
Computer Science Journal of Moldova, vol.1, no.1(1), 1993

The Object Oriented Programming for

Queuing System

I.Grama G.Mishkoy

Abstract

The object oriented programming approach for priority ser-
vice systems with orientation is developed. It provide fast evalu-
ation of the characteristics.

1 Introduction

Priority systems with orientation have been the subject of most in-
tensive investigation for the past decade. In particular in [1] a class of
systems of this type with non-zero orientation time of the service device
as well as with its various strategies in free state have been studied.
The necessity and significance of the analysis of these systems have
been pointed out by various scientists (see, for example [2], [3], [4], [5])
and have been caused by the entire set of requirements to the develop-
ment of priority systems theory (the need of studying more common
models and obtaining of new more common mathematical results) and
by actual practice need.

In the applied aspect a number of problems of real-time systems,
information and computation systems and a number of problems of
other systems are well described by models of these systems.

The main peculiarity of the mentioned models is that they allow
taking into account time losses during different kinds of works, switch-
ings and so on, taking place in real systems and having an acciden-
tal character. For example, these are losses within the switching of

c©1993 by I.Grama, G.Mishkoy

85

I.Grama, G.Mishkoy

computer process in scheduling algorithms, within the information ex-
change while requesting the memory of exchange, within writing and
restoring in the interrupt computer systems, etc.

New approaches and conception for solving such topical applied
problems can be suggested on the basis of the results of this class of
systems. For example, on the basis of the results of priority systems
with orientation the conception of functional designing of computation
complexes has been worked out and realized [5]. New technical solution
can be suggested too.

It must be noted that the mathematical results were obtained in
terms of the generating function, the Laplace and the Laplace-Stieltjes
transforms and some recurrent functional equations. For practical
needs it is necessary to create the software which allows us to eval-
uate the characteristics of the priority systems. It includes methods
solving the recurrent functional equations, inverting the Laplace and
Laplace-Stieltjes transform and so on.

Earlier a version of this software was worked out in [8]. The aim of
the paper is to present a new approach to the priority systems software
based on the object oriented programming (OOP).

2 Analytical means

According to the mathematical theory of priority systems it is supposed
that the switching process from one class to another one takes place
instantly (for example, see [6]). But this assumption is not fulfilled for
a considerable part of real systems since switching always takes some
time. The systems which take into account the switching process are
called the priority service systems with orientation (PSSO) and the
switching time is called orientation time.

We shall present some results describing the behavior of the PSSO.
It should be pointed out that difficulties arise with their implemen-
tation for practical needs, since there are not efficient algorithms for
evaluating its characteristics.

While making the statement, we shall keep the terminology and
notations adopted in [1] and formulate the results for Mr|Gr|1 priority

86

Object Oriented Programming for Queuing System. . .

model involving orientation and absolute priority.
The arrival of the higher priority requests in the device, busy with

queuing orientation or servicing the lower priority request, interrupts
both the orientation and the service. It is supposed that when the
PSSO becomes free of the higher priority requests the interrupted ori-
entation will be continued, while the interrupted service is restarted.

As far as the strategy of the device in the idle state is concerned, let
us assume that its orientation gets instantly annulled (reset) as soon
as the busy period is completed.

2.1 Distribution of the busy period

Let us denote by Bi(t), Cj(t) and Π(t) the distribution functions of
duration of service of requests of the i-th priority class, duration of
orientation of the device for servicing the requests of j-th class, i 6= j,
i = 1, ..., r and busy period, respectively. Let ai be the parameter of
the arriving Poisson flow of priority i and σk = a1 + ... + ak, σ0 = 0,
σ = σr. Let βi(s), cj(s), π(s) be the Laplace-Stieltjes transforms of the
distribution functions Bi(t), Cj(t), and Π(x) respectively i.e.

βi(s) =
∫ ∞

0
e−stdBi(t),

Statement 1 The Laplace-Stieltjes transform of the distribution func-
tion of a busy period is determined from the system of recurrent func-
tional equations.

