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The Maple Computer Algebra System

Michael Monagan

Maple is a comprehensive general purpose computer algebra system.
It is used primarily in education and scientific research in the sciences,
in mathematics, and in engineering. Maple can do both symbolic and
numerical calculations and has facilities for 2 and 3-dimensional graph-
ical output. The newest version of Maple, Maple V Release 2, sports a
new user interface that integrates these three facilities as well as text
into a document called a worksheet. Worksheets are a nice medium for
presenting and communicating results and teaching material. A new
feature of Release 2 that makes worksheets especially appealing is that
results computed by Maple are displayed in a high quality font with
full support for math symbols, Greek characters, subscripts, etc.

Maple is also a programming language. In fact almost all of the
mathematical and graphical facilities are written in Maple and not in a
systems implementation language like other computer algebra systems.
These Maple programs reside on disk in the Maple library and are
loaded on demand. The programming language supports procedural
and functional programming. We will not give specific details of the
programming language beyond this, even though this is perhaps a key
part of the Maple system. Details and examples can be found in the
two manuals [1] and [2] cited in the references. We wish to mention
instead a bit of Maple history.

The main design goal of Maple in 1980 was to design a language
for implementing mathematical algorithms which was powerful and ef-
ficient enough so that almost all of the mathematical algorithms could
be written in it, rather than in a systems implementation language
like C or Lisp. Another main design objective was to minimize over-
all memory requirements so that larger problems could be solved, and
Maple could run on smaller computers, and support many simultane-
ous users on time-shared systems. The outcome is a system consisting
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of three components, the user interface, the kernel, and the Maple li-
brary. The kernel, programmed in C, is about 500Kbytes in size. The
Maple library, programmed in the Maple programming language, con-
sists of about 2,500 user level functions which totals some 150,000 lines
of Maple code. Because code from the Maple library is loaded on de-
mand, Maple runs on small computers e.g. Amigas, PC’s, Macintoshes
with as little as 2 megabytes of RAM, as well as on most workstations,
mainframes and supercomputers. This is attractive for educational lab-
oratories and for students. The attention to space efficiency helps in
solving large problems and contributes to the overall time efficiency of
the system. Also, because the clean separation of the user interface
from the kernel and library, the Maple kernel and library are used as
the symbolic component in other commercial and research systems. For
example, the system MathCAD, a numerical system popular amongst
engineers, makes some of Maples symbolic functionality accessible to
MathCAD users.

There is also a growing number of functions and packages in the
Maple share library which have been contributed by users from around
the world. The share library also contains additional documentation,
other software tools, etc. It is updated quarterly as new applications
codes are contributed and is now distributed electronically by an elec-
tronic mail server and anonymous ftp. Other sources of information
include

• the Maple newsgroup, an electronic forum for discussion on Maple
- maple@daisy.waterloo.edu

• the Maple ROOTS newsletter, published by the Maple company,
contains information about new releases, Maple events, etc.,

• the Maple Technical Newsletter, published by Birkhäuser, con-
tains application and technical articles on Maple, and

• the Geddes textbook [3] which contains detailed information and
references for many the algorithms used in Maple.

Further information about Maple can be obtained from
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In Europe North America and elsewhere
Waterloo Maple Software Waterloo Maple Software,
Tiergartenstrasse 17 160 Columbia Street West,
W-6900 Heidelberg 1 Waterloo, Ontario, N2L 3L3
Germany Canada

Phone: +49-6221-487 180 Phone: (519) 747-2373
FAX: +49-6221-487 184 FAX: (519) 747-5284

Email: info@maplesoft.on.ca

We summarize below the capabilities of Maple under the headings Nu-
meric, Symbolic and Graphics and follow with some examples illustrat-
ing some of the new features of Release 2.

