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Abstract. A class of m-player dynamic positional games on graphs that extends
the two-player zero-sum mean payoff games on graphs is formulated and studied. We
consider dynamic positional games with average and discounted payoffs criteria for the
players. We show that for an arbitrary game with average payoffs there exists Nash
equilibrium in mixed stationary strategies and for an arbitrary two-player zero-sum
average positional game there exists Nash equilibrium in pure stationary strategies.
Additionally we show that for an arbitrary dynamic positional game with discounted
payoffs there exists a Nash equilibrium in pure stationary strategies. Some approaches
for determining the optimal stationary strategies of the players in such games are
proposed.
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1 Introduction

In this article we formulate and study a class of m-player dynamic positional
games on graphs that extends and generalizes the two-player zero-sum positional
games on graphs from [1,2,4,11,12]. The formulation of this class of dynamic
positional games is the following.

Let G = (X, E) be a finite directed graph in which an arbitrary vertex x € X
has at least one outgoing directed edge e = (u,v) € E. The vertex set X of
G is divided into m disjoint subsets X1, Xo,..., X ( X = X1 U Xy U - U Xpp;
X;NXj=0,i# j) which are regarded as position sets of m players. On edge set

m functions r* : FF — R, i = 1,2,...,m are defined that assign to each directed
edge e = (z,y) € E the values ré,rg, ...,r" that are regarded as the rewards for
the corresponding players 1,2, ..., m when in G is made a move through a directed

edge e = (z,y) € F from x to y. On G the following m-person dynamic game is
considered.

The game starts at a given position o € X at the moment of time ¢ = 0, where
the player i € {1,2,...,m} who is the owner of the starting position xy makes a
move from x to a neighbor position z; € V' through a directed edge eg = (xg,z1) €

1 2 m

E. After that players 1,2,...,m receive the corresponding rewards r; ,7Z,, ..., c.

Then at the moment of time ¢t = 1 the player k € {1,2,...,m} who is the owner of
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position 1 makes a move from x1 to a position zo € X through the directed edge
e1 = (r1,22) € E. After that players 1,2,...,m receive the corresponding rewards
ril,rzl, ...,7¢t, and so on, indefinitely. Such a play of the game on G produces
the sequence of positions xg, 1, x2,...,xs... induced by strategies of moves of the
corresponding players 1,2, ..., m. If in this game each player i € {1,2,..., m} makes
moves from his positions set trough outgoing directed edges in order to maximize
his average reward per transition

t—1
%

w! = lim inf - roi=1,2.....m
To oo n Oe.,. 9 4y 9 9
’r:

then such a game on G we call average positional game. If in this game each player
i €{1,2,...,m} makes moves from his positions set trough outgoing directed edges
in order to maximize the discounted sum of rewards

o

i i s

1,0—2 Are , i=1,2,...,m,
=0

with given discount factor A\, 0 < A < 1, then such a game on G we call discounted
positional game.

The considered games in the case m = 2 and r! = —r2 = r., Ve € F become the
two-player zero-sum positional games with average and discounted payoffs criteria
for the players, respectively. These cases of antagonistic positional games where
studied in [2,4,5,11]. In [2,4] has been shown that for a zero-sum average positional

game of two players there exists the value v(xg) such that the first player has a
t—1

strategy of moves that insures lim inf — ZT(BT) > v(zp) and the second player
t—o0 t

=0
t—1

has a strategy of moves that insure lim sup — Z r(er) < wv(xzg), and players in such
t—00 t

7=0
a game can achieve the values v(zg) by applying the strategies of moves that do

not depend on ¢t but depend only on the vertex (position) from which the player is
able to move. Therefore such strategies in [2,12] where called positional strategies;
in [4,11] such strategies where called stationary strategies. In fact, such strategies
in a twO-player zero-sum game can be specified as pure stationary strategies because
each move through a directed edge at each position of the game is chosen by the
corresponding player from the set of feasible strategies with the probability equal to
1 and in each position such a strategy of the move does not change in time.