σkπk(s) = σk−1πk−1(s + ak)
+σk−1{πk−1(s + ak(1− π̄kk(s)))− πk−1(s + ak)} (1)
×νk(s + ak(1− πk(s))) + akπkk(s),

πkk(s) = νk(s + ak(1− π̄kk(s)))π̄kk(s), (2)
π̄kk(s) = hk−1(s + ak(1− π̄kk(s))), (3)

hk(s) =
βk(s + σk−1)

1− σk−1

s+σk−1
[1− βk(s + σk−1)]νk(s)

, (4)

νk(s) = ck(s + σk−1[1− πk−1(s)]). (5)

87

I.Grama, G.Mishkoy

Functions πk(s),...,νk(s) included in expression (1)-(5) are the Laplace-
Stieltjes transforms of distribution functions Πk(t),...,Nk(s) of the sup-
plementary intervals of the k-th period,..., the k-th orientation cycle
having rather determined independent meaning. Thus, (4) is nothing
but the distribution of the total time of the priority request k occur-
rence in the device. Let us denote by βk1, ci1, πk1,..., νk1 the first
moments of the distribution functions Bk(t), Ck(t), Πk(t),..., Nk(t),
respectively. Let

ρk =
k∑

i=1

aibi,

where

b1 =
β11 + c11

1 + a1c11
,

bi = Φ1 . . .Φi−1
1

σi−1
[

1
βi(σi−1)

− 1](1 + σi−1ci1),

Φ1 = 1, Φi = 1 + (σi − σi−1πi−1(ai))ci1, i = 2, ..., k.

Statement 2 If ρk < 1 then

σkπk1 =
Φ2 . . . Φk + ρk−1

1− ρk
,

π̄k1 =
bk

1− ρk
,

hk1 =
bk

1− ρk−1
,

νk1 =
Φ2 . . . Φk−1

1− ρk
ck1.

2.2 Probabilities of the →j-state

In the process of functioning of a queuing priority system with orien-
tation the servicing device can be in one of the following states:

• busy with servicing a request,

• busy with orientation for servicing,

88

Object Oriented Programming for Queuing System. . .

• free from orientation for servicing or servicing itself.

In the case when the device is busy with servicing, the question arises
as what priority class of requests is servicing and in the case if the
device is busy with orientation to what priority class of requests is it
orienting in the time under consideration ?

Let
→
Pj(s) denote the probability that at the time instant t ∈ [0,∞)

the device is busy with orientation for servicing of a request of the j-th
priority class, j = 1, ..., r. Furthermore, let us denote

→pj(s) =
∫ ∞

0
e−st →Pj(t)dt.

Statement 3 The Laplace transform →pj(s) satisfies the following
equality

→pj(s) =
σ →

jπ(s)
s + σ − σπ(s)

,

where

σk
→
jπk(s) = {ψj(s)γj−1(s)

+
Gj(s)σj−1πj−1(s)ψj(s)Qj(s)

1− hj(s)
}

×
k∏

i=j+1

{1 + ψi(s)γi−1(s)

+
[1 + σi−1πi−1(s)ψi(s)]Gi(s)Qi(s)

1− hi(s)
}, j < k,

σk
→
kπk(s) = {ψk(s)γk−1(s)

+
Gk(s)σk−1πk−1(s)ψk(s)Qk(s)

1− hk(s)
}, j = k,

Qj(s) = γj−1(s)νj(s)− σj−1πj−1(s + aj)− σjπj(s),
γi−1(s) = σi−1[πi−1(s)− πi−1(s + ai)] + ai,

ψj(s) =
1− cj(s + σj−1[1− πj−1(s)])

s + σj−1[1− πj−1(s)]

Gj(s) =
1− βj(s + σj−1)

s + σj−1[1− βj(s + σj−1)]πj−1(s)νj(s)
.

89

I.Grama, G.Mishkoy

Functions πj(s), νj(s), hj(s) are determined from the expressions (1)-
(5).

2.3 Probabilities of ∗j-state
Let

∗
Pj(t) be the probability that at the instant t the device is busy

with servicing the requests of the class j,j = 1, ..., r. Let

∗pj(s) =
∫ ∞

0
e−st ∗Pj(t)dt.

Statement 4 The Laplace transform ∗pj(s) satisfies the following
equality

∗pj(s) =
σ ∗

jπ(s)
s + σ − σπ(s)

,

σk
∗
jπk(s) =

Gj(s)ψj(s)Qj(s)
1− hj(s)

×
k∏

i=j+1

{1 + ψi(s)γi−1(s)

+
[1 + σi−1πi−1(s)ψi(s)]Gi(s)Qi(s)

1− hi(s)
}, j < k,

σk
∗
jπk(s) =

Gk(s)ψk(s)Qk(s)
1− hk(s)

, j = k.

Functions Qj(s), ..., Gj(s) are determined above.

