT -graph

Input. An HT -graph G.
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Output. An extremal elimination ordering v1, v2, . . . , vn of G.
Initially all vertices of G are unnumbered and unmarked;
Using 1–5 number the vertices from n to 1 in decreasing order:

1. number an arbitrary vertex v ∈ V ;

2. among all unmarked vertices select a numbered vertex u such
that N [u] contains as many numbered vertices as possible;

3. number all unnumbered vertices from N [u] consecutively;

4. mark vertex u;

5. repeat steps 2–4 if the unnumbered vertices exist.

The correctness and linearity of this algorithm follows from [21].
Note that as a result of algorithm we have also for every vertex vi

(i < n) its maximal neighbor in graph Gi. To obtain for a trian-
gulated HT -graph an extremal elimination ordering which is also a
perfect elimination ordering, we must implement step 3 of Algorithm
1 as follows:

a) among all unnumbered vertices from N [u] choose a vertex w such
that N [w] has as many numbered vertices as possible;

b) number vertex w;

c) repeat steps a), b) if the unnumbered vertices in N [u] exist.

Obviously the time bound for this new algorithm is also linear if
a suitable implementation is chosen. For a proof of correctness as-
sume that the ordering generated by algorithm is not a perfect elimi-
nation ordering. Then similar to [20] we establish that for some ver-
tices vi, vj with i < j < n the strict inclusion N [vj ]

⋂{vj+1, . . . , vn} ⊂
N [vi]

⋂{vj+1, . . . , vn} holds. So in step a) we could not have selected
vertex vj before vi.

As a result we have

Theorem 5 Algorithm 1 correctly finds in time O(|E|) an extremal
elimination ordering of HT -graph. For triangulated HT -graph this or-
dering is also a perfect elimination ordering.
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In section 5 we will use the following two lemmas. Let v1, v2, . . . , vn

be an extremal elimination ordering of graph G, generated by Algo-
rithm 1.

Lemma 2 If in graph G for vertices vi, vj with i < n the inclusion
N [vi] ⊂ N [vj ] holds, then v′1, v′2, . . . , v′n−1 is an extremal elimination
ordering of graph G − vi, where v′k = vk+1 when k > i and v′k = vk

otherwise.

Proof. Obviously the inclusion N [vi] ⊂ N [vj ] holds for every
subgraph Gl of graph G induced by vertices vl, vl+1, . . . , vn where
l ≤ min{i, j}. So it is enough to prove that the vertex vk with j ≤ k < i
is extremal in graph Gk − vi.

Let vs be a maximal neighbor of vertex vi in graph Gi found by
Algorithm 1. Since the vertices vj and vs are adjacent in G, then
every vertex vk with j ≤ k ≤ i gets its number while the numbered
and unmarked vertex vs is examined (see Algorithm 1). Hence the
vertex vs is also a maximal neighbor of vertex vk in graph Gk, i.e.
N2[vk] = N1[vs]. It remains to note that the equality N2[vk] = N1[vs]
holds in graph Gk − vi too.[]

Lemma 3 If in graph G for vertices vi, vk, vj the inclusions N [vi] ⊂
N [vj ] and N [vk] ⊂ N [vj ] hold, then v1, v2, . . . , vn is an extremal elimi-
nation ordering of graph G′, obtained from G by adding an edge (vi, vk).

This statement has a similar proof with Lemma 2.

4 Centers of HT -graphs

In this section we will present a linear algorithm for finding a central
vertex of an HT -graph. Note that for general graphs with n vertices
and m edges the upper bound on the time complexity of this problem is
O(nm) and the lower bound is Ω(m). Hence the presented algorithm is
optimal. Other linear algorithms for finding central vertices are known
for trees [16], 2-trees and maximal outerplanar graphs [14] and strongly
chordal graphs [8].
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It is known [9,10] that the central subgraph Center(G) of Helly
graph G is isometric and also a Helly graph. Moreover, we have

Lemma 4 If G is Helly graph and G2 does not contain C4, then
r(Center(G)) ≤ 1.

