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The matrix representation of fuzzy knowledge

and its application to the expert systems design

V.Levchenko, A.Savinov

Abstract

An approach to the diagnostic type expert systems design
based on the special matrix representation of fuzzy predicates in
the attribute model of the problem domain is presented. Inten-
sive representation of predicates by means of sectional matrices
is an analogue of the conjunctive normal form. Rules, positive
examples and negative examples (in general, all fuzzy) can be
used to form knowledge base. Diagnostics problem is thought
of as finding some attribute values provided that the informa-
tion about other attribute values is available. Logical inference
is based on an equivalent transformation of the matrix to that
containing all prime disjuncts by using the operation < xk >
of fuzzy resolution. Two strategies to carry out such transfor-
mation are described. On the basis of formalism presented the
expert system shell EDIP is developed, the first version of that
is non-fuzzy and the second one allows working with fuzzy data
and conclusions.

1 Introduction

There exists a wide class of problem domains for which one can build
(simply enough) the attribute model, i.e. to pick out a finite set of
attributes essential from the point of view of the problem being solved,
and to define the corresponding sets (also finite) of values for each
attribute. Then the interdependencies characteristic of the diagnostic
class can be described in terms of the pairs ”attribute-value” and the
diagnostics problem will consist in finding some attribute values if the
information about other attribute values is available.
c©1993 by V.Levchenko, A.Savinov
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This problem converts into trivial one unless one principal limita-
tion is taken into account: the description of the class being diagnosed
for the well-known reasons is given in the intensive way, i.e. one shows
the characteristic subject properties but not enumerates all subjects in
the class. Besides, as we intend to deal with the human-expert knowl-
edge, it is natural to admit the possible vagueness in the diagnostic
problems (e.g. in the form of degrees of confidence) of both this very
knowledge about the diagnostic class and the given initial data. The
trend of our research is determined by the final goal - building in the
frames of this approach the basis for the realization of the diagnostic
type expert system-shell.

The knowledge is thought to be the information (possibly fuzzy)
about logical ties between subject attributes in the diagnostic class.
The knowledge base is presented as a number of known relationships
obtained from experts’ reports and other sources. The system of logical
equations may be written in the special matrix form if it is represented
as an analogue of the conjunctive normal form. Formalisms providing
logical inference, dialog control and other conventional functions of the
expert systems are based on the transformations of such matrices. The
peculiarities of this matrix ”packing” of predicates are employed, for
the most part, for the construction of the corresponding algorithms.

One of the positive conclusions of this work is that the formalism of
the fuzzy sectional vectors and the matrix representations of the fuzzy
predicates make it possible to write uniformly the main information of
the diagnostic problems (about the facts and rules) and to realize effec-
tively and simply enough the logical inference algorithms, explanations
and the hypotheses forming which are responsible for the functioning
of an expert system.

The complete formal equality of the attribute rights in solving di-
agnostic problems for the system EDIP allows no selecting beforehand
the goal attributes and the observed ones. The latter gives a free hand
to the user during consultation. Particularly, it permits using the EDIP
as the recognition or teaching system. With the help of this system-
shell the manipulation with the structural (of the tree kind) knowledge
base can be organized in simple ways.
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2 The attribute model. The syntax and se-
mantics of predicates

In this part we will define more exactly the notion of the attribute
model of the problem domain [2] and we will give the definition of fuzzy
predicates in this model, which is the base of knowledge representation.
The subject (or the state) of the problem domain is compared to its
description in the chosen attribute system as a set of the values of
attributes. Then the consideration of the real subject is replaced by
the study of its projection on this attribute system.

It is clear that the success or failure in solving a problem depends
on the apt choice of the attribute system adequate to the problem. It
is also obvious that the problem demanding the intricate information
processing with one attribute set may be quite simple with the other
set. However we will not touch upon this aspect because in most cases
we do not have anything which is to be measured but something which
can be measured.

All possible combinations of the values of attributes produce the
description space of the problem domain. The interdependences are
understood as the fact that only particular states of the problem do-
main are admissible. In the attribute model it means distinguishing
some subset of semantically right descriptions from the whole descrip-
tion space.

The attribute model of the problem domain will be represented by
a triple M =< X, A, π >, where X is the set of attributes, A is the
collection of the sets of the values of attributes and π is the subset of
the Cartesian product of the sets of values from A.

