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The last achievements in Steiner tree

approximations

A.Zelikovsky

Abstract

The Steiner tree problem requires a shortest tree spanning a
given point set S contained in a metric space (V, d). We describe
a new approach to approximation solutions of this problem and
analyze the time complexity of several algorithms.

1 Introduction

Let M = (V, d) be a metric space and S be a subset of V . A tree T is
a Steiner tree of S if S is contained in the vertex set of T .

Steiner Tree Problem (STP). Given M and S, find the shortest
Steiner tree (also called the Steiner minimal tree) of S.

It is known that the Steiner tree problem is NP-hard when the
metric is given as a graph [13] as well as when the metric is euclidean
[8] or rectilinear [9]. Therefore algorithms which in polynomial time
construct an approximate Steiner minimal tree are investigated. The
quality of an approximation is measured by its performance ratio: an
upper bound on the ratio between achieved length and the optimal
length. Since STP is Max-SNP hard for graphs [3] the performance
ratio should be larger than 1 for graphs.

A well-known heuristic (an MST-heuristic) for the Steiner tree prob-
lem approximates a Steiner minimal tree with a minimum length span-
ning tree (MST). It was proved that the lowest performance ratio of

c©1993 by A.Zelikovsky

35



A.Zelikovsky

this heuristic equals 2 for graphs [17], 3
2 for rectilinear metric [11] and

2√
3

for euclidean metric [5].
The fastest known implementation of the MST-heuristic has a run-

ning time O(E + V log V ) for a graph G = (V, E) [15] (we use E, V, S
and α to denote #E, #V,#S and the time complexity of the all-
shortest-paths problem, respectively, in the order of a running time of
an algorithm), O(n log n) (#S = n) for rectilinear [16] and euclidean
metrics. For many years, finding a better heuristic remained open.

Two better heuristics appeared recently [2,20] while consideration
of a k−restricted Steiner tree.

First we introduce some denotations: SMT (S) and smt(S) are a
Steiner minimal tree of S and its length, respectively. For a complete
graph GS , M(GS) denotes MST of GS , and m(GS) denotes its length.

SMT (S) may in general contain vertices of V \S. So SMT (S) con-
tains the set S of given vertices and some additional vertices. SMT (S)
is called a full Steiner tree if S coincides with the set of leaves of
SMT (S). If SMT (S) is not full, then we can split it into the union
of edge-disjoint full Steiner subtrees. SMT (S) is called k−restricted
if every full component has at most k given vertices. Let the shortest
k−restricted Steiner tree for the set S, denoted by SMTk(S), has the
length smtk(S). Note, that SMT2(S) = M(F ).

Let rk = sup{smtk(S)/smt(S)}. The bounds for the MST-heuristic
imply that r2 equals 2, 3

2 , 2√
3

for graphs, rectilinear and euclidean
metrics, respectively.

For graphs, it was proved that r3 = 5/3 [19,20], r4 ≤ 3
2 and r8 ≤ 4

3
[1], moreover, r2k ≤ 1 + 1

k [5].
For rectilinear metric, it was proved that r3 = 5

4 [21] and rk ≤
1+ 1

2k−2 [2]. The exact values of rk are still unknown for k > 3. It was
conjectured, that rk = 1 + 1

2k−3 [2].
For euclidean metric, the evaluation of rk is more complicated. It

was proved only that limk→∞ rk = 1 and conjectured that r3 = 1√
2

+
1

1+
√

3
[5].

The above bounds arise a problem of finding an optimal k-restricted
Steiner tree. This problem is NP-hard for k > 3 [13] and coincides with
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MST for k = 2. For k = 3, the problem of exact polynomial solution
is still opened.

The heuristics [2,20] approximate k−restricted Steiner minimal
trees. We describe them in the rest of the paper.

A greedy heuristic has a performance ratio of r2 − (r2 − r3)/2 [20].
Its implementation time is O(S(E +V S +V log V )) [22] and O(n2) for
graphs and rectilinear metric, respectively.

Another approach is suggested in [2]. A family of evaluation heuris-
tics Ak is constructed. Ak achieves a performance ratio at most

r2 −
k∑

i=3

ri−1 − ri

i− 1

in time O(α+V k−2Sk−1+Sk+0.5) for graphs and O(nbk/2c+3/2) [2]. For
k = 3, the implementation time was reduced to O(n3/2) for rectilinear
metric [13].