Let
∗
Pj and

→
Pj be the stationary probabilities of the →j-th and

∗j-th state.

Statement 5 If ρr < 1 then

∗
Pj =

σ ∗
jπ(0)

1 + σπ1
,

→
Pj =

σ →
j π(0)

1 + σπ1
,

where π1 = πr1 is determined (at k = r) from statement 2.

90

Object Oriented Programming for Queuing System. . .

3 Object oriented programming for queuing sys-
tems. The basic objects.

The basic principles of OOP for queuing system will be presented in the
sequel. Through this compartment we follow the convenience adopted
in the programming language PASCAL 6.0 stating that any object has
at most one ancestor.

We begin the description of the queuing system in terms of object
oriented programming by finding its most simple structure unit. From
the Probability Theory’s point of view the simplest structure element in
some queuing system is the random variable (r.v.). This is so because
all quantities involved in the description of the model of the queuing
system are some characteristics of positive r.v..

For the sake of definiteness we worked out two examples. So the
equations (1)-(5) are written in terms of the Laplace-Stieltjes trans-
forms of the distribution functions (d.f.) of such time periods as πk,
πkk, π̄kk, hk, νk periods. In their turn all these time periods are posi-
tive r.v.. For the second example we have the probabilities of →j-state
→
Pj(s) and ∗j-state

∗
Pj(s) which are understood as the distribution

of the r.v. with the discrete values 1, 2, ..., r.

3.1 Object type RV

In this section we describe the object type RV corresponding to the
abstract r.v. with the continuous d.f..

We begin by selecting three different possibilities to define a r.v..
The first one is to define r.v. by means of their d.f. DistrF (t). The
second one is to describe a r.v. by using the density function (ds.f.)
DensityF (t) if it exists. Interdependence of these two methods of
defining a r.v. are given by the relations

DistrF (t) =
∫ t

0
DensityF (s)ds,

DensityF (s) = DistrF
′
(t).

91

I.Grama, G.Mishkoy

For the third possibility we recall that the basic equations (1)-(5) de-
scribing PSSO are in terms of the Laplace-Stieltjes transform of d.f. of
some r.v.. Therefore we have to describe a r.v. also in terms of the
Laplace-Stieltjes transform LaplaceF (t) of their d.f.. In order to estab-
lish the connection between two functions DistrF (t) and LaplaceF (t)
we have to mention that there exists a one-to-one application from
the set of d.f. onto the set of their Laplace-Stieltjes transforms. This
gives us the possibility to describe completely a r.v. knowing only the
Laplace-Stieltjes transform as well.

The above mentioned allows us to understand a r.v. as the collec-
tion of three functions: DistrF (t), DensityF (t), LaplaceF (t). For the
reasons which we will explain just now it is convenient to specify the
function DistrF (t) to be the inversion formula of the Laplace-Stieltjes
transform LaplaceF (t)

DistrF (t) =
1

2πi

∫

C

LaplaceF (s)
s

estds,

C – being the integration contour C = {z is complex number with
Re z > 0}, the DensityF (t) to be the inversion formula of the Laplace
transform LaplaceF (t)

DensityF (t) =
1

2πi

∫

C
LaplaceF (s)estds,

C – being the above integration contour and LaplaceF (t) to be the
Laplace-Stieltjes transform formula

LaplaceF (t) =
∫ ∞

0
e−stdDistrF (s).

We argue such choice in the following manner. In case we have known
for instance only the r.v.’s function LaplaceF (t) then we cover the in-
herited method LaplaceF (t) by new a method which can explicitly cal-
culate it while for unknown characteristics DistrF (t) and DensityF (t)
the inherited methods will provide approximation formulae.

So we introduce the object type RV corresponding to the r.v. as
follows:

92

Object Oriented Programming for Queuing System. . .

Object type

RV =





Ancestor :
Fields :
Methods : Init;

Done;virtual;
DistrF(t);virtual;
DensityF(t);virtual;
LaplaceF(t);virtual;

Description:

• Init, Done: empty constructor and detractor,

• DistrF(t): method calculating the inversion of the Laplace-
Stieltjes transform of LaplaceF(t),

• DensityF(t): method calculating the inversion of the Laplace
transform of LaplaceF(t),

• LaplaceF(t): method calculating the Laplace-Stieltjes trans-
form of DistrF(t).

The just described object type RV does not represent a really existing
r.v.. We only need the object type RV to construct the object types
related with the r.v. of the desired kind to be used in modeling the
queuing system.