Although the attribute model definition does not show the way the
set π is given in, nevertheless, as it was already said, from the point
of view of application only those methods are interesting which admit
the compact (intensive) representation of π. Here the elementary fuzzy
predicates, defined on every from the sets of the attribute values and
their logical connectives, are assumed to be the foundation of such
representation. We will define exactly the elementary predicate below.

Let some problem domain be described on the syntax level by
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the set of n attributes X = {x1, x2, . . . , xn} , each of them taking its
values from the finite sets A1, A2, . . . , An respectively. The Carte-
sian product of the sets of values Ω = A1 ×A2 × . . .×An forms the
states space of the problem domain or the universe. Every element
ω =< e1, e2, . . . , en >∈ Ω (ei ∈ Ai, i = 1, 2, . . . , n) represents the de-
scription of some concrete state of the problem domain.

It is clear that the syntactical level of description is not enough
to reflect the state of the problem domain - it also needs the semantic
level which can express the problem domain relationships. To represent
the semantics from the set Ω of all syntactically right descriptions, the
subset of admissible descriptions should be selected. The problem of
defining the subset π, as well as choosing the attribute system X, is
quite nontrivial and is connected with the problem of expert knowledge
elicitation which is being solved within knowledge engineering domain.

We will assume that the subset π is the fuzzy set in Zadeh’s mean-
ing [6] and we will represent it by the fuzzy predicate π : Ω → [0, 1] in
the model M . The predicate π assigns each element ω ∈ Ω a number
π(ω) ∈ [0, 1] . It is understood, for example, as the degree of mean-
ingfulness of the corresponding description from Ω. The predicate π
imposes fuzzy restrictions on the admissible states of the problem do-
main, which are interpreted by the subject nature. The fuzzy predicate
π may be considered to be an invariant of the problem domain remain-
ing constant during all the time it is functioning.

The use of fuzzy knowledge in the fuzzy predicates form is especially
suitable in ill structured domains, where the fuzzy semantics means can
compensate the deficiency of the attribute system or the shortage of
data. In any case bringing in the fuzziness always widens the expressive
potential of any knowledge representation technique.

3 Sectional vectors and matrices

The sectional vector and matrix technique will be used to represent
finite predicates. For the first time this technique was proposed in
[1] to represent two-valued predicates, where sectional vector was de-
fined as consisting of zeros and unities. Later [3-5,8] this method was
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generalized to represent fuzzy finite predicates.
Sectional vector

u = u1.u2. · · · .un

is defined as a combination of n sections ui (i = 1, 2, . . . , n) separated
by points, each of them corresponding to one attribute xi ∈ X. The
section

ui = .ui1ui2 · · ·uini .

consists of ni components uij (j = 1, 2, . . . , ni) taking its values from
the segment [0, 1]. Each component corresponds to one value of the
attribute. Let, for example, the problem domain be described by the
attributes X = {COLOR, WEIGHT} with the values from A1 =
{Red, Blue, Y ellow, Green} and A2 = {Light, Heavy} respectively.

Each section ui of the vector u explicitly represents the predicate

µi : Ai → [0, 1],

defined over all values of the ith attribute, where

µi(aij) = uij .

We will refer to µi as elementary fuzzy predicate.
Just as in non-fuzzy logic let us define two interpretations of sec-

tional vectors: as conjuncts and as disjuncts. The vector k interpreted
as conjunct defines the following fuzzy predicate on Ω:

µk(ω) = minµki(ei), where ω ∈ Ω, ei ∈ Ai.

Similarly, if the vector d is interpreted as disjunct then

µd(ω) = maxµdi(ei), where ω ∈ Ω, ei ∈ Ai.

For example, the sectional vector 011
2

1
7 .01

5 interpreted as conjunct
defines the predicate which on the element < Y ellow,Heavy > equals
min(1

2 , 1
5) = 1

5 . But if this vector is interpreted as disjunct, then the
predicate on the same element will be max(1

2 , 1
5) = 1

2 .
By means of the one vector-conjunct k we can represent any pred-

icate over Ω which equals 0 everywhere except the only element e,
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where µk(e) = ν > 0. Such predicate µk selects one element from the
universe Ω and looks like a peak with the height ν on the zero level
surface. To represent predicate µk the vector k must contain exactly
one ν in every section. With the help of this property it is possible
to represent elements from Ω by the conjuncts containing one unity in
every section (the rest of the components are zeros). For example, the
object < Red, Light > is written in the form of the conjunct 1000.10.

