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Abstract. A class of m-player dynamic positional games on graphs that extends
the two-player zero-sum mean payoff games on graphs is formulated and studied. We
consider dynamic positional games with average and discounted payoffs criteria for the
players. We show that for an arbitrary game with average payoffs there exists Nash
equilibrium in mixed stationary strategies and for an arbitrary two-player zero-sum
average positional game there exists Nash equilibrium in pure stationary strategies.
Additionally we show that for an arbitrary dynamic positional game with discounted
payoffs there exists a Nash equilibrium in pure stationary strategies. Some approaches
for determining the optimal stationary strategies of the players in such games are
proposed.
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1 Introduction

In this article we formulate and study a class of m-player dynamic positional
games on graphs that extends and generalizes the two-player zero-sum positional
games on graphs from [1, 2, 4, 11, 12]. The formulation of this class of dynamic
positional games is the following.

Let G = (X,E) be a finite directed graph in which an arbitrary vertex x ∈ X
has at least one outgoing directed edge e = (u, v) ∈ E. The vertex set X of
G is divided into m disjoint subsets X1, X2, . . . , Xm ( X = X1 ∪ X2 ∪ · · · ∪ Xm;
Xi ∩Xj = ∅, i ̸= j) which are regarded as position sets of m players. On edge set
m functions ri : F → R, i = 1, 2, . . . ,m are defined that assign to each directed
edge e = (x, y) ∈ E the values r1e , r

2
e , . . . , r

m
e that are regarded as the rewards for

the corresponding players 1, 2, . . . ,m when in G is made a move through a directed
edge e = (x, y) ∈ E from x to y. On G the following m-person dynamic game is
considered.

The game starts at a given position x0 ∈ X at the moment of time t = 0, where
the player i ∈ {1, 2, . . . ,m} who is the owner of the starting position x0 makes a
move from x0 to a neighbor position x1 ∈ V through a directed edge e0 = (x0, x1) ∈
E. After that players 1, 2, . . . ,m receive the corresponding rewards r1e0 , r

2
e0 , . . . , c

m
r0 .

Then at the moment of time t = 1 the player k ∈ {1, 2, . . . ,m} who is the owner of
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position x1 makes a move from x1 to a position x2 ∈ X through the directed edge
e1 = (x1, x2) ∈ E. After that players 1, 2, . . . ,m receive the corresponding rewards
r1e1 , r

2
e1 , . . . , r

m
e1 , and so on, indefinitely. Such a play of the game on G produces

the sequence of positions x0, x1, x2, . . . , xt . . . induced by strategies of moves of the
corresponding players 1, 2, . . . ,m. If in this game each player i ∈ {1, 2, . . . ,m} makes
moves from his positions set trough outgoing directed edges in order to maximize
his average reward per transition

ωi
xo

= lim
t→∞

inf
1

t

t−1∑
τ=0

rieτ i = 1, 2, . . . ,m,

then such a game on G we call average positional game. If in this game each player
i ∈ {1, 2, . . . ,m} makes moves from his positions set trough outgoing directed edges
in order to maximize the discounted sum of rewards

ψi
xo

=
∞∑
τ=0

λirieτ , i = 1, 2, . . . ,m,

with given discount factor λ, 0 < λ < 1, then such a game on G we call discounted
positional game.

The considered games in the case m = 2 and r1e = −r2e = re, ∀e ∈ E become the
two-player zero-sum positional games with average and discounted payoffs criteria
for the players, respectively. These cases of antagonistic positional games where
studied in [2,4,5,11]. In [2,4] has been shown that for a zero-sum average positional
game of two players there exists the value v(x0) such that the first player has a

strategy of moves that insures lim
t→∞

inf
1

t

t−1∑
τ=0

r(eτ ) ≥ v(x0) and the second player

has a strategy of moves that insure lim
t→∞

sup
1

t

t−1∑
τ=0

r(eτ ) ≤ v(x0), and players in such

a game can achieve the values v(x0) by applying the strategies of moves that do
not depend on t but depend only on the vertex (position) from which the player is
able to move. Therefore such strategies in [2, 12] where called positional strategies;
in [4, 11] such strategies where called stationary strategies. In fact, such strategies
in a tw0-player zero-sum game can be specified as pure stationary strategies because
each move through a directed edge at each position of the game is chosen by the
corresponding player from the set of feasible strategies with the probability equal to
1 and in each position such a strategy of the move does not change in time.