Numeric facilities

• Arbitrary precision integer, floating point, and complex numeric
arithmetic,

• Numerical evaluation of the elementary functions,

• A library of special functions and constants including the error
function, the Gamma and related functions, the exponential in-
tegral, the Riemann zeta function, Bessel and related functions,
Hypergeometric functions, statistical distribution functions,

• Numerical linear algebra: linear systems, eigenvalues and eigen-
vectors, SVD,

• Numerical approximation: interpolating splines, B-splines, least
squares, Pade, continued fractions, Chebyshev series, Remez al-
gorithm,

• Numerical calculus: numerical integration, numerical evaluation
of infinite sums and products, solution of ODE’s, root finding,
FFT.
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Symbolic facilities

• Indefinite and definite integration of rational functions, elemen-
tary functions, algebraic functions, and special functions,

• Laplace, Fourier, Mellin, and Z transforms and inverse trans-
forms,

• Definite and indefinite summation, infinite products, solution of
recurrence equations, Taylor series, asymptotic expansions, sym-
bolic limits,

• Polynomial arithmetic over finite and algebraic number fields,
including GCDs, resultants, decomposition, factorization, root
finding, Galois groups,

• Symbolic linear algebra: matrix determinant and inverse, eigen-
values and eigenvectors, Row echelon, Smith, Hermite, and Jor-
dan canonical forms,

• Solving equations: linear systems, polynomial systems, Gröbner
bases, ODE’s,

• Specialized packages: finite groups, number theory, tensors, gen-
erating functions, geometry, orthogonal polynomials, differential
forms, symmetric functions, graph theory, statistics, etc.

Graphic facilities

Basic facilities support the display of an arbitrary number of curves,
surfaces, polygons, and text. Surfaces may be displayed in various
styles, e.g. with hidden line removal, gray scale shading, color shading.
Shaded surfaces can include contours, grids, lighting, etc. Also support
for 2 and 3D frame sequence animation. Hardcopy output is available
for a variety of printers and may be included in a Maple worksheet.
Specific plots (all programmed in Maple) include

• Curves in cartesian, and polar co-ordinates,
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• Surfaces in cartesian, cylindrical or spherical co-ordinates,

• Curves and surfaces defined parametrically or implicitly as the
solution of a polynomial equation,

• Contour plots, log plots, density plots, conformal plots, vector
plots,

• Phase portraits and direction field plots, plotting of systems of
first order ODE’s.

A Pot Pouri of integration and summation examples

New users of computer algebra systems are intrigued by their ability to
compute formulae for integrals, and also sums. Here are some examples
from Maple V Release 2. In this first example, we ask Maple to compute∫

exx3dx . The Maple command to compute this integral is

> int( exp(x)*x^3, x );

The > character is the Maple prompt. The result computed by Maple
is then displayed on the users terminal. It looks like

exx3 − 3x2ex + 6 xex − 6 ex

Maple computed this integral by repeated application of integration by
parts. This is a traditional method for computing integrals of this kind.
This following rational function integral is computed using the method
of partial fractions.

> int( 3*x/(x^3-1), x );

ln(x− 1)− 1
2

ln(x2 + x + 1) +
√

3 arctan
(

1
3
(2x + 1)

√
3
)

A more powerful method for rational function integration where the
denominator of the rational function does not factor nicely into linear
and quadratic factors is looked at later. The next example shows that
Maple knows something about special functions, in this case the Sine
integral and the Cosine integrals.
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> int(sin(x)/(x-1), x);

Si(x− 1) cos(1) + Ci(x− 1) sin(1)

Consider the non-trival function f

> f := ((2*x-1)*exp(4*x)+(4*x^2+2*x-1)*exp(2*x)) /
> (exp(2*x)*x^2+x^2);

f :=
(2 x− 1) e4 x +

(
4x2 + 2 x− 1

)
e2 x

e2 xx2 + x2

The integral of f is computed by the Risch integration algorithm [8],
an algorithm for integrating elementary functions.

> int(f,x);

e2 x

x
+ 2 ln

(
e2 x + 1

)

Here is a definite integral where we are using the Int command to
produce the unevaluated integral. In this way, we can display what we
are computing, and the result that Maple obtains.