Similarly, by means of the one vector-disjunct d containing exactly
one non-unity component in every section we can represent any predi-
cate over Ω which equals 1 everywhere except the only element e, where
µd(e) = ν < 1 (such predicate looks like a hole in the surface of level
1.

Because of the insufficient expressive power of one vector (conjunct
or disjunct) for representing any fuzzy predicates, let us introduce into
consideration sectional matrices consisting of a number of sectional
vector-lines. Below we will always interpret a sectional matrix D as a
conjunction of its line-disjuncts. In accordance with this interpretation
a sectional matrix D consisting of m lines di defines the predicate

µD(ω) = min(µdi(ω)) (i = 1, 2, . . . , m, ω ∈ Ω).

The predicate µD is an intersection of the predicates defined by the
line-disjuncts of the matrix D. The representation of fuzzy predicates
in the matrix form corresponds to writing two-valued predicates in con-
junctive normal form and just as in non-fuzzy case such representation
is universal.

4 Equivalent transformations of sectional ma-
trices

The minimal value of the elementary predicate defined by one section
will be referred to as the section constant. Analogically, the minimal
value of the predicate defined by a disjunct will be referred to as the
disjunct constant:

const(ui) = minµi(aij), const(u) = minµu(ω).
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The section and disjunct constants will be denoted also ui0 and u0

respectively. The disjunct constant value is defined by its section con-
stants in the following way:

const(u) = max(const(ui)).

If the disjunct (section) constant is equal to zero, then such disjunct
(section) is said to be normal, otherwise it is said to be subnormal.

Let us introduce the following operations on the sections. Sub-
tracting the value u from the section means that all its components
which are less than or equal to u are equated to zero and the rest of
components remain unchanged:

ǔij =

{
uij if uij > v
0 if uij ≤ v

(where ǔi is the section with the subtracted value). Adding the value v
to the section is defined in the contrary way. Section ûi with the added
to it an arbitrary value v is obtained by taking the componentwise
maximum with this value. That is those components which are greater
than v remain unchanged and the rest of components are equated to
v:

ûij =

{
uij if uij > v
v if uij ≤ v.

When adding the value v to the section its components can only
be increased (pulled up to the level v) and the constant will be equal
v too. When subtracting the value v the section components can only
be decreased (pressed down to zero) and the constant will be equal to
zero.

In general, the representation of the disjunct semantics is not
unique, i.e. several different disjuncts can represent the same predi-
cate. The representation uniqueness is fulfilled only for normal dis-
juncts, when there is at least one element from the universe with the
predicate value zero (i.e. with zero constant). But if the disjunct is
subnormal, then those its components that are between zero and the
constant value may be varied within this interval provided that the

68



The matrix representation of fuzzy knowledge. . .

constant itself remains unchanged. For example, disjuncts 1011.181,
11

811.01 and 11
811.191 are semantically equivalent, i.e. they represent

the same predicate.
To remove this polysemantics let us introduce so called reduced

forms of disjuncts. There exist n reduced forms for one disjunct, but for
the normal disjuncts all they are the same, whereas for the subnormal
ones they are different. The disjunct is said to be in kth reduced form
if all its section constants except for kth one are equal to zero. Coming
from this definition the way to transform any disjunct to kth reduced
form is obtained. Namely, to transform disjunct u to kth reduced form
it is necessary its constant u0 to add to the kth section and to subtract
from the rest of the sections. This transformation results in disjunct ǔ,
kth section of that are responsible for the saving the disjunct constant
and the rest of sections are as much decreased as possible without the
semantics change. For example, the disjunct 11

811.191 has the following
two reduced forms: 11

811.01 and 1011.181.

Theorem 1 µu = µǔ.

We will say that the predicate ψ is a consequence of the predicate
ϕ (ϕ ⊆ ψ) iff for all elements from the universe ω ∈ Ω the following
is satisfied: ϕ(ω) ≤ ψ(ω). Such definition of the consequence relation
coincides with the inclusion relation definition for the fuzzy sets. We
will consider that the disjunct v is a (semantical) consequence of the
disjunct u (u |= v) iff µu ⊆ µv .

It is clear that if a matrix line is a consequence of the other one of
the same matrix, then it can be removed from the matrix without any
change of the predicate µD. However, generally speaking, it is impossi-
ble to determine whether the relation u |= v is true or false by means
of only vectors u and v componentwise comparison. Nevertheless, in
order to do this we may use the following theorem.