In general case, for a non-zero-sum average positional game on a graph a Nash
equilibrium in pure stationary strategies may not exist. This fact has been shown
in [4], where an example of two-player non-zero-sum average positional game that
has no Nash equilibria in pure strategies is constructed.

In this article we extend the notion of pure stationary strategies to mixed sta-
tionary strategies for the players in average positional games, assuming that players
in their positions at different moment of time may make moves randomly according
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to a probability distribution over the set of possible moves. Such an extinction of
the average positional game leads to a stochastic positional game studied in [6,11].
Using the results from [6,11] we show that for an arbitrary m-player average posi-
tional game on a given graph there exists a Nash equilibrium in mixed stationary
strategies and for an arbitrary two-player zero-sum average positional game there
exists a Nash equilibrium in pure stationary strategies. Additionally we show that
for an arbitrary dynamic discounted positional game on a given graph graph there
exists a Nash equilibrium in pure stationary strategies.

2 Stationary Nash equilibria for stochastic positional games

In this section we presents some results from [6-8] concerned with the existence
and determining Nash equilibria for stochastic positional games and based on these
results in the next section we show how to determine the existence of Nash equi-
libria for dynamic positional games with average and discounted payoffs on graphs.
Stochastic positional games represents a special class of stochastic game in which
the set of states of the Markov decision process is divided into m disjoint subsets and
in each subset of the states the Marlov processes is controlled only by one player.
The detailed formulation of such game we present in the following subsection.

2.1 Formulation of stochastic positional games with average and
discounted payoffs for the players

An m-player stochastic positional game consists of the following elements:

- a state space X (which we assume to be finite);

- a partition X = X; U Xy U--- U X,,, where X; represents the position set
of player i € {1,2,...,m};

a finite set A(x) of actions in each state x € X;

a step reward r;’a with respect to each player i €{1,2,...,m} in each
state € X and for an arbitrary action a € A(x);

a transition probability function p: X x [[ A(z) x X — [0, 1] that gives
reX
the probability transitions pg, from an arbitrary = € X to an arbitrary

y € X for a fixed action a € A(x), where > pi =1, Vre X, a€ A(z);

yeX
- a starting state xg € X.
The stochastic positional game starts at the moment of time ¢ = 0 in a given
state x¢p where the player i € {1,2,...,m} who is the owner this state po-

sition zy (xg € X;) chooses an action ay € A(xg) and determines the rewards
7“:1007%,1”32:07,10, ooy Ty o for the corresponding players 1,2,...,m. After that the
game passes to a state y = x1 € X according to a certain probability distribu-
tion {pgd ,}. At the moment of time ¢ = 1 the player k € {1,2,...,m} who is
the owner of the state position z; (x7 € Xj) chooses an action a; € A(z;) and

: 3 1 2 m
players 1,2,...,m receive the corresponding rewards 7y, o 7% 415+ Tgy o, Lhen
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the game passes to a state y = x2 € X according to a probability distribution

{pgi’y} and so on indefinitely. Such a play of the game produces a sequence of

states and actions xg, ag, 1, a1, . .., T, at, . . . that defines a stream of stage rewards
1 2 m _ . .
Tarars Toear -+ Tegarr ¢ = 0,1,2,.... For this stochastic process controlled by m

players in [6,7,9] the following two stochastic positional games where formulated
and studied: the average stochastic positional game and the discounted stochastic
positional game. The average stochastic positional game is the game with payoffs of
the players

—00

t—1
. 1 )
w;O - thm inf E(;Zr;«"ﬁa)’ i = 1727 -y MM,
=0

where E is the expectation operator with respect to the probability measure in the
Markov process induced by actions chosen by players in their position sets and given
starting state zg. The discounted stochastic positional game is the game with payoffs

of the players
t—1

A 1 o ,
Oy = E(EZ)‘ZT;‘T@T)’ 1=1,2,...,m,
7=0
where A is a given discount factor such that 0 < A < 1. These stochastic games
extend and generalize deterministic positional games.