We shall present an example of an object type corresponding to the
r.v. with the known Laplace-Stieltjes transform f(t, a), a being some
parameter:

Object type

TMyRV =





Ancestor : RV;
Fields : a;
Methods : LaplaceF(t);virtual;

Description:

• a is the value of parameter of f(t, a),

93

I.Grama, G.Mishkoy

• LaplaceF(t) = f(t, a).

If variable MyRV is of type TMyRV then to access the value of its d.f.
DistrF(t) we write simply MyRV.DistrF(t) to call the implemented
method inverting the Laplace-Stieltjes transform of
MyRV.LaplaceF(t).

Now we proceed describing some types of useful r.v.. We present
the description of the object types related to the r.v. with exponential
and Erlang d.f.. The structures of these object types are as follows:

Object type

ExpRV =





Ancestor : RV;
Fields : a;
Methods : DistrF(t);virtual;

DensityF(t);virtual;
LaplaceF(t);virtual;

Description:

• a: parameter,

• DistrF(t)= 1− e−at,

• DensityF(t)= ae−at,

• LaplaceF(t)= a/(a + t).

Object type

ErlRV =





Ancestor : RV;
Fields : a,k;
Methods : DistrF(t);virtual;

DensityF(t);virtual;
LaplaceF(t);virtual;

Description:

• a, k: parameters,

• DensityF(t) = ak tk−1

(k−1)!e
−at,

• LaplaceF(t) = ak

(a+t)k .

94

Object Oriented Programming for Queuing System. . .

3.2 Object type Queue

In this section we describe the object type related with the exponential
input of requests. To this end let us explain the structure of input
queue. The input queue is formed by all arriving requests while the
PSSO is busy. It includes r flows corresponding to the priorities 1,...,r.
The time length between two consecutive arrivals of requests of the
same flow is the exponential r.v. with parameters ai.

In order to define the flow we use the object type Flow with the
following structure:

Object type

Flow =





Ancestor : ExpRV;
Fields :
Methods : SetIntensity(a);

GetIntensity;

Description:

• SetIntensity(a): sets the value of the parameter of exponential
r.v.,

• GetIntensity: gets the value of the parameter of exponential
r.v..

Since the input queue contains r flows we can understand it as a col-
lection of r r.v.. Corresponding to the input queue we introduce the
object type Queue. Its structure is presented as follows:

Object type

Queue =





Ancestor :
Fields : Flow;
Methods : Init(r);

Done(r);virtual;
DistrF(k,t);virtual;
DensityF(k,t);virtual;
LaplaceF(k,t);virtual;
SetIntensity(k,a);
Intensity(k);

95

I.Grama, G.Mishkoy

Description:

• Flow: the pointer to the array of objects of type Flow,

• Init(r): creates the dynamic array of dimension r of objects of
type Flow and set the pointer to this array in Flow,

• Done(r): disposes the dynamic array of dimension r of objects
of type Flow at the pointer Flow,

• DistrF(k,t), DensityF(k,t), LaplaceF(k,t): return the val-
ues DistrF(t), DensityF(t), LaplaceF(t) of the k-th flow,

• SetIntensity(k,a), Intensity(k): set and return the inten-
sity ak of the k-th flow.

3.3 Object types Orient and Service

This section deal with the object types related to the orientation and
service periods.

Recall that before proceeding to serve the request of priority k the
PSSO needs an orientation time period for preparing, if the previous
request’s priority differ of k. This time period is actually a positive r.v..
The orientation times corresponding to different priorities are distinct,
so in order to describe the orientations process we need a collection
of r r.v.. The object type Orient is created to keep this r.v. and to
provide their treatment.

Object type

Orient =





Ancestor :
Fields : Time;
Methods : Init(r);

Done(r);
SetRV(k,OrientTime);
DistrF(k,t);
DensityF(k,t);
LaplaceF(k,t);

96

Object Oriented Programming for Queuing System. . .

Description:

• Time: the pointer to the array of objects of type RV,

• Init(r): creates the dynamic array of dimension r of pointers
of type RV and sets the pointer to this array in Time,

• Done(r): disposes the dynamic array of dimension r of objects
of type RV at the pointer Time,

• SetRV(k,OrientTime): sets the pointer Time[k] to point to the
object of type RV wanted to be the k-th orientation time,

• DistrF(k,t), DensityF(k,t), LaplaceF(k,t): return the val-
ues LaplaceF(t), DistrF(t), DensityF(t) of the k-th orienta-
tion time.

