
Computer Science Journal of Moldova, vol.1, no.1(1), 1993

Detecting and correcting spelling errors for the

Roumanian language

S.Cojocaru M.Evstunin V.Ufnarovski

Abstract

The implementation of the Roumanian Spelling Checker is
discussed. The structure of the morphological vocabulary and
similarity word recognition are considered more detailed.

1 Introduction

To create a Spelling Checker for the Roumanian language is of inter-
est from different points of view. Being among highly inflexional lan-
guages, it makes the problem of compact representation of its vocabu-
lary nontrivial. For example even for a 30 thousand word dictionary it
is necessary to store more than 300 thousand different word-forms (to
differentiate them we refer to the latter as vocabulary, saving the word
”dictionary” for base word-forms only.) Taking into account the fact
that most computers used today in Moldova have no more than 1M of
RAM, it may be concluded that the whole this vocabulary (or at least
its main part) should be stored on the disk. This, of course, create a
new problem of a fast access to the stored word-forms.

Naturally, not only detecting spelling errors, but also the suggesting
correct words is a very topical problem. It would be nice to correct more
than one mistake in a word, so the suggestion becomes a nontrivial
problem too.

The structure of a compact vocabulary for the highly inflexional
languages was always of interest. We face more problems when there is
some additional information, such as morphology, semantics etc. But
this information becomes very important when errors are detected not

c©1993 by S.Cojocaru, M.Evstunin, V.Ufnarovski

3

S.Cojocaru, M.Evstunin, V.Ufnarovski

only for a single word but also for pairs of words (in disagreement of
genders or cases, for example).

Here we want to consider one possible approach, where a vocabulary
is provided with morphological features.

To formalize the problem we introduce the notion of binary de-
composition of a vocabulary. Then we deal with the task of creating
a vocabulary. The formalism of special grammars will be proposed
for this aim. Dynamic methods of word-forms decomposition are the
subject of the next part.

The related problem of similar words, playing important role in the
suggestion, will be our next subject.

The approach described here was applied for the Roumanian Spel-
ling Checker ROMSP, and some implementation details such as increas-
ing efficiency, shorting response time, internal data representation and
architecture are discussed.

2 The vocabulary decomposition

First of all the problem of compact representation of the set of word-
forms for the given word should be solved. One of the well-known
approaches here is to separate roots and endings.

Let us suppose that we have a vocabulary V , containing all possible
word-forms (forgetting about the sources of obtaining them. Moreover,
the words may be considered in the mathematical sense — as a se-
quences of letters, independent of their existence in the real language).

Definition 1 The binary decomposition of vocabulary V consists of
two sets of words (namely, roots set R and endings set E) and a map
f from R to the set of all the subsets of E, satisfying two conditions:

• for every root r from R and every ending e from f(r) the con-
catenation re is the element of V .

• for every word v from V there exists a decomposition: a root r
from R and the ending e from f(r) such that v = re.

4

Detecting and correcting spelling errors. . .

It is clear that if it is necessary to discuss prefixes too, it is possible to
introduce the notion of ternary decomposition (and so on), but for sim-
plicity we are only going to restrict ourselves to binary decompositions
(omitting the word ”binary”).

This definition, evidently, offers different ways for constructing de-
compositions: it is quite possible that R = V and all endings are empty
words, or vice versa, when there is a single root — empty word, but all
the elements of V serve as endings. Of course, something intermediate
is of interest: when the size of roots set and endings set are significantly
less than that one of the vocabulary.

Having V , R, and E, the possible map f may be constructed taking
as f(r) the set of all endings e from E such that the concatenation re
lies in V . Nevertheless it is to be noted that as we didn’t demand
the uniqueness of the decomposition of the given word, there may be
another map f for given V , R and E. The problem is how to construct
a reasonable map f to recover V from R and E, taking minimum of
memory (remember: the images of roots are sets of words!). Besides,
the search time for the given token in the vocabulary should be reduced
too.