Note that the problem of finding exact upper approximation bounds
for the greedy and evaluation heuristics is still open.

The next section is devoted to the greedy heuristic and its imple-
mentation for graphs. In Section 3, we describe the evaluation heuristic
and analyze its time complexity for rectilinear metric.

2 The Greedy Heuristic

Some preliminary definitions: given a triple z = {a, b, c} ∈ S, a Steiner
minimal tree z∗ for z (called a star) may include one additional vertex
v = v(z) (called a center of a star). The length of z∗ = (v(z); a, b, c)
is denoted by d(z) = d(v, a) + d(v, b) + d(v, c). For a set Z of triples,
d(Z) is the sum of lengths of its elements. Triples denotes the set of
all triples for S.

Let T = M(GS) and d(T ) denote the length of T . Given a pair
of vertices a, b of T , we use T [a, b] to denote an MST (T ∪ (a, b)),
where (a, b) is an edge of zero length. For any triple z = {a, b, c} the
graph T [z] equals T [(a, b)][(a, c)], i.e. it results from two reductions.
For a set A consisting of pairs and triples we define T [A] recursively:

37



A.Zelikovsky

T [∅] = T , and T [A ∪ e] = T [A][e]. For a set Z of triples, we define
winT (Z) = d(T ) − d(T [Z]) − d(Z). The equality r3 = 5

3 implies an
existence of a set Z such that

d(T )− winT (Z) ≤ 5
3
smt(S) (2.1)

The greedy heuristic chooses the best possible reduction of a previ-
ously achieved approximate solution. Below we present a rough version
of the greedy heuristic.

Algorithm (greedy heuristic)

(0) T ← M(GS), W ← ∅;
(1) repeat forever

(a) find z = argmax{winT (z)|z ∈ Triples};
(b) if winT (z) ≤ 0 then exit repeat;
(c) T ← T [z]; insert(W, v(z));

(2) find a Steiner tree T1 for S ∪W in graph G using MST-heuristic.

A sequence of triples chosen by the greedy heuristic is called greedy
in GS . It was proved in [20] that the set of elements of a greedy sequence
of triples H and an arbitrary set of triples Z

2winT (H) ≥ winT (Z) (2.2)

Inequalities (2.1) and (2.2) imply a performance ratio of 11/6 for
the greedy heuristic.

An implementation of the greedy heuristic for graphs given in [20]
generates stars for all triples of given vertices in time O(α + V S2).
The same procedure is necessary for the evaluation heuristic. This
generation needs the shortest path distances between given vertices
and additional vertices. Therefore, we can decrease its running time
to O(S(E + V S + V log V )) using an O(E + V log V )-algorithm [17]
for every given vertex s ∈ S to find all shortest paths from s to other
vertices of V .

Now we describe computing of the function winT .
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For a pair e = (a, b) of given vertices define saveT (e) = d(T ) −
d(T [e]). Let List(T ) = {t1, ..., tn} be an nondecreasing order of edges
of T .Then saveT (e) is the length of the last edge of List, say ti, in
the unique cycle of T ∪ e. The index i of ti is denoted by indT (e),i.e.
saveT (e) = d(tindT (e)). Note that T [e] = e ∪ T\ti and List(T [e]) =
{e, t1, ..., ti−1, ti+1, ..., tn}.

Further, z̄ denotes the set of three edges {(a, b), (b, c), (c, a)}, for a
triple z = {a, b, c}. Note, that

winT (z) = max
e⊂z̄

saveT (e) + min
e⊂z̄

saveT (e)− d(z)

This implies that it is sufficient to compute the function saveT . At
first we find a binary tree T ′ which corresponds to T according to List.
Inner vertices of T ′ correspond to edges of T , its leaves correspond to
the vertices of T . A root of T ′ is tn and sons of ti are the last edges in
two components which appear after deletion of ti from T ′\A(ti), where
A(ti) is the set of ancestors of ti. If such component does not contain
edges, then the son is the corresponding vertex of T . Moreover, using
preprocess(T ′) (preprocessing of time O(S)) we can find in time O(1)
the nearest common ancestor of any pair e of given vertices [10] which
corresponds to the edge of T with the length saveT (e).

Thus, to fulfill the step (1)(a) of Algorithm we need time O(S3),
therefore, the step (1) demands time O(S4) and a running time of the
whole algorithm is O(S(E + V S + V log V + S3)).