2.2 Pure and mixed stationary strategies for stochastic positional
games

A strategy of player i € {1,2,...,m} in a stochastic positional game is a mapping
s’ that provides for every state x; € X; a probability distribution over the set of
actions A(x;). If these probabilities take only values 0 and 1, then s’ is called a pure
strategy, otherwise s’ is called mized strategy. If these probabilities depend only on
the state z; = 2 € X; (i. e. s° do not depend on t), then s’ is called a stationary
strategy, otherwise s’ is called a non-stationary strategy. Thus, a pure stationary
strategy of player ¢ is a mapping

s':x—ac Alx) for z€X;

that determines an action a € A(x) for each state x € X;, i.e. s'(x) = a for z € X;.
This means that a pure stationary strategy s° of player i we can identify with the
set of boolean variables sfw € {0,1}, where for a given z € X; sﬁw =1 if and only
if player i fixes the action a € A(z). So, we can represent the set of pure stationary
strategies S’ of player i as the set of solutions of the following system:

> séya =1, Vr € X;;
acA(x) . (1)
Sya €10,1}, Vz € X;, Vae€ A(r).

Obviously the sets of pure strategies S',S?,...,S™ of players are finite sets. If in
system (1) we change the restrictions s, , € {0,1} for z € X;, a € A(z) by the
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conditions 0 < sé’a <1 then we obtain the set of mixed stationary strategies where
S;,a is treated as the probability of the choices of the action a by player ¢ every
time when the state x is reached by any route in the dynamic stochastic game.
Thus, we can identify the set of mixed stationary strategies S of player i as the set
of solutions of the system

>osha=1, Vo e Xy;
acA(x) ' (2)
Sha >0, Vo € X;, Vae€ A(z)
and for a given profile s= (s!,s2,...,s™) € § = S x 2 x---x 8™ of mixed strategies
s',s2,...,s™ of the players the probability transition matrix P* = (p? induced
x7y

by s can be calculated as follows

Doy = Z sic’apiy for ze€eX;, 1=1,2,...,m. (3)
a€A(x)

In the sequel we will distinguish stochastic games in pure and mixed stationary
strategies

An average stochastic positional game in pure and mixed stationary strategies
can be defined as follows. Let s = (s',s2,...,s™) be a profile of stationary strategies
(pure or mixed strategies) of the players. Then the elements of probability transition
matrix P® = (p;y) in the Markov process induced by s can be calculated according to
(3). Therefore if Q° = (q;,) is the limiting probability matrix of P*, then the average
payoffs per transition w} (s), w2 (s),...,wi(s) for the players are determined as
follows

m
Who(8) =2 N @iy Thge i=1,2,...m, (4)
k:lyEXk

where A {
r;sk = Z S’Zj»a'r;va’ for ) GXIC’ k € {1727-"7m} (5)
acA(y)

expresses the average reward (step reward) of player 4 in the state y € X when

player k uses the strategy s”.
The functions w} (s),w2 (s),...,wi(s) on § = ST x 52 x ..o x §™  de-

fined according to (4),(5) determine a game in normal form that we denote
<{Si}i:1,m? {wi, (8)}i—tm )- This game corresponds to the average stochastic posi-
tional game in mized stationary strategies that in extended form is determined by the
tuple ({Xi}i:m, {A(x)}rex, {ri}izm,p). The functions w}co (s),wgo(s), Wit (s)
on S = S!x 8% x ... x S™ determine the static game in normal form
({Si}i:Lm, {wio(s)}i:m ) that corresponds to the discounted stochastic positional
game in pure strategies and in extended form it also is determined by the tuple
({Xi}izm7 {A(z)}zex, {Tl}i:m,p).