If V is the vocabulary of word-forms for a language, there is some
hope that taking E and R naturally (in grammar sense, as they are
usually described in manuals, but suffixes are included into the roots),
the above method leads to the reasonable map. It means that list L of
all the possible values of subsets f(r) will be not so large (comparatively
with the size of V). In this case it will be sufficient to keep with the
every root r only the index of its subset f(r) in list L, so the necessary
memory for the vocabulary will consist of two main parts: memory for
roots set R (plus memory for index for every root) and memory for list
L of possible sets of endings.

Let w be the word-form to be find in the vocabulary. Being small,
the set E can be kept in RAM, and possible endings e for w may be
found rather quickly. For every e the possible root r is determined
uniquely (w = re) and it remains only to check that r belongs to R,
and (if it is the case, and i is the index in L, corresponding to r) to
make sure that e lies in the set L[i] (for at least one of endings e.)

5

S.Cojocaru, M.Evstunin, V.Ufnarovski

Note that there is another way of checking: first to find the root r,
which is the left segment of w, and (if such r exists), second to check
that the corresponding right segment lies in f(r).

For the given decomposition more than one of the candidates for
the possible roots (or endings) can be found. To avoid ambiguity (and
improve access time) let us introduce some restrictions.

Let V be any set of words.

Definition 2 Let E be the set of words, including the empty word.
The set R = RE(V), consisting of the minimal left segments r of words
w from V , such that the corresponding right segment e (w = re) lies in
E, is named the roots set for V relative to E.

It is goes without saying that selecting the maximal right segment of w,
the possible ending is determined uniquely and the only root checking is
sufficient (nevertheless, the ambiguity remains for the second method).

3 A grammar for the generating vocabulary

In the previous part we suggested to decompose the vocabulary into the
two parts. Evidently it is more reasonable to create this decomposition
directly instead of creating the full vocabulary and selecting roots and
endings sets after. Here we want to discuss one approach to realize this
idea.

Being different from the decomposition, described above, it looses
the advantage of uniqueness of the word decomposition, but has an-
other profits.

The starting point for this approach was the book [1], where main
part of Roumanian inflective words were classified according to the
methods of creating the word-forms. There were 100 groups for mas-
culine nouns, 273 for verbs etc in the book, and about 30000 words with
their group numbers were listed. The classification was made from the
linguistical point of view, and, for example, the accents were taken
into account. Nevertheless, this classification was useful and have lead
to the idea to introduce the special grammar to formalize word-forms
producing.

6

Detecting and correcting spelling errors. . .

Let us consider a grammar rule:

[/]∗[#][N1]a1b1a2 . . . an−1bn−1an −→ a
′
1b1a

′
2 . . . a

′
n−1bn−1a

′
n N2,

where ai , a
′
i are arbitrary words and either bi is nonempty word or the

special symbol ∗ stands instead of bi . Nj — endings set numbers. The
interpretation of this rule is as follows.

Let w be the word to produce word-forms (basic word-form).
Every sign / indicates cutting the last letter from w. The obtained

(after the deletions) word v is considered as a root (if N1 exists) and
N1 is its index in endings sets list L. In any case the word v should
have the form

f0a1f1a2f2 . . . an−1fn−1anfn,

where every fi is arbitrary (possible empty) word, not containing (for
i = 1, 2, . . . , n− 1) the veto subword bi . If there exists more then one
of representation of this kind the first (scanning v from left to the right
or vice versa if the sign # is present) should be selected. The special
character ∗ instead of bi admits arbitrary fi .

After the evident substitution the word f0a
′
1f1a

′
2 . . . a

′
nfn serves as

a second (or first, if N1 is absent) root and N2 is its endings set number.
Note that the special (but widely used) case of this rule

[/]∗ −→ N2,

gives the possibility to include v directly.
Using these grammar rules, we can formalize the process of creating

of the decomposed vocabulary. According to the classification in [1], it
is possible to build the grammar rules for every group. Sometimes more
than two roots arise and more than one grammar rule is necessary.

Veto for bi is conditioned by the necessity to determine the position
of the subword ai to be substituted. It appears that for the Roumanian
language veto subwords can be avoided (being restricted by asterisks
only).