> f := exp(-t^2)*ln(t)*t^2:
> Int(f,t=0..infinity) = int(f,t=0..infinity);

∫ ∞

0
e−t2 ln(t)t2dt =

1
4
√

π − 1
8
√

πγ − 1
4
√

π ln(2)

This example illustrates the difference between numerical computation
and symbolic computation. Instead of a numerical value for the definite
integral, we get an exact formula. The formula involves the constants
π, Euler’s constant γ, and ln(2).

Here are some summations computed by Maple. First a formula for
the sum of the first n natural numbers
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> sum( i, i=0..n );

1
2
(n + 1)2 − 1

2
n− 1

2

Probably you will not recognize that in this form, let’s factor it

> factor( sum(i,i=0..n) );

1
2
n(n + 1)

Here is an indefinite sum of a hypergeometric function computed by
Gosper’s algorithm [4]

> sum((-3*n^2+28*n+57)*13^n/(n+1)!/(3*n+8)/(3*n+5), n);

13
13n−1

(3n + 5)n!

Finally, an infinite sum of a rational function.

> f := (i^4+2*i^2+2*i+2)/(i^6+2*i^5+3*i^4+2*i^3+2*i^2):
> Sum(f,i=1..infinity) = sum(f,i=1..infinity);

∞∑

i=1

i4 + 2 i2 + 2 i + 2
i6 + 2 i5 + 3 i4 + 2 i3 + 2 i2

= −1
2

+
1
6
π2

This sum was computed by Moecnk’s algorithm [7] which was used to
split the indefinite sum as follows

∑

i

f =
(
i2 + 1

)−1
+

∑

i

i−2.

The examples shown already include the use of some modern algorithms
for integration and summation. We will show some examples of current
research results later in this paper. First, however, we’d like to show
that Maple can also compute with numbers. This includes integers,
rational numbers, decimal numbers, algebraic numbers, and complex
numbers.
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> 41! + 1;

815915283247897734345611269596115894272000000000

Integers can have as many digits as you need. Because you can work
with such integers, it is feasible to do number theoretic calculations on
large numbers. For example, it happens that this integer is prime

> isprime( 41! + 1 );

true

The integer primality test used in Maple note is a probabilistic pri-
mality test. The complex unit i =

√−1 is input as I or sqrt(-1) in
Maple.

> (6+2*I)/(3-I);

8
5

+
6
5
I

Decimal or floating point numbers are input using a decimal point or
in scientific notation.

> 2.0 / 3.0;

.6666666667

Arithmetic is done in decimal, not binary, and by default, 10 digits of
precision are used. The precision is adjustable. An important property
of Maple and other computer algebra systems is that when you try to
compute with exact numbers, i.e. non-decimal numbers, then Maple
always computes the “exact answer”. If you compute with decimal
numbers, then Maple will compute a decimal number. For example,
compare these two calculations

> arcsin(sqrt(2)/2), arcsin(sqrt(2.0)/2.0);

1
4
π, .7853981631
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Examples from polynomial factorization

Maple V can factor univariate polynomials over the rationals and more
generally, algebraic number fields, and also finite fields. For example,
the polynomial x8− 8, which is irreducible over Q, factors over Q( 4

√
2)

as follows

> factor(x^8-8,2^(1/4));
(
x4 + 2

√
2
) (

x2 − 23/4
) (

x2 + 23/4
)

Release 2 includes factorization of multivariate polynomials over any
algebraic number or algebraic function field. See [9] for details. In the
example below, we factor a bivariate polynomial over Q(

√
2)

> factor( y^4-2*x*y^2-x^2, sqrt(2) );

−
(
x + y2 − y2

√
2
) (

x + y2 + y2
√

2
)

These examples have shown how one can compute over an algebraic
number field defined by a simple radical extension, the

√
2. It is possi-

ble to compute over a field defined by the roots of an irreducible poly-
nomial using Maple’s general RootOf notation. For example, consider
the polynomial x6 + x2y + y2. It is irreducible over the rationals.

> f := factor( x^6+x^2*y+y^2 );

x6 + x2y + y2

But if we let α be a root of this polynomial, then x−α will divide this
polynomial. Perhaps it has other non-trivial factors? We do this in
Maple as follows.