Theorem 2 If disjuncts u and v are in kth reduced form and
∀i, j uij ≤ vij, then u |= v .
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Let us now consider an operation < xk > of fuzzy resolution of two
disjuncts on kth section. The result of this operation is new disjunct

w = u < xk > v

such that its kth section is equal to the conjunction of the corresponding
sections from u and v, and the rest of the sections are equal to the
disjunction of the sections from u and v:

wij =

{
min(uij ,vij) if i = k
max(uij ,vij) if i 6= k.

It should be noted that such definition of the resolution, unlike con-
ventional one, does not impose any restrictions on the disjuncts being
resolved. For the fuzzy resolution operation the property is fulfilled
that the resolvent is a consequence of its parents.

Theorem 3 If w = u < xk > v, then disjunct w is a consequence of
two disjunct u and v.

The fuzzy resolution operation < xk > can be used to transform
the matrix of disjuncts D by means of adding to it a new line which
is the resolvent of any two disjuncts from this matrix. The theorem
given above guarantees that the new disjunct will be a consequence of
the matrix, and the transformation itself is equivalent.

5 The problem of finding prime disjuncts

The problem of finding prime disjuncts is rather general. It means
building some other matrix equivalent to the initial one (as it was
mentioned above), but which has, in some sense, logicaly independent
lines - the prime disjuncts. This procedure is highly important. In
particular its solution can be used to determine the degree of knowl-
edge consistency, to organize logical inference, to solve the satisfiability
problem, to seek hidden dependences in repertory grids analysis [7], to
generalize knowledge [3]. The first two tasks will be considered below.
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Disjunct u is said to be prime one for the matrix D iff it is a
consequence of this matrix (D |= u) but is not a consequence of any
other disjunct v which is a consequence of the matrix.

Let us consider two different ways to find the prime disjuncts for
some matrix D. The first way is an analogue of the conventional
method of finding all boolean function prime implicants. This proce-
dure is iterative. At the beginning the resolution operation is applied
to all disjunct pairs from D on all attributes xk and the results are
added to the matrix. Then all disjuncts which are consequences of the
others are cut out from the matrix obtained in this way. After this
step new matrix D1 = R(D) is derived (R - generate and cut out pro-
cedure). At the second step the procedure R is applied to the matrix
D1 and results in the matrix D2 = R(D1) and so on. The procedure is
stopped if at the current step the matrix is obtained which is equal to
the previous one, i.e. all new disjuncts are cut out as the consequences
of those already contained in the matrix.

The procedure described for finding prime disjuncts corresponds
to the breadth-first search strategy in the space of all disjuncts, as at
every step all consequences of the current matrix disjuncts are derived.
Such search strategy guarantees that the shortest inference chains of
the prime disjuncts will be found.

Non-fuzzy version of this algorithm is realized in the diagnostic
expert system shell EDIP [2] to organize logical inference. As the
experiments showed the greatest part of time in finding prime disjuncts
is spent on checking whether new disjuncts are the consequences of
already existing ones rather than on generating new disjuncts.

The second way to find prime disjuncts uses depth-first search strat-
egy in the space of disjuncts. The procedure begins with the resolvating
of an arbitrary pair of disjuncts from D and adding the result to the
matrix (when adding new line, checking is performed whether it is a
consequence of some other line). After that new disjunct is resolvated
with some disjunct derived earlier, and so on. Thus one of two disjuncts
resolvated is always the disjunct obtained at the previous step. If the
search reached a deadlock, i.e. at the current step it is revealed that
new disjuncts cannot be obtained, then backtracking to the previous
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step takes place, and an attempt is made to derive a new result. The
backtracking can proceed up to the very beginning when the first pair
of disjuncts was chosen. The procedure is finished when resolvating
any pair of disjuncts gives the result which is then cut out from the
matrix.

The procedure described finds the linear inferences [3] of prime
disjuncts. Every new disjunct in such inference is derived from the
last and from one of the previous disjuncts. Note that such search
strategy does not guarantee finding the shortest inference chains. In
addition its program implementation needs a great deal of the control
data structures to maintain backtracking.

In both algorithms described the situation often occurs when the
resolvent derived just now is the consequence of one of its parents i.e.
one of two conditions is satisfied:

u |= u < xk > v or v |= u < xk > v.