Example 1 Consider the first group of masculine nouns, described in
[1]. One of the representatives of this group is the word ”pom” (a tree).

7

S.Cojocaru, M.Evstunin, V.Ufnarovski

Let us introduce the notations for some morphological features of the
Roumanian language: N — nominative; A — accusative; G — genitive;
D — dative; S — singular, P — plural, V — vocative. Besides that
the noun word-forms have two different forms in Roumanian: definite
and indefinite ones. Let us denote them FD and FI correspondingly.
Using these notations, we shell list all word-forms for noun ”pom”:

pom — NASFI or GDSFI,
pomi — NAPFI or GDPFI,
pomul — NASFD,
pomului — GDSFD,
pomii — NAPFD,
pomilor — GDPFD or VP,
pomule — VS.
Taking ”pom” as a single root, we get an ordered set of endings

(denoting the empty one by ”-”):

T1 = { -, i, ul,ului, ii, ilor, ule}

It is essential that all the words from this group have the only root,
coinciding with the NSFI, and the same endings set. So, the grammar
rule for this group looks very simple:

−→ T1

Example 2 The word ”ied” (a kid) is the typical representative of the
another group. During the decline the alternation ”d - z” appears here:

ied — NASFI or GDSFI,
iezi — NAPFI or GDPFI,
iedul — NASFD,
iedului — GDSFD,
iezii — NAPFD,
iezilor — GDPFD or VP,
iedule — VS.
Here we have two roots: ”ied” with the endings set:

T2 = {-, ul,ului, ule},

8

Detecting and correcting spelling errors. . .

and ”iez” with the endings set:

T3 = {i, ii, ilor},

and the grammar rule for the whole group:

T2 d −→ z T3.

Example 3 Here is the grammar rule for the words from one of the
more complicated verbs groups:

/# T4 ǎ ∗ ǎ −→ a ∗ ǎ T5;

ǎ ∗ ǎ −→ a ∗ e T6.

The equivalent form for this rule is:

/T4 ǎǎǎǎ −→ aǎǎǎ T5;

ǎǎǎǎ −→ aǎeǎ T6.

where veto contexts different from the stars were employed.
Three roots are generated for this group (for brevity, we omit three

corresponding endings sets). So, for the verb ”dărăpăna” (to collapse)
the roots are ”dărăpăn”, dărapăn”, ”dărapen”.

It is important that the real list of possible endings sets isn’t large: the
same ending sets serve for different groups. For example, 100 different
groups of masculine nouns use only 15 different sets.

It is time to think about the morphological information. Evidently,
according to its construction, every ending from the sets Ti , can be
supplied with a morphological attributes (e.g. ”-” in T1 corresponds to
NASFI or GDSFI; ”i” to NAPFI or GDPFI and so on). The following
method can be used to extract this attributes and simultaneously to
compact the endings set.

Let us include all the possible endings for the masculine nouns in
one common list, joining two equal (as words) endings in one, if they
have the equal morphological features, but storing them separately, if

9

S.Cojocaru, M.Evstunin, V.Ufnarovski

their morphological attributes differ. Every ending (with its attributes)
can now be uniquely determined by its index in this list. So every Ti

can be replaced by the corresponding bits scaleBi, where 1 in j-th po-
sition signifies that the j-th ending from the list (with its attributes)
belongs to Ti . The common list consists of

{ (-,NASFI or GDSFI), (i, NAPFI or GDPFI), (ul, NASFD),
(ului, GDSFD), (ii, NAPFD), (ilor, GDPFD or VP), (ule, - VS),
(e,NASFI or GDSFI), (ele, NASFD), (elui, GDSFD), (e, - VS),
(u,NASFI or GDSFI), (i, NAPFD), (-, NAPFI or GDPFI),
(lor, GDPFD or VP), (ă,NASFI or GDSFI), (a, NASFD),
(ei, GDSFD), (ii, GDSFD), (ă, - VS), (-, - VS), (ăi, GDSFD) }.