> alias(alpha=RootOf(f,x)):
> factor(f,alpha);

(
x4 + α2x2 + y + α4

)
(x + α) (x− α)

Other facilities of Maple that exploit these new facilities for algebraic
functions include integration, symbolic eigenvalues and eigenvectors,
and the solution of systems of polynomial equations.
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Examples from linear algebra

Maple can compute exact formulae for eigenvalues and eigenvectors as
well as numerical approximations. E.g. given the matrix

> A := matrix(3,3,[sqrt(2),x,alpha,
> x,sqrt(2),x,
> alpha,x,sqrt(2)]);




√
2 x α

x
√

2 x

α x
√

2




The eigenvalues are the roots of the characteristic polynomial

> factor(charpoly(A,lambda));

(
λ2 − 2

√
2λ− α λ + 2 + α

√
2− 2x2

) (
λ−

√
2 + α

)

Note that Maple has factored the characteristic polynomial over Q(
√

2).
Solving for λ we obtain

> e := eigenvals(A);

α

2
+
√

2 +
√

α2 + 8 x2

2
,
α

2
+
√

2−
√

α2 + 8 x2

2
,−α +

√
2

For each eigenvalue λi, a basis for its corresponding eigenvectors is
given by the nullspace of characteristic matrix λiI −A, i.e.

> seq( nullspace(charmat(A,lambda)), lambda = e );

{
[1,−α−√α2 + 8 x2

2x
, 1]

}
,

{
[1,−α +

√
α2 + 8 x2

2x
, 1]

}
, {[−1, 0, 1]}
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Examples from rational function integration

Consider integrating the following rational function

> f := (6*x^5+6*x^2-4*x+8*x^3-4)/(x^6+2*x^3-2*x^2+1);

6x5 + 8 x3 + 6x2 − 4x− 4
x6 + 2 x3 − 2x2 + 1

The difficulty in this example is that the denominator does not factor
over Q, hence we cannot use the traditional method of splitting the ra-
tional function into partial fractions. The Trager-Rothstein algorithm
[11] implemented in Maple V yields the nice result

∫
fdx =

∑

α2−2=0

(1 + α) ln(x3 − α x + 1)

That is, there are two logs corresponding to two roots ±√2 of the
polynomial α2 − 2 = 0. Hence, Maple obtains

> int(f,x);

(
1−

√
2
)

ln
(
x3 +

√
2x + 1

)
+

(√
2 + 1

)
ln

(
x3 −

√
2x + 1

)

Condider the function

f =
x4 − 3x2 + 6

x6 − 5x4 + 5 x2 + 4
Using the Trager-Rothstein algorithm, the following result involving
complex logarithms is obtained.

i

2
ln

(
x3 + ix2 − 3x− 2 i

)
− i

2
ln

(
x3 − ix2 − 3x + 2 i

)

An improvement due to Lazard and Rioboo [6] is implemented in Re-
lease 2. It seeks to obtain a real result from a real integrand with no
new poles.

> f := (x^4-3*x^2+6)/(x^6-5*x^4+5*x^2+4):
> int(f,x);

arctan
(
−3

2
x3 +

1
2
x5 +

1
2
x

)
+ arctan(x3) + arctan(x)
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Examples from definite integration

Maple V includes a new method for computing definite integrals based
on evaluating the derivatives of special functions. See [10]. For exam-
ple, it can compute integrals of the form

∫ ∞

a
tn exp(−uts) ln(bt)m sin(ctr) dt

or cos

where r ∈ {0, s, 2s, s/2}, and other restrictions on the constants apply.
In general these integrals can be expressed in terms of the incomplete
Gamma function, the Riemann zeta function, the Meijer G function,
and other special functions. For example

> int( exp(-t)*cos(t)*ln(t), t=0..infinity );