Resolvating such disjuncts pairs is unnecessary because the result will
be then cut out from the matrix as a consequence of one of its parents.

The disjuncts u and v such that

u 6|= u < xk > v and v 6|= u < xk > v

are said to be adjacent on the attribute xk. Thus to cut down the
prime disjuncts search tree it is necessary to resolvate only the adjacent
disjuncts.

To check whether some two disjuncts are adjacent it is possible
to proceed from the definition, i.e. first, to find their resolvent, and
then to test whether it is a consequence of at least one of two source
disjuncts. But it is also possible to take advantage of the heuristic rule
which allows finding out if they are adjacent on some attribute knowing
only their form (without resolvating).

Theorem 4 If two conditions are satisfied:
1) ∃jk : ukjk

> vkjk
,

2) ∀i 6= k ∃ji : max(uiji ,viji) < ukjk
,

then the resolvent w = u < xk > v is not a consequence of the disjunct
u (u 6|= w).
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To check both conditions of adjacency it is necessary to check satis-
fiability of the theorem conditions for every of two source disjuncts. In
this case the first condition of the theorem will be reduced to the con-
dition of fuzzy incomparability of kth sections in u and v. In non-fuzzy
case the condition of the fuzzy incomparability of sections corresponds
to the condition of the presence of the complementary pair of literals
in disjuncts resolvated (i.e. one of two disjuncts must contain literal xk

and the other its negation x̄k ). The second theorem condition requires,
that when disjuncting n− 1 sections the resolvent constant should not
be too high. In non-fuzzy case this requirement means the absence of
the second complementary pair of literals in the disjuncts resolvated
(otherwise the result will be valid).

The maximal value the fuzzy predicate takes over the universe will
be referred to as its degree of consistency. If the predicate is represented
by the matrix of disjuncts, then the degree of consistency is designated
as

consistency(D) = max(µD(ω)).

In two-valued logic the predicate may be either consistent or not. In
fuzzy approach the degree of consistency takes values from the interval
[0, 1]. The degree of consistency can be easily determined through the
matrix of all prime disjuncts:

consistency(D) = min(max(pij)).

If the predicate is exactly not consistent, then the matrix of all prime
disjuncts will contain the only zero prime disjunct.

6 Forming a knowledge base

Let us consider, as an example, a problem domain whose objects are
military aircrafts, with distinctions in purpose, altitude of flight, speed
and engine type. The attribute model of this problem domain is rep-
resented by four attributes

X = {PURPOSE, ALTITUDE,SPEED, ENGINE}
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with the values from the sets

A1 = {Transport, Reconnaissance, F ighter,Bomber},
A2 = {Low,Middle, High},
A3 = {Low,Middle, High},
A4 = {Screw, Jet},

respectively. For example, it is known that if an aircraft has a high
speed then its flight altitude is certainly not low and probably not
middle, but the engine is exactly of the jet type. The fighter is an
exception to this rule as it can apparently have a high speed at low
and middle altitudes. In addition, it can be known that transport
aircrafts do not fly at high altitudes.

This short example contains three types of knowledge expressed in
the natural language: the rule, the positive assertion and the negative
assertion. Further a special language will be described which maintains
these three basic types of knowledge. The algorithms to obtain matrix
of disjuncts will be considered too.

The basic unit of this language is the elementary fuzzy proposition

xi = aij : νij ,

which consists of the precise statement that the attribute xi takes its
particular value aij and the degree of confidence νij , that this state-
ment is true by means of the number from the interval [−1, 1]. If
the degree of confidence νij is greater than zero, then the elemen-
tary fuzzy proposition will be referred to as positive, otherwise it will
be called negative. In fact the negative elementary fuzzy proposi-
tion means that the attribute can not take its value with a degree
of confidence |νij |. If the degree of confidence is zero, then there is
no information in the proposition, i.e. it means full uncertainty. The
following statements are the examples of the elementary fuzzy propo-
sitions: PURPOSE = Transport : 1.0; ALTITUDE = High : 0.7;
SPEED = Middle : −0.5.

Since all the values of one attribute are mutually exclusive to each
other, any positive elementary fuzzy proposition

xi = aij : ν,
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is equivalent to the set of the negative elementary propositions

xi = ai1 : −ν, . . . , xi = aij−1 : −ν,
xi = aij+1 : −ν, . . . , xi = aini : −ν,

.
More complex statements of the language are constructed from the

elementary fuzzy propositions and the logical connectives →, ∧, ∨ (im-
plication, conjunction, disjunction).