Then the bits scales for T1 , T2, T3 look like

(1111111000000000000000),

(1011001000000000000000),

(0100110000000000000000),

correspondingly.
The experiments show that 866 grammar rules and 320 endings

sets were sufficient for the Roumanian language to realize vocabulary
decomposition, using 312 endings.

4 Dynamic methods

The above method of the decomposition is based on the knowledge
about the morphological group of the given word. Nevertheless it is
necessary to have the possibility to include a new set of word-forms for
the given item w without this knowledge. In other words, we need to
detect the group number dynamically. Three steps should be done to
solve this problem.

1. First, the word-forms themselves should be obtained. The special
program can be elaborated to facilitate this boring work. The in-
formation concerning part of speech (verb, noun etc) and may be

10

Detecting and correcting spelling errors. . .

something else (e.g. gender) can be obtained interactively. Then
deep linguistic analysis (and may be one-two additional questions
(usually about the alternation or suffixes)) permits to predict the
possible structure of the base-forms. The corresponding practical
algorithm, elaborated by E.Boian, A.Danilchenco and L.Topal [2]
for Roumanian gives correct word-forms in 95% of cases.

2. The second step is to detect the roots from the word-forms. An
ingenious method, suggested for this purpose in [3] has the advan-
tage of universality (it can be applied to every highly inflexional
language). But in this method the chosen roots are usually the
longest ones, though for the effectiveness it is more preferable
to have short roots (the only restriction is the possible size of
endings sets). For instance, had we the endings ”d”, ”zi”, ”dul”,
”dului”, ”zii”, ”zilor”, ”dule” in the list of possible endings, the
only (and shorter) root ”ie” for example 2 would be sufficient.

Our approach is based on different ideas. Let us suppose that
for every grammar attribute the corresponding empty ending is
included in E. Then for every word-form v there exists at least
one decomposition of form v = re, where e lies in E. Taking
into account all possible decompositions of this kind, we get the
set of all possible words r with the sets of word-forms, where
this r was used. The union of all these sets is the set of all the
word-forms, so we have a covering of the last set. Choosing the
minimal (in the corresponding sense, depending on the subject
to be minimized) covering, we select the roots.

Example 4 Let word-forms and endings set E be as in example
2. Adding empty endings to E, we get the possible decompositions
for word-forms:

”ied” = ”ied” + ””;

”iezi” = ”iez” + ”i” = ”iezi” + ””;

”iedul” = ”ied” + ”ul” = ”iedul” + ””;

”iedului” = ”ied” + ”ului”=”iedului” + ””;

11

S.Cojocaru, M.Evstunin, V.Ufnarovski

”iezii” = ”iez” + ”ii” = ”iezi” + ”i” = ”iezii” + ””;

”iezilor”= ”iez” + ”ilor”=”iezi” + ”lor”=”iezilor” + ””;

”iedule” = ”ied”+”ule” =”iedul” + ”e” = ”iedule” + ””.

The candidates for roots and their sets are (omitting those, which
are the only representatives of their sets):

”ied” — (1011001);

”iez” — (0100110);

”iezi” — (0100110);

”iedul”— (0010001);

Two different minimal coverings may be selected: (”ied”,”iez”)
and (”ied”, ”iezi”). The first one is shorter and it is quite natural
that this pair should be selected if the main criterion is memory
for the roots. But suppose that (in contrary to example 2) the
endings set for the root ”iez” has not been introduced yet. Had
we the endings set for ”iezi” introduced and the memory for new
endings sets restricted, it would be possible that the second pair
were more preferable.

Being flexible the definition of the binary decomposition permits
to build different ones, depending on purpose. It means that
varying the sets E, R and map f , we can solve different problems
with the same vocabulary V . For instance, a sufficiently small
endings set (consisting of traditional endings), is convenient to
create a vocabulary from the very beginning. Having a complete
vocabulary we can redecompose it, according to the new criterion.

For example, using the given size of endings sets, we can add
some more endings (e.g. by counting the frequency of their ap-
pearances). Then we may try to solve either memory problems
or (/and) time ones. Let us consider one possible solution.

