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The mixed hypergraphs

V.Voloshin

Abstract

We introduce the notion of an anti-edge of a hypergraph,
which is a non-overall polychromatic subset of vertices. The max-
imal number of colors, for which there exists a coloring of a hy-
pergraph using all colors, is called an upper chromatic number of
a hypergraph H and denoted by χ̄(H). The general algorithm for
computing the numbers of all colorings of mixed (containing edge
and anti-edge sets) hypergraphs is proposed. Some properties of
mixed hypergraph colorings and its application are discussed.

Let X = {x1, x2, . . . , xn} be a finite set, S = {S1, S2, . . . , Sk} be
a family of subsets of X, in particular, S may be empty. The couple
H = (X,S) is called a hypergraph on X if

⋃k
i=1 Si ⊆ X(cf. [1,3]) Now

let hypergraph H = (X,S), | X |= n and S = A⋃ E ; in particular, E
and/or A may be empty. Let A = {A1, . . . , Ak}, I = {1, . . . , k}, E =
{E1, . . . , Em}, J = {1, . . . , m}. We arrange that indices i and j may run
on different sets of indices and we shall indicate them each time in order
to avoid confuse. Throughout this paper we consider the hypergraphs
without loops, i.e. | Ai |≥ 2, i ∈ I, | Ej |≥ 2, j ∈ J.

Every Ej , j ∈ J , is called ”an edge”, and every Ai, i ∈ I, is called
an ”anti-edge” or sometimes ”co-edge”. We conditionally shall use
the prefix ”anti-” or ”co-” always when a statement concerns the sets
from A. In particular, if E = ∅, then H = HA will be called a
”co-hypergraph”, and in order to emphasize that for hyperghraph H
may be A 6= ∅ and/or E 6= ∅ we call H a mixed hypergraph. Other
terminology not explained here is taken from [1,3]. Let us have λ ≥ 0
colors.
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Definition 1 The free colouring of a mixed hypergraph H, where H
= (X,A⋃ E) with λ colours is the coloring of its vertices X in such a
way that the following four conditions hold:

1. any anti-edge Ai, i ∈ I, has at least two vertices of the same color;

2. any edge Ej , j ∈ J , has at least two vertices colored differently;

3. the number of used colors is not greater than λ;

4. all the vertices are colored.

Note that this definition of coloring generalizes all those contained
in [3], that correspond to the case A = ∅. Now we can say in other
words that hypergraphs edges present indeed the non-monochromatic
subsets, and the anti-edges present the non-overall polychromatic sub-
sets of vertices. The colorings, when not all the vertices of a hypergraph
must be colored, will be investigated separately.

Two free colorings of a hypergraph H are said to be different, if
there exists at least one vertex that changes color when passing from
one coloring to another. Let P (H, λ) be the chromatic polynomial of
a hypergraph H, that expresses for any λ ≥ 0 the number of different
free colorings of H with λ colors [cf.1].

Definition 2 A free coloring of a hypergraph H with i ≥ 0 colors is
said to be a strict coloring, if exactly i colors are used.

So, the strict colorings exist only for such i, that 1 ≤ i ≤ n. Let us
consider that the two strict colorings of H are called different if there
exist a pair of vertices in H which have the same color for one of these
colorings and different colors for the other (cf.[2]).

Definition 3 The maximal i for which there exists a strict coloring
of a mixed hypergraph H with i colors is called an upper chromatic
number of H and denoted by χ̄(H).
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Let ri(H) be the number of strict colorings of a hypergraph H
with i ≥ 1 colors (cf.[2]), χ(H) is a usual chromatic number of H.
We associate the vector R(H) = (r1, r2, . . . , rn) ∈ Rn with hyper-
graph H and call it the chromatic spectrum of H; hence R(H) =
(0, . . . , 0, rχ, . . . , rχ̄, 0, . . . 0).

Definition 4 The value χm(H) = (χ(H)+ χ̄(H))/2 is called the mid-
dle chromatic number of a hypergraph H.

Definition 5 The value b(H) = χ̄ − χ + 1 is called the breadth of
chromatic spectrum of H.