A discounted stochastic positional game in pure and mixed stationary strategies

can be defined as follows. Let s = (s,52,...,s™) be a profile of stationary strategies
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(pure or mixed strategies) of the players in a stochastic positional game. Then the
elements of probability transition matrix P* = (p; ) induced by s can be calculated
according to (3) and we can find the matrix W* = (w3 ), where W* = (I — yP?).
After that we can find the payoff for the players as follows

) _ s 7 S
0y, (8) = E Wao oy Tys 0=1,2,...,m,

yeX
where 7! _ is determined according to (5).
The functions o3 (s), o2,(s), ..., o (s) on S = 8" x 5% x -+ x §™, de-

fined according to (4),(5), determine a static game in normal form that we denote
<{Si}i:17m,{aio(s)}i:17—m ). This game corresponds to the discounted stochas-
tic positional game in mizved stationary strategies that in extended form is de-
termined by the tuple ({Xi},_17, {A(®)}zex, {ri}i:L—m, p,A). The functions
03,(8), 02,(8),...,0m(s) on S=S!x§*x ... x §™, determine the static game in
normal form ({S'},_17, {-%0’(s)};—17 ) that corresponds to the average stochastic
positional game in pure strategies. In the extended form this game also is determined

by the tuple ({Xi}z:le {A(x)}rex, {ri}i:L—m, D, ).

2.3 Stochastic positional games with a random starting state:

For a stochastic positional games with average payoffs (or with discounted payoffs)
we can consider the games in which the starting state is chosen randomly according
to a given distribution {f,} on X. In the case of an average stochastic positional
game with given distribution {f,} on X we can define the game with the payoff
functions

Vo(s) = Z O, -wi(s), i=1,2,....m

zeX
on S and we obtain a static game in normal form ({Si}i:L—m, {@bg(s)}i:L—m ) that
in extended form is determined by ({X;}, 17, {A(%)}zex, {ri}i:L—m,p, {02} zex)-
Similarly we can define the static game in normal form ({5%} =T {#5(s)} i=Tom)
for a discounted stochastic positional in which the starting state is chosen randomly
according to a given distribution {6,} on X and we obtain the game with payoffs

il 2 il 2 »
qbé(s,s,...,sm):ZHx-a;(s,s,...,sm), 1=1,2,...,m,
zeX

that is determined by ({X;},_17, {A(%) }zex, {Ti}i:m,p, {0z} zex, N).

2.4 Stationary Nash equilibria for an average stochastic positional
game

In this subsection we show that an arbitrary average stochastic positional game
possesses a Nash equilibrium in mixed stationary strategies. To prove this we shall
use the normal form of this game in stationary strategies ({S i}z‘:le {wé(s)}izm )
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where each S%, i € {1,2,...,m} is the set of solutions of system (2) representing
the set of stationary strategies of player i. Each S° is a convex compact set and
an arbitrary extreme point corresponds to a basic solution s* of system (2), where
st . €10,1}, Vo € X;, a € A(z), i.e. each basic solution of this system corresponds
to a pure stationary strategy s’ € S? of player i.

On theset S =51 x 82 x-..-x 8™ we define m payoff functions

A CE Z o> s i=12,...,m,  (6)

k=1 zeXy acA(x)

where ¢, for x € X are determined uniquely from the following system of linear
equations

m

Qy_z E Z Slacf,a'p(ml,y'q‘r:ov Vy € X;
k=1 z€Xp acA(x)
m (7)

Qy+wy_z > > Sg,a'pg,y'wxzeya VyeX
k=1 z€Xy acA(x)
for a fixed profile s = (s!,s%,...,8™) € S. The functions ¢g(31,52,...,sm),
1 = 1,2,...,m, represent the payoff functions for the average stochastic game
in normal form <{Si}i:L—m, {¢g(s)}i:L—m ). This game is determined by the tu-
ple ({Xi},—1m, {A(®)}eex, {ri}izm, P, {0y}yex) where 6, for y € X are given
nonnegative values such that > yex Oy =1.