For simplicity suppose for a moment that the morphological in-
formation is not available. Then the decomposition (E, RE(V)),
described in the beginning, minimizes the access time, because

12

Detecting and correcting spelling errors. . .

for searching it is sufficient to check the only root. The simplest
way to get it is:

• First, to select a new endings set E.

• Second, to create the full vocabulary and empty list L of
endings sets.

• Third, to make a new decomposition word by word. More
exactly, to put a word w in, the longest right segment e from
E should be found. Then the root r can be obtained from
the decomposition w = re. Two cases are to be considered.
If r is a new element from R, consider the set S, consisting of
one ending e only. If S was not in L, it should be added here
with the weight 1, otherwise its weight should be increased
by 1. Surely, f(r) = S.

If r was in R before that, let T = f(r). Let S be a union of
T with e. The above procedure can be applied. As to set T ,
its weight should be decremented by 1, and T itself should
be eliminated from L, if the weight became zero.

It should be noted that this method of redecomposition takes a
lot of additional memory: first — for full vocabulary, second —
for the temporary (intermediate) sets. It is more reasonable to
create a new decomposition in statu, changing the existing one
by adding (or deleting) endings. For example, to include a new
ending e we have to check those word-forms, which have e as the
longest ending. The corresponding roots and endings sets should
only be changed.

It is curious that this method of decomposition often joins endings
of different parts of speech into one set. If the grammar features
are to be taken into account it is not the case, but here the unique
decomposition property can be loosed: it is possible that ending
e1 for another part of speech can be longer, than the longest
ending e for this part of speech. To avoid this problem the new
ending e1 with the corresponding grammar attribute should be
included.

13

S.Cojocaru, M.Evstunin, V.Ufnarovski

3. Roots being selected, it is easy to check if there exists the corre-
sponding grammar rule for the generating of this roots (with the
corresponding endings sets). If not, the new grammar rule should
be created (and, perhaps, new endings sets should be included).
Sometimes it is possible to change the existing rule. Here the
veto words can be of help.

Let us note that, being obtained with the help of grammar,the vo-
cabulary itself contains whole grammar information, but for the most
applications the grammar rules can be omitted. In the case, when they
are really useful (e.g. for the knowledge acquisition), the problem of
similar roots arises [3]. So it is high time to consider similarity.

5 The similar words detecting

It is well known that every natural language contains some irregular
words (e.g. auxiliary verbs in English and Roumanian), which are the
exclusions to rules of inflexion. From the point of view of grammar
rules constructing they are very unsuitable and sometimes it is more
preferable to keep every word-form separately instead of constructing
rather complicated rules.

The question is how to determine the degree of irregularity of the
word-forms and (if it isn’t large) how to create the corresponding gram-
mar rules. To answer this question it is sufficient to be able to estimate
the similarity of two given words.

A possibility to determine that two given words are similar may be
useful for different purposes. For example it was helpful to realize the
correct word suggestion when the given word had one or more mistakes.
But even for this case different criteria appear. There may be at least
three different causes of mistakes: the mistakes can arise because of bad
knowledge of the word (here the similar words are those, which sound
similarly); because of scanner errors (here the similar words are those,
whose letters looks similar in the given alphabetic design) and, at last,
the mistakes may be due to wrong key pressing (here the similarity
depends on the arrangement of the keyboard). As to the grammar

14

Detecting and correcting spelling errors. . .

rules the similar letters are those, which are essential for grammatical
alternation (see ”d” and ”z” in Example 2).

To solve the similarity problem independently we suggested to di-
vide it into two problems. First, to solve the similarity problem for
letters only, getting as result a similarity letters matrix M . Depend-
ing on the purpose, this matrix can be filled independently (in our
programs by integers between 0 and 9).

The second task is to find the algorithm for the calculation of the
similarity degree of two given words. The trivial solution is to give
this function the maximal value if the words differ in at least one letter
or in one permutation of two neighboring letters. In other cases the
function has zero values. (It solves the problem of one mistake and can
be satisfactory for the simplest Spelling Checker suggestion.)