After the orientation the PSSO device proceeds to serve the request.
Again the PSSO device need a random time period to serve the request.
So a collection of r r.v. fully describe the service times. Object type
Service is destined to handle these service times and is defined in the
same way as object type Orient.

3.4 Object type Status

At this point we have to create an object for the state of the PSSO.
The PSSO state is determined by two parameters we call Scheme

and Regime respectively (see [8]). The first one is a bidimensional
vector with components OrientDisc and ServiceDisc each oh them
describing the disciplines of orientation and service respectively. Pa-
rameter Scheme takes the values in the following table

1.1 (1, 2) (1, 3) (1, 4)

2.1 (2, 2) (2, 3) (2, 4)

3.1 (3, 2) (3, 3) (3, 4)

Schemes (1,1),...,(2,3) represent six types of the absolute priority Abs1,
Abs2, Abs3, Abs4, Abs5, Abs6. Schemes (3,1),...,(3,3) represent three

97

I.Grama, G.Mishkoy

types of the semiabsolute priority SemiAbs1, SemiAbs2, SemiAbs3.
Schemes (1,4),(2,4) represent two types of the semirelative priority
SemiRel1, SemiRel2. Scheme (3,4) represents the relative priority Rel.

The parameter Regime set the behavior of the PSSO while the
system is not busy. There are three alternatives Reset, LookAhead,
WaitMostProb.

The object type Status provides a handle for the parameters
Dimension, OrientDisc, ServiceDisc and Regime.

Object type

Status =





Ancestor :
Fields : Dimension;

OrientDisc; ServiceDisc;
Regime;

Methods : Init; Done;virtual;
SetDimension(Dim);virtual;
GetDimension;virtual;
SetServiceDisc(ServiceD);virtual;
GetServiceDisc;virtual;
SetOrientDisc(OrientD);virtual;
GetOrientDisc;virtual;
SetRegime(Reg);virtual;
GetRegime;virtual;
SetPriority(Prior);virtual;
GetPriority;virtual;

Description:

• Dimension: the numbers of priorities r,

• OrientDisc: keeps the orientation discipline,

• ServiceDisc: keeps the service discipline,

• Regime: keeps the parameter Regime,

• Init: installs the default values for all fields,

• Done: destroys the object,

98

Object Oriented Programming for Queuing System. . .

• All other methods install or return the values of corresponding
parameters.

3.5 Object type MG

Having defined the object types Queue, Service, Orient and Status
we can construct now the object type MG containing the full background
information on the PSSO.

Object type

MG =





Ancestor : Status;
Fields : Queue;

Service;
Orient;

Methods : Init(Dim);
Done;virtual;

Description:

• Queue: the object of type Queue,

• Service: the object of type Service,

• Orient: the object of type Orient,

• Init, Done: call the Init, Done methods of the objects Queue,
Service, Orient and Status.

3.6 Object type PSSO

Object type PSSO is introduced to provide a background for PSSO
characteristics. It includes the procedures Fast and FastIter which
are of crucial importance in the calculation of all characteristics.

99

I.Grama, G.Mishkoy

Object type

PSSO =





Ancestor : MG;
Fields : a, sigma;

cnt, InitpkkDimension, Initpkk;
pks, bpkk, pk1s1, pk1s2;

Methods : Fast(k,s);
FastIter(k,s);
n(k,s,x);
h(k,s,x,y);

Description:

• a,sigma: the arrays of input intensities and their partial sums,

• cnt, InitpkkDimension, Initpkk: some quantities for use in
methods Fast and FastIter,

• pks, bpkk, pk1s1, pk1s2: the values πk(s), π̄kk(s), πk−1(s + ak),
πk−1(s + ak(1− π̄kk(s))) respectively,

• Fast, FastIter, n, h: produce background calculation for all
PSSO characteristics,

3.7 Object types related with PSSO characteristics

We treat any PSSO characteristic as a r.v. related to some object
of type PSSO. This allows the characteristic to access the fields and
methods of the object for its own use. First we introduce the abstract
type PSSOChar which include the common feature of all characteristics,
i.e. the property to access the object of type PSSO.

Object type

PSSOChar =





Ancestor : RV;
Fields : k;

PSSOptr;
Methods : Init(PSSO);

SetLevel(i);

100

Object Oriented Programming for Queuing System. . .