Proof. Since for Helly graph G the inequality d(G) ≥ 2r(G) − 1
holds [9], it is enough to prove, that d(Center(G)) ≤ 2. Assume
the contrary and let x, y be the vertices from Center(G), for which
d(x, y) = 3. We note that the distance between any two vertices
from N2[x]

⋂
N2[y] is ≤ 2. Otherwise, if d(v, w) ≥ 3 for some

v, w ∈ N2[x]
⋂

N2[y], then the vertices x, v, y, w induce a cycle C4 in
G2; contradiction. By Helly property, there exists a common neighbor
z of vertices from N2[x]

⋂
N2[y].

Let v be a vertex such that d(v, z) = e(z). Since x, y ∈ Center(G),
then d(v, x) ≤ d(v, z) and d(v, y) ≤ d(v, z). Hence, the neighborhoods
N2[x], N2[y], Nd(v,z)−2[v] pairwise intersect. Therefore, there is a vertex
u ∈ N2[x]

⋂
N2[y], such that d(u, v) ≤ d(v, z)− 2, i.e. d(u, z) ≥ 2. This

is in conflict with N [z] ⊃ N2[x]
⋂

N2[y]. So we have d(Center(G)) ≤
2.[]

The following theorem gives a complete description of central sub-
graph of HT -graphs.

Theorem 6 A graph G is central subgraph of HT -graph H, i.e.
G ∼= Center(H), if and only if r(G) ≤ 1.

Proof. Necessity follows from Lemma 4.
Sufficiency. Let r(G) ≤ 1. Graph H is obtained from G by adding

to G four new vertices u1, u2, v1, v2 so that: v1 is adjacent to u1 and to
any vertices of graph G; v2 is adjacent to u2 and also to any vertices
of graph G; and the vertices u1, u2 are pendant in H. From the con-
struction of graph H we have e(v1) = e(v2) = 4, e(u1) = e(u2) = 5 and
e(x) = 3 for all vertices x of G. Hence, G is central subgraph of graph
H.[]

Denote by D(v) the set of all farthest from v vertices, i.e. D(v) =
{w ∈ V : d(v, w) = e(v)}.
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Lemma 5 For any vertex v of HT -graph G and any farthest vertex
u ∈ D(v) we have e(u) ≥ 2r(G)− 2.

Proof. It is known [9,10] that in Helly graph G the eccentricity of
any vertex v is computed by formula e(v) = d(v, Center(G)) + r(G).
Let x and y be the closest to v and u ∈ D(v), respectively, vertices of
central subgraph Center(G). From the inequalities

d(v, u) ≤ d(v, x) + d(x, u) ≤ d(v, x) + r(G) = e(v) = d(v, u)

we conclude that d(x, u) = r(G). Since, by Lemma 4, d(x, y) ≤ 2, then

e(u) = d(u, y) + r(G) ≥ d(x, u)− 2 + r(G) = 2r(G)− 2.

Now we give the algorithm.

Algorithm 2. Find the central vertex and radius of HT -graph.

Input. An HT -graph G with an extremal elimination ordering
v1, v2, . . . , vn (n ≥ 2).

Output. A central vertex and radius of G.

for i := 1 to n do a(vi) = 0;
w := the farthest vertex from v1;
compute the eccentricity e(w);
k := [(e(w) + 1)/2];
for i := 1 to n do

begin
vj := a maximal neighbor of vi;
if a(vi) = k − 1 then
begin

compute the eccentricity e(vj);
if a(vj) > k then k := k + 1
else begin

vj is a central vertex of G;
r(G) := k;
stop

end
end

a(vj) := max{a(vi) + 1, a(vj)}
end
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The correctness of Algorithm 2 follows from Lemma 5 and lemmas
described below. These lemmas are from [8,9], but instead of a simple
vertex we use an extremal vertex.

Let us assign to every vertex v ∈ V a nonnegative integer a(v). We
consider the following notations:

e(v, a) = max{a(u) + d(v, u) : u ∈ V },
r(G, a) = min{e(v, a) : v ∈ V },
Center(G, a) = {v ∈ V : e(v, a) = r(G, a)}.