To detect more than one mistake (or to create a grammar rule)
more complicated algorithms are employed. First of all consider the
following variation of the well-known algorithm for searching the max-
imal common subsequence for the two given words v and w (n and m
long correspondingly).

Consider n by m matrix L, where by induction L[i, j] = max(L[i−
1, j], L[i, j − 1], L[i − 1, j − 1] + M [v[i], w[j]]), and L[0, j], L[i, 0] are
considered to be equal zero. Taking L[n,m] as a criterion of the sim-
ilarity we can get a rather good similarity function (e.g. f(w, v) =
L[n,m]/(n + m)). Nevertheless for the purposes of suggestion this
method cannot be considered as a satisfactory one: it uses too many
useless calculations. To improve it, let us restrict our suggestion to a
reasonable bound: the similar word should be found if there no more
than two mistakes were made. The possibility to correct three mistakes
remains, but only in the case of ”natural” mistakes. This restriction
gives us a possibility to construct only 5 diagonals from matrix L[i, j]
(where the difference between i and j is at most 2, L[i, j] being zero in
other cases). Moreover, it is not necessary to calculate all diagonals: if
the values are too small we can be sure, that more than two mistakes
were made and stop calculations). The real method was slightly more
complicated (suggestion shouldn’t be too talkative), but the main idea
was exactly this one. To accelerate the search similar roots and similar

15

S.Cojocaru, M.Evstunin, V.Ufnarovski

endings are looked for separately.
The last remark is that instead of letter similarity matrix M the

corresponding word similarity tree could be used (it helps, for instance,
to display more adequately the alternation of a letter with several ones,
which is typical of Roumanian).

6 Implementation notes

Now we will discuss some implementation aspects in the case when
the morphological information is not available. It should be taken into
account that we want to achieve two contradicting aims:

1. to shorten data base volume;

2. to reduce the access time for achieving reasonable work time.

Obviously Lempel-Ziv, Lempel-Ziv-Welsh packing methods and th-
eir modifications give a good compress coefficient but they are not ap-
plicable in our case because the response time will be too large. There-
fore the authors of this article decided to use semantic information
during the word packing into the constant base because just this one
contains the main word fund having then a huge volume. Note that,
shorting size of data base allows scanning it more quickly approaching
aim 2.

Consider the representation of a word in the data base (Figure 1).
It can be seen that a word is divided into three parts:

1. the first two characters saved separately (this point will be dis-
cussed later);

2. the rest of the root;

3. the set index of valid terminations set for this root.

The UL field contains the length of the root in characters including
C1 and C2. The root S is saved in a special encoded form. We use
the source words length opposed to the encoded word length due to

16

Detecting and correcting spelling errors. . .

UL NT S

UL — length of a source word root (including the first two letters C1
and C2)
NT — valid terminations set index
S — common source word root for all terminations from the pointed
set (without C1 and C2)

Figure 1:Constant base page element structure.

the possibility to calculate the encoded length from the source one (the
inverse is not the case). This field is used for an effective word search.
We do not need to compare words when their length is not equal. It
saves a very expansive string comparison. In the case when the length
and the root are the same, we have to find out if there is the source word
termination in the set pointed out by field NT . The oversimplification
was made for the user’s base. The word is not divided into a root and
a termination (Figure 2).

UL ST

UL — length of a source word root (including C1 and C2)
ST — encoded word without C1 and C2

Figure 2:User’s base page element structure

The size of the element for the word is limited and constant. So
the following three cases are possible: the size of a word

1. is equal to the element size;

2. is less than one;

3. is greater than one.

17

S.Cojocaru, M.Evstunin, V.Ufnarovski

The first case is ideal. In the second case there is an unused memory.
The latter is not very efficient but there is no problem. The third
variant is the most complicated. The rest of the word which is not
contained in the first element will lay over the next one. So we must
know how to distinguish between the beginning of the word and its
continuation. For this purpose we consider the structure of a page
(Figure 3).