Definition 6 The mixed hypergraph H, in which at least one pair of
vertices cannot be colored because of costraints collision is called uncol-
orable; we put for such hypergraph χ(H) = χ̄(H) = 0.

Consequently, if χm(H) is not integer it means that b(H) is even. If
A = ∅, then χ̄(H) = n, and we have thus a usual hypergraph colorings.
If E = ∅, then χ(H) = 1, and we have unusual colorings. Moreover,
if A 6= ∅ and E 6= ∅, then one can easy construct for every n an
uncolorable hypergraph H for which we supposed χ(H) = χ̄(H) = 0;
for example any complete graph Kn, n ≥ 2 with at least one added
anti-edge of cardinality ≥ 2 cannot be colored. Such cases may by
treated also as the hypergraphs with b(H) ≤ 0 and will be investigated
also separately.

Now in order to calculate P (H,λ) and R(H) for any mixed hy-
pergraph H = (X,A⋃ E) we formulate the following 5 true rules:

1. if some subset K ⊆ E induces a usual complete subgraph F =
(XF ,K) and XF = Aj for some j ∈ J , then H is declared uncol-
orable (elimination);

2. if Ei ⊆ Ej , i, j ∈ J , then P (H, λ) = P (H − Ej , λ), R(H) =
R(H − Ej)(clearing);

3. if Ai ⊆ Aj , i, j ∈ I, then P (H, λ) = P (H − Aj , λ), R(H) =
R(H −Aj)(co-clearing);
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4. if Ai = {xk, xl}, for some i ∈ I and xk, xl ∈ X, then

P (H, λ) = P (H1, λ), R(H) = R(H1), where

H1 = (X1,A1
⋃
E1), X1 = (X\{xk, xl})

⋃
{y}, y

is a new vertex, and
if xk ∈ Ej , or xl ∈ Ej , then E1

j = (Ej\{xk, xl})
⋃{y}, otherwise

E1
j = Ej,j ∈ J ;

if xk ∈ Ai, or xl ∈ Ai, then A1
i = (Ai\{xk, xl})

⋃{y}, otherwise

A1
i = Ai, i ∈ I(contraction);

5. if {xk, xl} 6∈ E and {xk, xl} 6∈ A, then

P (H, λ) = P (H1, λ) + P (H2, λ), R(H) = R(H1) + R(H2), where

H1 = (X,A
⋃
E1), E1 = E

⋃
{xk, xl},

H2 = (X,A1

⋃
E),A1 = A

⋃
{xk, xl}(splitting).

We propose a general algorithm that gives the possibility to
compute P (H, λ) and R(H) and extends the Zykov’s connection-
contraction algorithm [2,4]. The idea is to find any pair of vertices,
that does not belong to the edge and co-edge sets, after that to split
all colorings of H onto two classes relatively these vertices, and, im-
plementing elimination, clearing, co-clearing and contraction (in such
order), to reduce the initial problem recurrently to the same one for the
new pair of hypergraphs. Finally we obtain the list of complete graphs.
We call this algorithm the ’splitting-contraction algorithm’ and present
in the following form:

ALGORITHM 1 (splitting-contraction).
INPUT: an arbitrary mixed hypergraph H = (X,A⋃ E);
OUTPUT: list Z of complete graphs;
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STEP 0. Add the hypergraph H to the empty list Y , suppose
Z = {∅}.

STEP 1. Verify the condition of elimination for each hypergraph
from Y ; delete uncolorable hypergraphs from Y.

STEP 2. Implement clearing, co-clearing and contraction (in such
order) for all hypergraphs from Y.

STEP 3. Implement one splitting in each hypergraph from Y , where
possible; delete complete graphs from the list Y and include them in
the list Z; if a splitting is implemented for at least one hypergraph,
then go to step 1, else go to step 4.

STEP 4. Output list Z = {Kn1 ,Kn2 , . . . , Knt} of complete graphs.
End.[]

Although Algorithm 1 is exponential, it is possible for some classes
of hypergraphs to find the polynomial and effective modifications.

Theorem 1 For any mixed hypergraph H = (X,A⋃ E) Algorithm
1 gives the possibility to find chromatic polynomial P (H,λ) and chro-
matic spectrum R(H), and the following equality holds:

P (H,λ) =
χ̄(H)∑

i=χ(H)

ri(H)λ(i).