If 6,=0, Vy € X\ {zo} and 9 = 1, then we obtain an average stochastic
game in normal form ({S'},_ T W ;0( s)},_15m ) when the starting state zg is
fixed, i.e. ¢5(51,32,..., sm) = cuxo(s1 s2, ..., s™), i=1,2,...,m. So, in this
case the game is determined by (X, {A"(z)},_17, {r'}ictoms P> %0)-

If 6,>0, Vy € X and ZyeX y = 1, then we obtain an average stochastic
game when the play starts in the states y € X with probabilities 6,. In this case
for the payoffs of the players in the game in normal form we have

@bé(sl,sQ,...,sm): Zﬁy'wZ(sl,SQ,...,sm), 1=1,2,...,m

yeX

Let ({S%} =T {wé(s)}izm ) be the non-cooperative game in normal form that
corresponds to the average stochastic positional game in stationary strategies deter-
mined by ({Xi}i:T,m7 {A(®) }ex, {rz}i:m,p, {Qy}yEX)' So, S*,i=1,2,...,m,
and ¢} (s), i =1,2,...,m, are defined according to (2) and (6),(7).

In [6,8] is proven the following theorem.

Theorem 1. The game <{Si}¢:17n7 {wé(s)}i:m) possesses a Nash equilib-
rium s* = (s'%,8%%,...,8™*) € S which is a Nash equilibrium in mized sta-
tionary strategies for the average stochastic positional game  determined by
({Xi}i:T,m {A(w)}m€X7{r2}izmv P, {bylyex). If 0, > 0, Vy € X, then s*=
(31*, 25 s™*) is a Nash equilibrium in mized stationary strategies for the aver-
age stochastic positional game ({5} {w;(s)}izm ) with an arbitrary starting
state y € X.

i=1m’
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2.5 Pure stationary equilibria for a two-player zero-sum average
positional game

For a two-player zero-sum stochastic positional game the existence of equilibria
in pure stationary strategies can be derived from the following theorem.

Theorem 2. Let a two-player zero-sum average stochastic positional game game
that is determined by the tuple (X = X1 U Xo, {A(2)}zex, {Te.atzex,p) be given.
Then the system of equations

€r twy = Max 7rpq+ ¢ e Vo € Xq;
T T aeA(x){ z,a y;{px7y y}a 1

€rt+wy = min <rp,+ @ ey, Vre Xo;

has a solution under the set of solutions of the system of equations

Wy = max ¢ w Ve e Xq;
* aeA(I){ngpm’y y}, b

(9)

Wy = min & Wy p, Vo € X,

i.e. the system of equations (13) has such a solution wk, x € X for which there
exists a solution ¢, x € X of the system of equations

€ +Wy = max S7pq+ ), iy, Vo€ Xi;
a€A(x) yex

Er+wi= min {ry,+ @ € Vr € Xs.

The optimal pure stationary strategies s**, s** of the players can be found by fizing

arbitrary maps s'"(x) € A(z) for x € X1 and s*"(x) € A(z) for v € Xy such that

s (x) e {arg max { > p%yw;*}} N {arg arenf:‘a();){rm,a—i—z pgjyal*;}},x € Xy,

acA(x) yeX yeX
2% : a * : a %
s (r) € { arg min w arg min < 7.+ € , T € Xo,
( ) { gQEA(x){yEZX pac,y y}} n { g aEA(m){ o yEZX px,y y}} 2
and wy(s'",s%") =wk, Yz € X, i.e.

k k . .
wz (51", 5%") = max min w,(s',s?) = min max w.(s',s%), VreX.
slesSt s2e52 s2€82 slest

The full proof of this theorem is presented in [6,10]. Based on this theorem all
optimal pure stationary strategies of the players can be found.
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2.6 Pure stationary equilibria for a discounted stochastic positional
game

The existence of stationary Nash equilibria for discounted stochastic games in general
has been proven in [3]. Here we show that for an arbitrary stochastic positional
games with discounted payoffs there exists a Nash equilibria in pure stationary
strategies. This fact follows from the theorem bellow the full proof of which can be
found in [9].