In general case, for a non-zero-sum average positional game on a graph a Nash
equilibrium in pure stationary strategies may not exist. This fact has been shown
in [4], where an example of two-player non-zero-sum average positional game that
has no Nash equilibria in pure strategies is constructed.

In this article we extend the notion of pure stationary strategies to mixed sta-
tionary strategies for the players in average positional games, assuming that players
in their positions at different moment of time may make moves randomly according
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to a probability distribution over the set of possible moves. Such an extinction of
the average positional game leads to a stochastic positional game studied in [6, 11].
Using the results from [6, 11] we show that for an arbitrary m-player average posi-
tional game on a given graph there exists a Nash equilibrium in mixed stationary
strategies and for an arbitrary two-player zero-sum average positional game there
exists a Nash equilibrium in pure stationary strategies. Additionally we show that
for an arbitrary dynamic discounted positional game on a given graph graph there
exists a Nash equilibrium in pure stationary strategies.

2 Stationary Nash equilibria for stochastic positional games

In this section we presents some results from [6–8] concerned with the existence
and determining Nash equilibria for stochastic positional games and based on these
results in the next section we show how to determine the existence of Nash equi-
libria for dynamic positional games with average and discounted payoffs on graphs.
Stochastic positional games represents a special class of stochastic game in which
the set of states of the Markov decision process is divided intom disjoint subsets and
in each subset of the states the Marlov processes is controlled only by one player.
The detailed formulation of such game we present in the following subsection.

2.1 Formulation of stochastic positional games with average and
discounted payoffs for the players

An m-player stochastic positional game consists of the following elements:

- a state space X (which we assume to be finite);

- a partition X = X1 ∪X2 ∪ · · · ∪Xm where Xi represents the position set

of player i ∈ {1, 2, . . . ,m};
- a finite set A(x) of actions in each state x ∈ X;

- a step reward rix,a with respect to each player i ∈{1, 2, . . . ,m} in each

state x ∈ X and for an arbitrary action a ∈ A(x);

- a transition probability function p : X ×
∏
x∈X

A(x)×X → [0, 1] that gives

the probability transitions pax,y from an arbitrary x ∈ X to an arbitrary

y ∈ X for a fixed action a ∈ A(x), where
∑
y∈X

pax,y = 1, ∀x ∈ X, a ∈ A(x);

- a starting state x0 ∈ X.

The stochastic positional game starts at the moment of time t = 0 in a given
state x0 where the player i ∈ {1, 2, . . . ,m} who is the owner this state po-
sition x0 (x0 ∈ Xi) chooses an action a0 ∈ A(x0) and determines the rewards
r1x0,a0 , r

2
x0,a0 , . . . , r

m
x0,a0 for the corresponding players 1, 2, . . . ,m. After that the

game passes to a state y = x1 ∈ X according to a certain probability distribu-
tion {pa0x0,y}. At the moment of time t = 1 the player k ∈ {1, 2, . . . ,m} who is
the owner of the state position x1 (x1 ∈ Xk) chooses an action a1 ∈ A(x1) and
players 1, 2, . . . ,m receive the corresponding rewards r1x1,a1 , r

2
x1,a1 , . . . , r

m
x1,a1 . Then
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the game passes to a state y = x2 ∈ X according to a probability distribution
{pa1x1,y} and so on indefinitely. Such a play of the game produces a sequence of
states and actions x0, a0, x1, a1, . . . , xt, at, . . . that defines a stream of stage rewards
r1xt,at , r

2
xt,at , . . . , r

m
xt,at , t = 0, 1, 2, . . . . For this stochastic process controlled by m

players in [6, 7, 9] the following two stochastic positional games where formulated
and studied: the average stochastic positional game and the discounted stochastic
positional game. The average stochastic positional game is the game with payoffs of
the players

ωi
x0

= lim
t→∞

inf E
(1
t

t−1∑
τ=0

rixτ ,aτ

)
, i = 1, 2, . . . ,m,

where E is the expectation operator with respect to the probability measure in the
Markov process induced by actions chosen by players in their position sets and given
starting state x0. The discounted stochastic positional game is the game with payoffs
of the players

σix0
= E

(1
t

t−1∑
τ=0

λirixτ ,aτ

)
, i = 1, 2, . . . ,m,

where λ is a given discount factor such that 0 < λ < 1. These stochastic games
extend and generalize deterministic positional games.