Description:

• k: selected priority,

• PSSOptr: pointer to the object of type PSSO,

• Init(PSSO): sets PSSOptr=PSSO,

• SetLevel(i): sets k=i,

Now we proceed defining object types corresponding to some concrete
PSSO characteristics. To do this we only need to redefine the inherited
method LaplaceF of the object type PSSOChar in the proper way.

First we define the object type of the characteristic πk(s).
Object type

pk =





Ancestor : PSSOChar;
Fields :
Methods : LaplaceF(t);

Description:

• LaplaceF(t) runs the procedure Fast(k,t) of the object to
which PSSOptr points and returns the value pks.

Now let us present the object type of the characteristic πkk.
Object type

pkk =





Ancestor : PSSOChar;
Fields :
Methods : LaplaceF(t);

Description:

• LaplaceF(t) runs the procedure Fast(k-1,t) of the object to
which PSSOptr points and returns the value n(k,t,pks).

For other characteristics the similar object types are available.

101

I.Grama, G.Mishkoy

The connection between object types is presented in the figure be-
low.

RV

ExpRV MyRV1 MyRV2

Flow

Queue Service Orient Status

MG

PSSO

pk pkk nk hk

PSSOChar

The thin line shows the origin of the object while the thick line shows
what objects it contains .

4 Numerical results

The above object types were used to evaluate the characteristics πk,
πkk, π̄kk, nk, hk. In the following tables we present some numerical
results. The first number inside each column represents the value of
the corresponding characteristic, the second one being the processing
time in msec . All calculations were performed at the computer IBM
PC 286.

In the first table we evaluate the Laplace-Stieltjes transform of the

102

Object Oriented Programming for Queuing System. . .

d.f. corresponding to the characteristics.

t πk πkk π̄kk nk hk

.00001 1.000 61 1.000 61 1.000 61 1.000 22 1.000 16
.1 .8551 66 .8601 66 .9136 71 .9571 22 .9365 22
.5 .6039 44 .6111 44 .7441 44 .8467 17 .7788 22

1.23 .4156 33 .4205 27 .5956 33 .7300 11 .6253 11
3.45 .2088 22 .2102 22 .3986 22 .5442 11 .4156 11
5.67 .1310 16 .1316 17 .3066 16 .4415 06 .3176 06
10.12 .0670 16 .0671 16 .2124 17 .3233 05 .2182 06
20.34 .0250 11 .0250 16 .1259 17 .2015 06 .1281 05

In the second table the d.f. corresponding to the characteristics are
evaluated .

t πk πkk π̄kk nk hk

.00001 .000 038 .000 039 .000 039 .000 022 .000 022
.1 .058 104 .058 110 .251 110 .396 049 .256 049
.5 .405 159 .408 165 .627 159 .798 072 .660 077

1.23 .646 214 .656 214 .799 220 .903 099 .844 099
3.45 .845 303 .855 307 .919 302 .973 132 .958 132
5.67 .911 363 .918 357 .955 357 .990 149 .984 149
10.12 .963 429 .965 428 .982 429 .998 165 .997 165
20.34 .992 510 .992 511 .996 511 1.00 182 1.00 187

References

[1] Klimov, G.P. and Mishkoy, G.K. (1979): Priority service systems
with orientations. Moscow State University, (Russian).

[2] Jaiswal, N.K. (1968): Priority queues. Academic Press, New York.

[3] Bronstein, O.I. and Dukhovny, I.M. (1976): Priority models in com-
puter systems. Nauka, Moscow, (Russian).

[4] Lipaev, V.V. (1979): Allocation of resources in computer systems.
Statistica, Moscow, 1979, (Russian).

103

I.Grama, G.Mishkoy

[5] Kabalevsky, A.N. (1986): Personal computers. Nauka, Moscow,
(Russian).

[6] Gnedenko, B.V. et al. (1973): Priority service systems. Moscow
State University, (Russian).

[7] Mishkoy, G.K. (1990): Priority queuing involving orientation
and the problems of their software implementation. Computers
Math.Applic. vol 19, no1, pp. 109-113.

[8] Mishkoy, G.K. etc. (1990): Software for priority systems with ori-
entation. Stiintsa, Kishinev, (Russian).

I.Grama, G.Mishkoy Received September 15, 1992
Institute of Mathematics,
Academy of Sciences of Moldova,
5 Academiei str.,
Chişinău, 277028, Moldova

104