−1
4

ln(2)− 1
2
γ − 1

8
π

where γ is Euler’s constant. The calculation below illustrates a new
family of definite integrals that Release 2 knows about and also the
ability to make assumptions about symbolic parameters. The answer
to the integral below depends on the parameters p and q, in this case
whether they are positive or negative. With no additional information,
Maple cannot solve the problem. The assume facility in Release 2
allows users to state assumptions about symbolic parameters e.g. here
that p and q are real and positive

> f := x^(a-1)*exp(-p*x^s-q*x^(-s));

f :=xa−1e−p˜xs−q˜x−s

> assume(p>0); assume(q>0);
> int(f,x=0..infinity);

2
signum(s)

√
q˜

a
s BesselK(a

s , 2
√

p̃
√

q )̃√
p̃

a
s s
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Examples of asymptotic series and limits

A simple but powerful method for computing limits analytically is to
develop a series expansion about the limiting point. For example, to
compute the limit

lim
x→0

sin(x)
x

we can try to expand the function as a Taylor series about the origin.
In Maple

> series(sin(x)/x,x=0);

1− 1
6
x2 +

1
120

x4 + O
(
x5

)

¿From this Taylor series, one can immediately deduce that the limit
is 0. Limits at +∞ can be computed by computing asymptotic series.
Maple includes an implementation of a new model of “hierarchical”
series in which various essential singularities in addition to simple poles
are allowed e.g. ln(x) and e

1
x about x = 0. For example, the asymptotic

series for the error function erf(x) is

> series(erf(x),x=+infinity);

1 +
− 1√

πx
+ 1

2
√

πx3 − 3
4
√

πx5 + O
(

1
x7

)

ex2

¿From this series expansion, Maple can determine the following limit

> Limit(exp(x^2)*(1-erf(x)),x=infinity) =
> limit(exp(x^2)*(1-erf(x)),x=infinity);

lim
x→∞ ex2

(1− erf(x)) = 0

Release 2 includes a more powerful model of series for nested functions.
The idea behind the new algorithm is the following: first locate the
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most varying part of the expression. Treat this indeterminate as a
symbol and compute a series expansion in this symbol alone. If there
is no constant coefficient in the resulting series, you are done, otherwise,
recurse on that constant coefficient. See [5] for details of the algorithm.
Here is a difficult limit involving nested functions

> f := exp(exp(exp(Psi(Psi(Psi(n))))))/n:
> Limit(f,n=infinity) = limit(f,n=infinity);

lim
n→∞

eeeΨ(Ψ(Ψ(n)))

n
= 0

Here is a difficult example, involving nested Γ functions

> f := (GAMMA(n+1/GAMMA(n))-GAMMA(n))/ln(n):
> Limit(f,n=infinity) = limit(f,n=infinity);

lim
n→∞

Γ
(
n + 1

Γ(n)

)
− Γ(n)

ln(n)
= 1

References

[1] Char B.W., et al, First Leaves: Tutorial Introduction to Maple,
ISBN 0-387-87621-3 Springer-Verlag, New York, 1992.

[2] Char B.W., et al, Maple V Language Reference Manual, 1st edition,
ISBN 0-387-97622-1 Springer-Verlag, New York, 1991.

[3] Geddes K.O., Czapor S.R., Labahn G.L., Algorithms for Computer
Algebra, Kluwer, Boston, 1992.

[4] Gosper R.W., Decision procedure for indefinite hypergeometric
summation, Proceedings National Academy of Science, 75 (1), 1978.

[5] Gruntz D., A New Algorithm for Computing Asymptotic Series,
Accepted for ISSAC ’93 in Kiev.

62



The Maple Computer Algebra System

[6] Lazard D., Rioboo R., Integration of Rational Functions: Rational
Computation of the Logarithmic Part, J. Symbolic Computation,
Vol. 9, No. 2, 1990.

[7] Moenck R., On Computing Closed Forms for Summations, Pro-
ceedings of the 1977 Macsyma User’s Conference, 1977.

[8] Risch R., The Problem of Integration in Finite Terms, Trans. AMS
139, 1969.

[9] Rybowicz M., Extended Capabilities for Computing with Algebraic
Functions and Numbers, Maple Technical Newsletter, Birkhäuser,
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