Theorem 3. Let a discounted stochastic positional game that is determined by the
tuple ({Xi}i—1m {A@) boex, {r'}icim 0, A) be given. Then there exist the values
ol forx € X, i=1,2,...,m that satisfy the following conditions:

1) rfw—l—)\ ;(pg,y ;—U;SO, Ve € X;, Vae€ A(x), i=1,2,...,m,
y

2) max{r$a+)\2p$yay—a} 0, VeeX;, i=1,2,...,m;
acA(x yeX

3) on each position set X;,i €{1,2,...,m} there exists a map

s Xi—=Uzex, A(z) such that

s (z) = a* Gargarenax { Ia—i-/\pry oy 0';}

yeX
and
xa*—l—)\Zpl,yaj—J]:O Vee X;, 7=1,2,...,m,
yeX
where s* = (s'7,5%%,...,s™") represents a stationary Nash equilibrium in pyre

strategies for the discounted stochastic positional game determined by the tuple
{ X}ty {A®) }aex, {ri}izm, p, A)and such an equilibrium is a pure stationary
Nash equilibrium for the game with an arbitrary starting position x € X.

Based on this theorem all optimal pure stationary strategies of the players in a
discounted stochastic positional game can be found.

3 Stationary Nash equilibria in mixed stationary strategies for
dynamic positional games on graphs

It is easy to observe that the considered dynamic positional games with av-
erage and and discounted payoffs on graph G = (X, F) with given position sets
X1, Xo,...X,, and rewards functions r* : E — R represent the particulary cases of
the stochastic positional games with average and discounted payoffs for a Markov
decision process from previous section. Indeed, for the dynamic positional game
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on graph G with average payoffs (or discounted payoffs) the set of outgoing di-
rected edges E(x) = {e = (x,y) € Ely € X} in a position x € X; of player
i € {1,2,....m} can be regarded as the set of actions A(x) of the stochastic po-
sitional game for a Markov process with average payoffs (or discounted payoffs),
where an action a € A(z) corresponds to a directed edge e = (z,y) € E(z), i.e
a = (z,y) and this action in the game is chosen by the corresponding player with
probability p3 , = 1 and r;, = ry,; obviously, if in position z € X; the action
a = (z,y) € A(z) = E(z) is chosen with the probability pj , = 1, then for the rest
of the actions @ = (z,z) € A(wr) the corresponding probabilities pj , = 0. So, the
dynamic positional game on G represents the case of stochastic positional game in
which the probability transitions pg , take the values 1 or 0.

The pure and mixed stationary strategies in a positional game on G can be
defined in a similar way as for a stochastic positional game, i.e. we identify the set
of mixed stationary strategies S* of player i € {1,2,...,m} in a positional game on
G with the set of solutions of the system

> sé’y =1, VzelX;
yeX(z) (10)
Spy >0, VreX; yeX(x)

where X (x) represents the set of neighbor vertices for the vertex z, i.e. X(z) = {y €
Xle = (z,y) € E}.

So, based on this theorem all optimal pure stationary strategies of the players
can be found.

3.1 Nash equilibria in mixed stationary strategies for average po-
sitional games on graphs

For a given average positional game on graph G we can consider a static
game in normal form <{Si}i:1,m7 {05(s)}iz Tm ) that is determined by the tuple

(G7 {Xl}z:m7 {Té}eEE(x),i:ma {ex}IEX)7 where

vh(st,s%, ..., Z Z Z S,y vy o 1=1,2,...,m, (11)

k=1 z€X, yeX(x)

and ¢, for x € X are determined uniquely from the following system of linear
equations

m
a—> X sk,a.=0, Yy e X;
Qtwy— >, > sp,wr=10, VyeX
k=1 zeXy
for a fixed profile s = (s!,s%,...,8™) € S. The functions ¢g(31,32,...,5m),

1 =1,2,...,m, represent the payoff functions for the stutic game in normal form
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<{Si}i:17m, {wg(s)}i:L—m ) o that corresponds to the average positional game in sta-
tionary strategies on graph G. Therefore from Theorem 4 as a corollary we obtain
the following result.

Theorem 4. The game in normal form <{Si}i:L—m,{¢é(s)}i:L—m> for the average
positional game on graph G has a Nash equilibrium which is a stationary Nash
equilibrium in mized stationary strategies of the average positional game on G with
an arbitrary starting state x € X.

This means that an arbitrary average positional game on a graph possesses a
Nash equilibrium in mixed stationary strategies.

