
Computer Science Journal of Moldova, vol.1, no.1(1), 1993

The main concepts of a new HLL computer

“CAMCOH”

A.Terekhov

Abstract

The concepts of a new computer and the peculiarities of its
architecture are discussed.

A new industrial technology of creating complicated embedded sys-
tems was elaborated in Sankt-Petersburg university in collaboration
with some industrial institutes; it was successfully used in several large
projects (electronic telephone stations, network control, etc.). The
main idea of this technology is using fixed high level algorithmic lan-
guage (HLL) through all life cycle stages beginning with requirements
and specification to translation to the target computer codes and main-
tenance. It was shown that any HLL is not fit enough for successful
use as a basic language. For technology purpose the best are languages
of static type (i.e. with full mode checking in compile time), e.g., Algol
68, Ada, Modula 2.

Habitually in embedded systems specialized computers are applied
which are possible to use in extreme situations. But it is only very
rare that such a computer has an involved operating system, disks and
displays or HLL compilers. That is why large software projects are to be
worked out using powerful tool (host) computers and cross-compilers.
In Computer Science Laboratory of Sankt-Petersburg University more
than 15 compilers and cross-compilers were implemented, best of which
provide the coefficient of object code enlarging in compare with hand
written programs less than 1.4. The implementation of a compiler,
however, is very sophisticated problem and even a small loss of 1.4
times is often unfit for limited resources of specialized computers.

c©1993 by A.Terekhov

22



The main concepts of a new HLL computer. . .

The decision was carried out to build a new computer which was
later on called “CAMCOH” (pronounce as “SAMSON”) satisfying the
demands of embedded applications, but comfortable enough to use it as
a tool. HLL computers have already been worked out both in our coun-
try and abroad but the results were usually complex and expensive. In
our opinion the complexity wasn’t due to the HLL correspondence but
to universality of applications. We made an effort to restrict the class of
problems to solve to the of so-called “communication type problems”.
In fact programming these problems demand integer arithmetics and
logics. However, connection net control needs a dialog with opera-
tor, file system, string handling, information equipment needs effective
database handling, reconfiguration of connection nets — complicated
probability calculations with floating point numbers and so on. That’s
why even this class of problems is too wide.

We convinced now that to carry out a computer according to a small
class of problems doesn’t make any practical sense, but for to produce
simple cheap computer we were to search for some restrictions.

The decision has come unexpectedly. We decided to limit the class
of used languages. The practical experience of using static languages
has convinced us that a compiler from such a language can accom-
plished by hardware. In fact if the scheme “for problem solving” is like
this:

problem → compiler → computer → result

and no detour can be found. One can see that if a computer and a
compiler are planned and implemented simultaneously their duties can
freely distributed between them. Evidently the price of installation is
disappearing in compare with price of computations and advantages
are to be taken of complicating the compiler and simplifying the hard-
ware. On the other side, an orthogonal design, absence of traditional
arbitrary restrictions simplifies the code generation and at least com-
piler written for such a computer is a great deal more simple than for
a usual computer.

Let us list out some peculiarities of “CAMCOH”.

1. “CAMCOH” hardware is not oriented to one HLL, but its instruc-

23



A.Terekhov

tion set supports main operators of modern HLL (procedure call,
loop, slice of an array and so on). It can be safely affirmed now
that a “gold fund” of HLL constructions has already been fixed,
that varies in syntax but coincides in semantics.

2. The instructions set is addressless, like Polish reverse notation.
For instance, an expression

(a + b) ∗ (c− d)

can be written
ab + cd− ∗

This form of notation was invented more than half a century
ago, it is compact and easily interpreted. But an error in this
notation is easily made and difficulty found, that’s way only very
few software systems trust the user to make it (e.g. FORTH).
The compiler will turn the program into this notation without
any errors.

3. The main part of instructions are coded by one byte, the more
rare ones being coded by 12 or 16 bits. Four of the most frequent
instructions are coded by 4 bits, for instance, loading to the stack
of the first 16 variables of current procedure is coded by one byte
instruction.

4. There are 3 register stacks in “CAMCOH”:

• integer stack of 16 16-bit registers;

• real stack of 8 32-bit registers;

• address stack of 16 40-bit registers.