NLE NBE C1, C2 I1 I2 . . . In E1 E2 . . . En

NLE — logical elements quantity
NBE — physical elements quantity
C1, C2 — the first two characters of each word on the page
Ii — indirect indexed vector
Ei — page element

Figure 3:Constant and user’s data base page

The first field shows how many roots are stored on the page and
the second field shows how many elements are occupied by the roots.
Pages as well as elements have a fixed size. So it is possible to access
directly to an indexing file by the page number. Hence we have fast
access only by operating system means.

The next field keeps the first two characters of all the words saved
on the page. This permits one to save some memory without any loss of
efficiency. Vector Ii was introduced to simplify both the modification
of data base and addition of the new words. Using this vector we can
distinguish between the beginning of a word and the continuation of
a word. Its usage as an indirect address map sets the lexicographical
order of the elements. We can use a direct element indexing because of
a fixed element size. Summarizing the above given we can use binary
search methods. Note that this method allows both effective searching
and adding words. As it is known if there are N elements, we can find
out necessary one by log2(N) comparisons. Suppose we have W words

18

Detecting and correcting spelling errors. . .

in the data base and P words in the page, then D = log2
W
P = log2 W−

log2 P disk accesses are needed. Hence, minimizing parameter D we
shorten access time to the data base. For this purpose the following
method was elaborated. The first word from each page is stored in the
special table named HASH-table (Figure 4).

H1 H2 . . . Hn

Hi — table element

SA NP

SA — word in ASCII code, the first from the pointed page
NP — page number in the data base

Figure 4:The HASH-table structure

The size of this table will be D elements. Controlling P we can
make the HASH-table be in RAM completely. Note that pages of
the constant base contain the word roots, hence the volume of pages
grows. Applying binary search to HASH-table we can find out the page
possibly containing searched word. After reading the page we will know
whether it contains the necessary word. Thus we minimize D to 1 (i.e.
there is only one disk access). Thus we obtain the following data base
general structure (Figure 5).

The following method was used for increasing effectiveness. More
often used words were extracted into a separate data base permanently
being in the RAM. Its structure is shown in Figure 6.

Using words length and array Lij we get the hash-function for the
minimization of operation number for a binary search. All words are
represented in ASCII code because the volume of this base is rather
small.

In conclusion we give some evaluation of ROMSP. All measurements
have been made on IBM PC AT compatible computer — 12 MHz, 40

19

S.Cojocaru, M.Evstunin, V.Ufnarovski

H1

H2

· · ·
Hn−1

Hn

P1

P2

· · ·
Pn−1

Pn

HHHHHHHHHHHHHHHHj

»»»»»»»»»»:

-

³³³³³³³³³³³³³³³³³³1

Figure 5:The general data base structure

L11 L12

L21 L12

· · · · · ·
Lm−11Lm−12

Lm1 Lm2

W1

W2

· · ·
Wn−1

Wn

-
-
-

XXXXXz

»»»»»:

-
-
-

Figure 6:Data base structure of the more often used words

MB HDD, 28 msec average seek.

• Searching speed — 70-100 words per second;

• the volume of the data base containing about 330000 words (3.6
MB) is equal to 700 KB;

• the ROMSP software volume — 300 KB;

• programming language — TurboPascal.

References

[1] A.Lombard , C.Gâdei. Dictionnaire morphologique de la langue
roumaine. Bucuresti, Editura Academiei. 1981.

20

Detecting and correcting spelling errors. . .

[2] E.Boian, A.Danilchenco, L.Topal. The automation of speech parts
inflexion process. Computer Science Journal of Moldova. 1993, Vol.
1, No 2 (to appear).

[3] D. Tufis. Paradigmatic morphology learning. Computers and Ar-
tificial Intelligence. 1990, Vol. 9, No 3. p. 273-290.

S.Cojocaru, Ph.D., Received January 3, 1993
M.Evstunin,
V.Ufnarovski, Ph.D,
Institute of Mathematics,
Academy of Sciences, Moldova
5, Academiei str., Chişinău,
277028, Moldova
e-mail: ufn@math.moldova.su

21