A faster modification of the greedy heuristic finds a best possible
star with the center v for every vertex v ∈ V \S and then chooses the
best one among all such stars [22]. This can be done in time O(V S).
As a result, the whole time complexity is O(S(E+V S+V log V )). The
time reduction is achieved by omitting of generating.

3 The Evaluation Heuristic

The evaluation heuristic is more complicated than the greedy one. It
consists of four phases. The first phase generates all triples and then
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all k-tuples, for all k = 4, ..., t. As a result of this phase we have all
exact Steiner trees for all k-subsets of S.

The second, evaluation phase consequently deals with k-tuples. For
brevity, we consider only triples. If a triple has a positive win, then a
certain pair of edges of T = MG(S) are replaced with two corresponding
edges as greedy algorithm does. But the length of a new edge equal to
the length of the removed edge minus the win of the triple. (The greedy
algorithm reduce this length to zero.) In other words every time, when
a triple has a positive win the metric is modified. Moreover, this phase
forms a Stack which consists of the tuple, the pair of removed edges
and and the pair of added edges. Note, that a k-tuple is discarded if it
has a nonpositive win.

The third, selection phase repeatedly pops a tuple from the Stack
and inserts it to select − list if it decides to include the Steiner tree
of this tuple in the output approximate Steiner tree. At first, the
graph (S,E) contains all edges of GS and all added edges. Every time
this phase checks if all new edges of a tuple belong to the current
minimum spanning tree. If this condition does not holds, then all
these edges should be removed from the graph and a new MST should
be constructed.

The last phase constructs the output Steiner tree from the select−
list tuples and remained MST-edges.

Now we will analyze the running time of the evaluation heuristic
for rectilinear metric and k = 3 [2,14].

At first, we will show that it is sufficient to consider only linear
number of stars while construction of a 3-restricted Steiner tree [14].

Further, for brevity, we assume that coordinates of all given points
and subtractions between them are distinct.

First we need some definitions: A triple (s0, s1, s2) is called a star,
if x0 < x1 < x2 and (y0 − y1)(y1 − y2) < 0 where si = (xi, yi). There
are four types of stars corresponding to the four possible orders of yi.
Below we consider the case of y1 < y0 < y2 (the similar argument can
be used for the other types of stars).

A center of a star is the point c = (x1, y0) which is the additional
point of SMT for the set {s0, s1, s2)}. We use z = (c; s0, s1, s2) to
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denote such star. The three given points defining the star z also define
a rectangle R where they lie on the boundary. R is empty, if there is
no point (x, y) such that x0 < x < x2, y1 < y < y2.

It was shown that it is sufficient to consider a family of stars for
which we know that there is a 3-restricted SMT with stars from this
family [2]. Moreover, there is SMT3(S) with stars defining empty
rectangles [2,21].

A star z = (c; s0, s1, s2) is called a tree star if M(S∪c) contains the
edges of the set z̄ = {(c, s0), (c, s1), (c, s2)}. It was proved that only
tree empty stars may be considered.

A star is positive (negative) if (y2 − y0)− (x2 − x1) > 0(< 0). This
means that the top vertex lies above (below) the diagonal through the
center of the star. Yao [18] introduced a graph associated with the set
S: every point is connected with the nearest points in all eight angles
defined by aces and bisectors. The Yao graph contains M(S ∪ c). This
fact implies directly that there are at most two distinct stars with the
same center, namely the positive and the negative with the shortest
length.

The last fact makes possible to prove that the number of empty
tree stars is at most 36n.[14]

The set of all empty tree stars can be generated in time O(n log2 n)
[14].

In the evaluation phase, the algorithm computes wins of O(n)
triples and recomputes the minimum spanning tree after adding new
edges. This can be done using dynamic trees of Sleator and Tarjan
[16] in time O(log n) per iteration. So the whole time for this phase is
O(n log n).

In the selection phase, dynamic trees of Sleator and Tarjan are
insufficient, since it is necessary to handle removal of edges. However,
using Frederickson’s data structure [6], we can update the minimum
spanning tree in time O(

√
E) when an edge is deleted. Since #E =

O(n), the whole time for the selection phase is O(n1.5).
It is easy to see that the construction phase can be performed in

O(n) time.
Thus, the whole time complexity of the evaluation heuristic for
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rectilinear metric is O(n1.5) [14].
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