The compiler for static HLL always defines the stack it is needed,
there is no hardware of checking out overflow or underflow (stack
is empty) of stacks — that is all for compiler duty. That means
“CAMCOH” has got enough internal register store (40 registers)
and direct access for every register, not only for the top of a stack,

24



The main concepts of a new HLL computer. . .

which permits to keep many objects (for instance, loop variables)
in register, and not in main store.

The most efficient register allocation is a somewhat complicated
problem, but modern compilers solve it successfully. One ar-
gument more against using registers in computer design is that
procedure call works slowly because registers have to be saved as
the compiler does not know the register allocation at the moment
of call inside of a procedure. “CAMCOH” provides each proce-
dure with independent register enumeration (from top to bottom
of the stack) which permits not to save all the registers but only
a few number of them just to provide an “appetite” of procedure
calculated at compile time. There is no need to restore all the reg-
isters immediately after return to the procedure, may be they’ll
have to be saved once more (this situation can be called “crush”).
Our strategy may be described as a following: save the registers
when the stack is nearly overflown, restore them when the stack
is nearly empty. Such strategy helps to reduce the expenses as
possible.

5. A special scheme “pipeline” is foreseen in “CAMCOH” architec-
ture for not to waste the time for fetching the instructions. The
“pipeline” buffer has 8 bytes with 4 bytes access to store. The
speed of “pipeline” is such that the fetching time can be neglected
in all cases except branches.

6. “CAMCOH” is a microprogrammed computer based on section
microprocessing sets (like AM2900). A special microprogram-
ming automation system based on Algol 68 was worked out for
to implement rather complex “CAMCOH” architecture. This
system permitted to prepare microprograms without any mi-
croassembler. Algol 68 microprogramming appeared to be so
convenient that it was decided to supply every “CAMCOH” with
this system and microprogram RAM (4K words of 64 bits, 2K
of them containing microprograms of standard instruction set).
We have very good experience of improving several applications

25



A.Terekhov

more than 10 times after microprogramming some selected pro-
gram parts.

7. It is generally known that virtual memory makes much easier
work of computer scientists but it used very seldom because of im-
plementation difficulties. This problem is solved in “CAMCOH”
with the help.of the compiler too. The main store is divided
into segments of varied length, the length of each is defined by
the compiler. Only the mathematical addresses (segment num-
ber and offset in it) can be stored. Mathematical address can be
loaded to address stack, at that moment it transforms to physi-
cal address with the help of segment table. This is a very typical
decision and loading costs rather much (about 10 clocks), but
loaded address can be used several times without any additional
expenditures. The computer, its operating system and compiler
provide immobility of the segment while there is any reference
to it from address stack. Compilers optimize usage loading ad-
dress stack instructions, in particular carry them out of loops.
Consider the example:

for i to n do a[i] := b[i] od;

The corresponding object code is:

load1 % 1 → int stack 1 byte
load n % n → int stack 1 or 2 bytes
loada a % a → addr stack 2 bytes
loada b % b → addr stack 2 bytes
begloop end % if n < 1 then goto end 2 bytes

lab slice 1, 1 % a in areg 1, i in ireg 1 2 bytes
% result to addr stack

sliceandload 1, 1 % now b in areg 1 2 bytes
% value of b[i] → int stack

:= % (addr stack):= int stack 1 byte
endloop lab % ireg 1+ := 1; 2 bytes

26



The main concepts of a new HLL computer. . .

% if ireg 1 <= ireg 0
% then goto lab

end

Note that a repeating part of the loop consists of only 7 bytes!

Address stack is 40 bits wide: 24 bits is a physic address (that’s
why directly addressed main store may be up to 16 MB) and 16
bits - segment number, it used when physical address is to be
transformed back to mathematical one.

8. An opinion has be formed that a HLL program doesn’t depend
on the computer. For embedded systems it isn’t so. Obviously,
an expression a := b + c can be equally translated to codes of
any specialized computer, but as to real-time systems it are not
arithmetical expressions but OS features, technological demands
and concrete time characteristics that matters. “CAMCOH” is
only a small part of a large industrial technology program and
“CAMCOH” architecture was designed with strong connections
with other technological parts. Microprogram implementation of
main OS functions, large database handling, simultaneous exis-
tence of thousands real time processes with fast switching are
good examples of such approach.

A.N.Terekhov, Ph.D. Received May 27, 1992
NIIM, St.-Petersburg University
2, Bibliotechnaja sq.
Petrodvorets, St.-Petersburg
198904, Russia

27