The rules. The rules in problem domain will be understood as
the statements consisting of the left and right parts connected with
the implication symbol. The left part of the rule is the conjunction
of the negative elementary propositions which are interpreted as the
rule fuzzy premises. The right part is the disjunction of the positive
elementary propositions which are interpreted as the rule conclusions.
The whole rule is written in the form of implication

< −EL.PROP.1 > ∧ . . .∧ < −EL.PROP.n > →
< +EL.PROP.n + 1 > ∨ . . .∨ < +EL.PROP.m >,

where ”-” means that the elementary proposition is negative and ”+”
- positive. Representation of the rules in the form of implications is a
rather convenient and typical way to formulate general dependences in
the artificial intelligence tasks.

Each implication is transformed into one line of the matrix of dis-
juncts D. This transformation is based on the propositional calculus
identity

a1 ∧ . . . ∧ an → an+1 ∨ . . . ∨ am ⇔ ā1 ∨ . . . ∨ ān ∨ an+1 ∨ . . . ∨ am,

hence the fuzzy implication can be written as

< −EL.PROP.1 > ∨ . . . ∨< −EL.PROP.n >∨
< +EL.PROP.n + 1 > ∨ . . .∨ < +EL.PROP.m > .

Replacing negations of the negative propositions by the positive propo-
sitions we will obtain

< +EL.PROP.1 > ∨ . . .∨ < +EL.PROP.n > ∨
< +EL.PROP.n + 1 > ∨ . . .∨ < +EL.PROP.m > .
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Now, to transform this disjunction of the positive elementary pro-
positions to the sectional vector, it is necessary vector components,
that correspond to the elementary propositions < +EL.PROP.i >
(i = 1, 2, . . . , m) to equate to corresponding confidence degrees νi

(i = 1, 2, . . . , m) assigned to these propositions and the rest of the
components to equate to zero.

Let us consider turning the rule ”if the aircraft has high speed, then
the flight altitude is exactly not low and rather not middle” into the
sectional vector. Firstly, the rule needs to be written in the form

SPEED = Low : −1 ∧ SPEED = Middle : −1 →
ALTITUDE = Middle : 0.5 ∨ALTITUDE = High : 1.

Secondly, it should be represented by disjunction of the elementary
propositions

SPEED = Low : −1 ∨ SPEED = Middle : −1 ∨
ALTITUDE = Middle : 0.5 ∨ALTITUDE = High : 1,

and, thirdly, to replace the negation of the negative propositions by the
positive ones

SPEED = Low : 1 ∨ SPEED = Middle : 1 ∨
ALTITUDE = Middle : 0.5 ∨ALTITUDE = High : 1.

The vector
d = 0000.0

1
2
1.110.00

is the result.
The negative assertions. The negative assertion form for knowl-

edge representation (also called the prohibition) is used to indicate
some disabled combinations of the attribute values. The addition of
prohibition to the knowledge base (like adding a rule) may result in
only lessening the predicate value in some point of the universe.

The prohibitions are written as implication without their right
parts:

< −EL.PROP.1 > ∧ . . .∧ < −EL.PROP.m > → .
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The transformation of the prohibition into disjunct is made analogically
to that of the rule.

For example, if ”the transport aircrafts do not fly at the high alti-
tude” is known, then this may be written as prohibition

PURPOSE = Reconnaissance : −1 ∧
PURPOSE = Fighter : −1 ∧
PURPOSE = Bomber : −1 ∧ALTITUDE = Low : −1 ∧
ALTITUDE = Middle : −1 →

and then turned into disjunct

d = 0111.110.000.00.

The fewer elementary propositions are included in the prohibition, the
more general it is. The most concrete prohibition form is the negative
example or counter-example.

Let the matrix of disjuncts D contains some initial knowledge. It
may be earlier formulated relationships, or certain a priori supposition
about the problem domain, e.g. ”everything is possible” (µD = 1).
Including counter-example in the knowledge base results in pricking
out ”the hole” on the predicate surface with the depth depending on
the degree of confidence.

The positive assertions. Unlike the treatment of rules and pro-
hibitions, each of which turns into one vector-disjunct, the positive
assertion originally is written in the vector-conjunct form and after
that the obtained conjunct and the matrix are transformed into a new
matrix. Adding a positive assertion to the knowledge base may result
in only increasing the predicate values, therefore positive assertions
may be used as exceptions to the rules.