Obviously, if a(v) = 0 for all v ∈ V , then e(v, a) = e(v) and r(G, a) =
r(G).

Suppose v is an extremal vertex with a maximal neighbor u in a
graph G and G′ = G − v is a graph obtained from G by deleting the
vertex v.

Lemma 6 If a(v) + 1 < r(G, a), then for every vertex w of G′ holds
e′(w, a′) = e(w, a), where e′(w, a′) is the eccentricity of w in graph G′

with a′(x) = a(x) when x 6= u, and a′(u) = max{a(v) + 1, a(u)}. In
particular, r(G′, a′) = r(G, a) and Center(G′, a′) ⊂ Center(G, a).

Lemma 7 If a(v) + 1 = r(G, a) and a(w) < r(G, a) for all w ∈ N [v],
then u ∈ Center(G, a).

Proofs of these lemmas are straightforward and omitted. We note
also that according to Lemma 5, the initial k in our algorithm equals
r(G) or r(G)− 1. Therefore, there is at most one improvement of the
value of k.

Summarizing the results of this section, we have the following the-
orem.

Theorem 7 Algorithm 2 correctly finds a central vertex of HT -graph
in time O(|E|).
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5 Connected r-domination and Steiner trees

The connected domination problem (connected r-domination problem
when r(v) = 1 for all v ∈ V ) is NP -complete for planar bipartite
graphs [23], chordal bipartite graphs [18], 2−CUBs [6] and split Helly
graphs [11]. Efficient algorithms have been found for the connected
domination problem in strongly chordal graphs [23], 2-trees [23], series-
parallel graphs [23], permutation graphs [5] and distance-hereditary
graphs [7]. For connected r-domination problem the polynomial algo-
rithm is known only in strongly chordal graphs [4].

The Steiner tree problem is also NP -complete for planar bipartite
graphs [23], chordal bipartite graphs [18] and split Helly graphs (it
follows from the results of [11,23]). However, efficient algorithms have
been found in strongly chordal graphs [23], 2-trees and series-parallel
graphs [22], permutation graphs [5] and distance-hereditary graphs [7].

In this section we generalize the algorithm from [4], constructing the
connected r-dominating set in strongly chordal graph, for HT -graphs.
We also show that the Steiner tree problem is a connected r-domination
problem for some special n-tuple (r(v1), r(v2), . . . , r(vn)).

To establish an algorithm we need the following lemmas; some of
them are from [4] (but instead of a simple vertex we use an extremal
vertex); others are similar. Proofs of these lemmas are straightforward
and omitted.

Lemma 8 If v is an extremal vertex of a graph with at least two ver-
tices, then there exists a minimum connected r-dominating set D in
which v /∈ D if and only if r(v) 6= 0.

Suppose v is an extremal vertex with a maximal neighbor u in graph
G = (V, E).

Lemma 9 Let r(v) > 0. A subset D ⊂ V \{v} is a minimum connected
r-dominating set of G if D is a minimum connected r′-dominating set
of G − v with r′(x) = r(x) when x 6= u, r′(u) = r(u) when r(w) = 0
for some w ∈ N [v] and r′(u) = min{r(u), r(v)− 1} otherwise.
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Lemma 10 Let r(v) = 0, r(x) = 0 for some vertex x ∈ V \ {v}, and
r(w) 6= 0 for every w ∈ N [v]\{v}. A set D is a minimum connected r-
dominating set of G if D = D′ ⋃{v} where D′ is a minimum connected
r′-dominating set of G−v with r′(x) = r(x) when x 6= u and r′(u) = 0.

Lemma 11 Let r(v) = 0, v is also a simplicial vertex of G, and r(w) =
0 for some vertex w ∈ N [v] \ {v}. A set D is a minimum connected r-
dominating set of G if D = D′ ⋃{v} where D′ is a minimum connected
r-dominating set of G− v.