3.2 Pure stationary equilibria for a two-player zero-sum average
positional game on graphs

A two-player zero-sum average positional on graph G = (X, E), represents the
case of the game on G with m = 2 and r! = —r2 = r., Ve € E; this game is
determined by the tuple (X = X1UXa, {re}ecr). The existence of equilibria in pure
stationary strategies for this case of the game can be derived on the basis of the

following theorem.

Theorem 5. Let a two-player zero-sum average stochastic positional game that is
determined by the tuple (X = X1 U Xo,{rydzex) be given. Then the system of
equations

€x + Wy = max {rx’y—i—zsy}, Vo € Xi;
yeX (z)

€r +wy = min {rgw + sy}, Vr € Xo;
yeX ()

has a solution under the set of solutions of the system of equations

Wy = max {wy}, Ve € X;

wy = min {wy}, Vo € X,
yeX(z)

i.e. the system of equations (13) has such a solution wk, x € X for which there
exists a solution ¢, x € X of the system of equations

Er + Wy = Max (Tryq+teye, Voe Xy
yeX(z) ’

6;p+w; = g{i?){rx7a+8y}, Vz € Xo.
Y T
The optimal pure stationary strategies s'*, s> of the players can be found by fizing

arbitrary maps s**(x) € A(x) for x € X; and s**(z) € A(x) for x € Xo such that

s (x) € {argygl)?é) {w;}} N {argyren)?é) {raw +€Z}},x € Xy,
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¥ (x) € {argyg(i?x) {wé}} N {ngénxig;) {Tx,y + 5;}},1: € Xy,

* * .
and wy(s'",8%") =wk, Vo € X, i.e.
* * . .
st s%") = max min w,(s',s?) = min max w,(s',s?), Ve e X.
steSt s2e52 s2€82 stest

waz(
Proof. The two-player zero-sum average positional game on graph G can be repre-
sented as a two-player zero-sum average stochastic positional game with transition
probabilities p} , in positions x € X, where a = (z,y) € A(z) = E(z) and p} ,
take only the value 1 and 0 and rewards ry, = 73y for (z,y) € E. Therefor if
we take onto account these conditions in Theorem 2 we obtain Theorem 5. So, the
two-player zero-sum average positional game on G has a pure stationary equilibrium
and all pure stationary strategies of the players can be found on the basis of this
theorem. O

3.3 Pure stationary equilibria for a discounted stochastic positional
game on graphs

A discounted positional game on graph G can be represented as a discounted
stochastic positional game in similar way as we proceeded in previous subsections
for average positional games on G. Therefore from Theorem 3 as a corollary we
obtain the following result.

Theorem 6. Let an m-player discounted stochastic positional game on graph
G = (X, E) be given, where the elements of this game are determined by the tu-
ple (G A{Xi}i—1mms {Ti}z‘:le A\). Then there exist the values ob for = € X,
1=1,2,...,m that satisfy the following conditions:

1) 7l 4+ o, — ol <0, Ve e X;, YyeE(), i=1,2,...,m,
2) max {rl, + ol —0l} =0, VzeX;, 1=1,2,...,m;
) yEE(l‘){ z,y Yy m} ?

3) on each position set X;,i €{1,2,...,m} there exists a map

s X Uzex,; E(x) such that

Sl*(g;) =y* €arg ymax {r;y + )\U; - O’;}

€EE(x)
and '
T?uy* + Aoy —0 =0, Vo eX;, j=1,2,...,m,
where s* = (s'", s2*,...,s™*) represents a stationary Nash equilibrium in pure

strategies for the discounted stochastic positional game on graph G determined by
({Xi}ictm ' izt s A) and such an equilibrium is a pure stationary Nash equi-
librium for the game with an arbitrary starting position x € X.

Based on this theorem all pure stationary strategies of the players can be found.
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4 Conclusion

For an arbitrary m-player average dynamic positional game on a graph there ex-
ists a Nash equilibrium in mixed stationary strategies and for a two-player zero-sum
average positional game on a graph there exists equilibrium in pure stationary strate-
gies. For an m-player discounted positional game there exists a Nash equilibrium in
pure stationary strategies.
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