We will write the positive assertions as the conjunction of the pos-
itive elementary propositions:

< +EL.PROP.1 > ∧ . . .∧ < +EL.PROP.m >

. To transform it into a vector-conjunct it is necessary that the com-
ponents corresponding to the propositions < +EL.PROP.i > (i =
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1, 2, . . . , m), be equated to the degrees of confidence νi (i = 1, 2, . . . , m),
and the rest of the components be equated to zero.

The following theorem gives us a way of transforming the pair con-
junct k and disjunct d into the disjunct matrix D under the condition
µD = µd ∪ µk.

Theorem 5 Disjunct d, in couple with conjunct k consisting of n sec-
tions, is equivalent to the matrix D which contains n lines d1,d2,. . . ,
dn, where ith section of the disjunct di is equal to the disjunction of
ith sections d and k and the rest of the sections are equal to dj (j 6= i).

With the help of the procedure given in the theorem, the conjunct
k representing one example can be included in the matrix consisting
of one disjunct d that will give a new matrix. In order to include
the conjunct k in the matrix D consisting of a number of lines, it is
necessary to perform the merging of k with every disjunct from D.

The most concrete form of the positive assertion will be called (pos-
itive) example. As a result of adding an example to the knowledge base
”the peak” appears on the predicate surface. Forming knowledge base
from the examples is especially suitable when knowledge is represented
as a number of data. Moreover, it gives an essential advantage - the
possibility of considering the degrees of confidence in its truth.

7 Organization of logical inference

Suppose we have some information about the values of the observed
attributes ALTITUDE, SPEED and ENGINE and it is necessary,
using the knowledge represented by the matrix D to define the air-
craft type. To do it we should carry out the logical inference on the
knowledge.

It is convenient to keep the data observed in the sectional vector f
interpreted as conjunct which will be called the vector of facts. The
vector f defines in the space Ω the fuzzy interval µf the object descrip-
tion is in. When there is not any data about the state of the problem
domain, the vector f contains only unities. If it becomes known that an
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attribute cannot take some value, then the corresponding component
of vector f are decreased in proportion to the degree of confidence in
this fact.

The results of the logical inference are written in the conjunct form
too, which will be named the vector of conclusions and denoted as
c. The interval µc defined in the space Ω by the vector c is always
included in the interval µf . It is connected with the trivial proposition
that any fact is a consequence of itself and therefore before carring out
the logical inference the data are transferred from the vector f to the
vector c.

Let us formulate the problem of carring out the logical inference
more strictly. Suppose there are the vector-conjunct f and the matrix
of disjuncts D defining the predicates µf and µD respectively. It is
necessary to find the minimal interval µc in the space Ω as the conjunct
c, which satisfies the condition

µD ∩ µf ⊆ µc

. The demand of minimality of the interval µc means that if any com-
ponent of the vector of conclusions is decreased then the consequence
relation will not be satisfied. Note that in such sense the logical infer-
ence itself is non-fuzzy, which is connected with the definition of the
consequence relation for the fuzzy predicates - either any predicate is
a consequence of another, or it is not. Only the facts, knowledge and
conclusions are fuzzy in the logical inference.

The demand of minimality of the interval µc can be reduced to
the condition of the component minimum of the vector c, therefore the
logical inference procedure can be considered as a number of elementary
conclusions.

The procedure for checking whether the fuzzy statement ”attribute
xi takes its jth value with the degree of confidence ν” is true will
be referred to as the elementary conclusion. If this statement is true
the problem domain state is restricted by the fuzzy subset µg, where
g = gν(i, j) is the disjunct with the jth component of the ith section
equal to ν (gij = ν) and other components being zero. In this case the
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following inclusion is satisfied

µD ∩ µf ⊆ µg

. and hence the component cij of the vector c can be equated to ν.
Thus the elementary conclusion procedure is reduced to the verification
the previous relation and the logical inference - to the verification it
for all possible i, j and ν.

To accomplish this verification one can transform beforehand the
matrix of disjuncts D to that containing all prime disjuncts (the knowl-
edge degree of consistency is revealed as well) and then the following
theorem can be used.

Theorem 6 Disjunct u is a consequence of matrix D coupled with
conjunct f , iff there exists such prime disjunct p of the matrix D that
p ∧ f |= u.