Unfortunately, Lemma 11 holds only for such extremal vertex,
which is also simplicial. Similar to Lemma 11 for arbitrary extremal
vertex v we have a more general result as follows.

Lemma 12 Let r(v) = 0 and r(w) = 0 for some vertex w ∈ N [v] \
{v}. A set D is a minimum connected r-dominating set of G if D =
D′⋃{v} where D′ is a minimum connected r-dominating set of graph
G∗ obtained from G − v by deleting every vertex x ∈ N [v] such that
r(x) 6= 0 and x 6= u, and by adding some new edges (in case of need) so
that a subgraph induced by set F = {x ∈ N [v]\{v} : r(x) = 0} becomes
connected.

Basing on the above lemmas and Lemmas 2, 3, we have the following
algorithm (compare to [4]). In the algorithm, we will only use G :=
G − v for deleting v from G and G := GF for adding new edges to
G between some vertices of F without detailed implementations, and
degrees of vertices are considered updated automatically.

Algorithm 3. Find a minimum connected r-dominating set of HT -
graph.

Input. An HT -graph G and n-tuple (r(v1), r(v2), . . . , r(vn)).

Output. A minimum connected r-dominating set D of G.

D := ∅;
if r(v) > 0 ∀v ∈ V then
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begin
using Algorithm 1 find an extremal elimination ordering
v1, v2, . . . , vn of G;
for i := 1 to n do

begin
vj := a maximal neighbor of vi;
r(vj) := min{r(vi)− 1, r(vj)};
G := G− vi;
if r(vj) = 0 then goto outloop

end
end;

outloop: { now r(v) = 0 for some v ∈ V and suppose G has p vertices.}
using Algorithm 1 find an extremal elimination ordering

v1, v2, . . . , vp of G with r(vp) = 0;
for i := 1 to p do a(vi) = 0;
for i := 1 to p− 1 do

if a(vi) = 0 then
begin

vj := a maximal neighbor of vi;
if r(vi) = 0 then D := D

⋃{vi};
if r(x) > 0 ∀x ∈ N [vi] \ {vi}
then

if r(vi) = 0 then r(vj) := 0
else r(vj) := min{r(vi)− 1, r(vj)};

else
if r(vi) = 0 then
begin

F := ∅;
for x ∈ N [vi] \ {vi} do

if r(x) = 0 then F := F
⋃{x}

else if x 6= vj then
begin

a(x) := 1;
G := G− x

end
G := G− vi;
G := GF {add some new edges (in case of need) so

that a subgraph induced by set F became
connected }

end
else G := G− vi

end
D := D

⋃{vp}
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The running time of this algorithm is O(|E|+ |E′|), where |E′| is a
number of added edges. It is easy to see that |E|+ |E′| is less than an
edge number of graph G2.

So, we have

Theorem 8 Algorithm 3 correctly finds a minimum cardinality con-
nected r-dominating set of HT -graph in time O(|E|+ |E′|). For trian-
gulated HT -graph the running time of this algorithm is O(|E|).

Finally, we consider the problem of finding a minimum cardinality
Steiner tree in HT -graph. For the given graph G = (V, E) and set
R ⊂ V we have the following obvious lemma.

Lemma 13 A set D ⊂ V is a minimum connected r-dominating set
of G with r(v) = 0 when v ∈ R and r(v) = 2r(G) otherwise if and only
if a spanning tree of a subgraph induced by D is a minimum cardinality
Steiner tree of G (with respect to R).

Thus, there are quite efficient algorithms, solving the central vertex,
connected r-domination and Steiner tree problems in HT -graphs. Note
that the r-domination problem (not necessary connected) is efficiently
solvable in HT -graphs too [11,12] (see also [2] for 1-domination).

After the initial version of this paper was submitted, we learned the
paper by M. Moscarini [17], in which she develops an O(|V |3) algorithm
for connected domination and Steiner tree problems in triangulated
HT -graphs (called in [17] doubly chordal graphs). Our results improve
and generalize the results of M. Moscarini.
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