Proof. If αi is the number of all complete i-vertex graphs in list Z,
then it follows from the algorithm and rules 1)-5) that

P (H, λ) =
χ̄(H)∑

i=χ(H)

αiP (Ki, λ).

Since rules 1) - 5) and a whole algorithm are equivalent for P (H, λ)
as well as for R(H), we have also

rj(H) =
n∑

i=1

αirj(Ki), j = 1, . . . n.

Hence from
rj(Ki) =

{
1, i=j
0, otherwise
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conclude that αi = ri, i = 1, . . . , n. Thus theorem follows from
P (Ki, λ) = λ(i) = λ(λ− 1) . . . (λ− i + 1).[]

Theorem 1 shows that in the most general case the vector R(H)
uniquely determines the chromatic polynomial P (H, λ), and vice versa.
A common criterion is unknown for an arbitrary polynomial to be chro-
matic one for a graph or a hypergraph. It is seen that this problem
presents a partial case of the more general one. One can state now that
the class of polynomials that may be chromatic, is essentially larger es-
pecially because of interactions between edge and anti-edge sets. Such
interactions are not simple and bring many new of principle properties
of hypergraph colorings.

For example, for H = (X,A⋃ E), where X = {1, 2, 3},A =
A1 = {1, 2, 3}, E = E1 = {1, 2, 3}, we have Z = {K2,K2,K2} =
{3K2}, P (H, λ) = 3λ(2) = 3λ2− 3λ,R(H) = (0, 3, 0), χ = χ̄ = χm =
2, b(H) = 1 and the corresponding three colorings are the following:
(ααβ), (αβα) and (βαα).

Another example; it is evident that adding of one anti-edge to a
hypergraph H can increase χ(H). It is less evident that adding of one
edge to mixed hypergraph can decrease χ̄(H). Let for example H =
(X,A⋃ E), where X = {1, 2, 3, 4, 5}, A = {(1, 2, 3), (1, 3, 4), (1, 4, 5),
(1, 5, 2)}, E = {(3, 5)}; we have χ̄(H) = 3, and after adding of the edge
(2,4) receive the new hypergraph H1, for which χ̄(H1) = 2.

One more example: an unusual property of co-hypergraph color-
ings, that is impossible for hypergraphs with A = ∅.

We say that an anti-edge Ai of a mixed hypergraph H = (X,A⋃ E)
is dead if Ai does not contain any other anti-edge, and R(H) =
R(H − Ai). One can see, for example, that any co-edge of a co-
hypergraph H = (X, A), where X = (1, 2, 3, 4), A =
{(1, 2, 3), (1, 3, 4), (1, 2, 4), (2, 3, 4)}, is dead, because R(H) = R(H −
Aj) = (1, 7, 0, 0), j = 1, 2, 3, 4.

We omit the evident bounds on χ̄(H) following from definition and
suppose that the important and perspective directions of research in
this area would be the following:

1. Investigate the upper chromatic number of unimodular, balanced,
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arboreal, co-arboreal, normal, mengerian, paranormal co- and
mixed hypergraphs [3].

2. Find and investigate the antipodes of perfect graphs relatively to
the χ̄(H) [5].

3. Characterize the mixed hypergraphs with χ = χ̄ . []

CONJECTURE. For any sequence of positive numbers N =
(n1, n2, . . . , nt) such that ni ≥ (ni−1 + ni+1)/2, i = 2, . . . , n− 1, and
max{n[t/2], n[(t+2)/2]} = max{ni} there exists such a mixed hypergraph
H that n1 = rχ, n2 = rχ+1, . . . , nt = rχ̄.

APPLICATION. Let X be a set of sources of power supply for some
discrete system H = (X, E ⋃A), the acting time of any source be 1, at
least two sources of every Ei ∈ E , i ∈ I must work at different time,
and at least two sources of every Aj ∈ A, j ∈ J must work at the same
time. How can we schedule entirely system H in such a way that the
time of work (it may be treated as a time of life) of a system would be
the longest one? The latter will be equal to χ̄(H).
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