It is clear that the reduction of logical inference to a number of
the elementary conclusions is not effective because of its large quan-
tity. Such procedure resembles the backward inference method - at the
beginning all hypotheses of the kind gν(i, j) are advanced and then
they are consequently verified by means of multiple passes through the
matrix D.

Let us describe the logical inference procedure which allows finding
the vector of conclusions c by one look-through of the matrix D (it must
contain all prime disjuncts). This procedure is based on the assumption
that the whole inference can be represented by the sequence of the
inferences on all prime disjuncts from D. First, we find all conclusions
from the disjunct p1, then from p2, etc. The inference procedure is
direct, i.e. when running it different hypotheses are not searched for but
instantly minimally admissible values of the components are indicated.

Theorem 7 The disjunct g = gν(i, j) is a consequence of the disjunct
p and conjunct f iff all components of the vector p ∧ f except ith section
and also jth component of ith section are less than ν.
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Let us consider how the inference on one disjunct proceeds. For the
sake of simplicity let us assume that the data in f and knowledge in p
are consistent (vector p∧ f contains at least one unity). The inference
begins with finding in the vector p ∧ f the only section containing
unities. If there exist more than one of such sections, then none of any
conclusions can be made, and the procedure is finished (we will say
that the disjunct has not worked out). If such section is found and it
has the number k, then all conclusions will be written only in the kth
section of the vector c. Further it is necessary to find the maximal
component among all sections of the vector p ∧ f except kth:

M = max((p ∧ f)ij), (i 6= k).

The values in the kth section of the vector c are changed by the rule

ckj =

{
min(ckj , (p ∧ f)kj) if (p ∧ f)kj > M
min(ckj ,M) if (p ∧ f)kj ≤ M .

8 Expert system shell EDIP

Non-fuzzy variant of the formalism described in this paper was realized
in the first version of the expert system shell EDIP. The system EDIP
contains two main modules: the compiler and the knowledge base inter-
preter. First, the compiler transforms the textual representation of the
knowledge base (prepared by an expert and knowledge engineer) into
the matrix form. Then the procedure of finding the prime disjuncts is
started up. The compiled file of the knowledge base is formed from the
character strings of the attributes and their values, the matrix of the
prime disjuncts, comments to the attributes and other auxiliary infor-
mation. The knowledge base interpreter (or user interface) works with
the compiled knowledge base and organizes the integrated environment
which provides the main operations: the data entry, the logical infer-
ence, the explanation and the advancing hypotheses. Since the time
consuming process of finding the prime disjuncts is running in compila-
tion time, there is not any delay during logical inference in consultation
time.
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For the data entry and the output of results unified screen form is
used that consists of the attribute window and the value window. The
attributes names are constantly diplayed in the attribute window. The
active attribute is highlighted and all its values are displayed in the
value window. The data entered by the user during the consultation
are represented by the ticks near all values of attributes: if there is the
tick, then the corresponding value is enabled for the active attribute,
otherwise the active attribute cannot take this value (the presence of
the tick corresponds to the availability of unity in the vector of facts).
In the same manner the system conclusions corresponding to the cur-
rent state of the vector c are displayed in the inference column.

The data are entered in the system by resetting some ticks in the
value window. To obtain conclusions the function of the logical infer-
ence should be invoked, which constructs the vector of conclusions and
displays it in the conclusions column of the value window.

To obtain the explanation of any fact it is necessary to refer to
the explanation function, moving the cursor to the value disabled as a
result of the logical inference. It finds the disjunct which has worked
out earlier and reflects it in the explanation column of the attribute
window in the special graphical structure form which indicates the
initial data and the conclusion explained. As one fact may have several
explanations, the explanation function has four subfunctions which are
conditionally named: the first explanation, the next explanation, the
previous explanation and the last explanation.

The hypothesis function runs similarly to the explanations with the
only difference that the initial data and conclusions are suppositions
but not observed facts. In other words, the hypothesis function answers
the question: ”What facts can lead to making a conclusion?”.

In the second version of the EDIP the user’s data and the conclu-
sions in consultation regime are fuzzy. The number of fuzzy gradations
is fixed and equals four. Different degrees of confidence (in the col-
umn of facts and conclusion) are reflected by different number of ticks.
Three ticks mean 1, two - 0.66, one - 0.33 and the absence of ticks - 0.
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