2.2 Pure and mixed stationary strategies for stochastic positional
games

A strategy of player i ∈ {1, 2, . . . ,m} in a stochastic positional game is a mapping
si that provides for every state xt ∈ Xi a probability distribution over the set of
actions A(xt). If these probabilities take only values 0 and 1, then si is called a pure
strategy, otherwise si is called mixed strategy. If these probabilities depend only on
the state xt = x ∈ Xi (i. e. si do not depend on t), then si is called a stationary
strategy, otherwise si is called a non-stationary strategy. Thus, a pure stationary
strategy of player i is a mapping

si : x→ a ∈ A(x) for x ∈ Xi

that determines an action a ∈ A(x) for each state x ∈ Xi, i.e. s
i(x) = a for x ∈ Xi.

This means that a pure stationary strategy si of player i we can identify with the
set of boolean variables six,a ∈ {0, 1}, where for a given x ∈ Xi six,a = 1 if and only
if player i fixes the action a ∈ A(x). So, we can represent the set of pure stationary
strategies Si of player i as the set of solutions of the following system:

∑
a∈A(x)

six,a = 1, ∀x ∈ Xi;

six,a ∈ {0, 1}, ∀x ∈ Xi, ∀a ∈ A(x).
(1)

Obviously the sets of pure strategies S1, S2, . . . ,Sm of players are finite sets. If in
system (1) we change the restrictions six,a ∈ {0, 1} for x ∈ Xi, a ∈ A(x) by the
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conditions 0 ≤ six,a ≤ 1 then we obtain the set of mixed stationary strategies where
six,a is treated as the probability of the choices of the action a by player i every
time when the state x is reached by any route in the dynamic stochastic game.
Thus, we can identify the set of mixed stationary strategies Si of player i as the set
of solutions of the system

∑
a∈A(x)

six,a = 1, ∀x ∈ Xi;

six,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x)
(2)

and for a given profile s= (s1, s2, . . . , sm) ∈ S = S1×S2×· · ·×Sm of mixed strategies
s1, s2, . . . , sm of the players the probability transition matrix P s = (psx,y) induced
by s can be calculated as follows

psx,y =
∑

a∈A(x)

six,ap
a
x,y for x ∈ Xi, i = 1, 2, . . . ,m. (3)

In the sequel we will distinguish stochastic games in pure and mixed stationary
strategies

An average stochastic positional game in pure and mixed stationary strategies
can be defined as follows. Let s = (s1, s2, . . . , sm) be a profile of stationary strategies
(pure or mixed strategies) of the players. Then the elements of probability transition
matrix P s = (psx,y) in the Markov process induced by s can be calculated according to
(3). Therefore ifQs = (qsx,y) is the limiting probability matrix of P s, then the average
payoffs per transition ω1

x0
(s), ω2

x0
(s), . . . , ωm

x0
(s) for the players are determined as

follows

ωi
x0
(s) =

m∑
k=1

∑
y∈Xk

qsx0,y · r
i
y,sk , i = 1, 2, . . . ,m, (4)

where
riy,sk =

∑
a∈A(y)

sky,a · riy,a, for y ∈ Xk, k ∈ {1, 2, . . . ,m} (5)

expresses the average reward (step reward) of player i in the state y ∈ Xk when
player k uses the strategy sk.

The functions ω1
x0
(s), ω2

x0
(s), . . . , ωm

x0
(s) on S = S1 × S2 × · · · × Sm de-

fined according to (4),(5) determine a game in normal form that we denote
⟨{Si}i=1,m, {ωi

x0
(s)}i=1,m ⟩. This game corresponds to the average stochastic posi-

tional game in mixed stationary strategies that in extended form is determined by the
tuple ({Xi}i=1,m, {A(x)}x∈X , {ri}i=1,m, p). The functions ω1

x0
(s), ω2

x0
(s), . . . , ωm

x0
(s)

on S = S1 × S2 × · · · × Sm determine the static game in normal form
⟨{Si}i=1,m, {ωi

x0
(s)}i=1,m ⟩ that corresponds to the discounted stochastic positional

game in pure strategies and in extended form it also is determined by the tuple
({Xi}i=1,m, {A(x)}x∈X , {ri}i=1,m, p).

A discounted stochastic positional game in pure and mixed stationary strategies
can be defined as follows. Let s = (s1, s2, . . . , sm) be a profile of stationary strategies
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(pure or mixed strategies) of the players in a stochastic positional game. Then the
elements of probability transition matrix P s = (psx,y) induced by s can be calculated
according to (3) and we can find the matrix W s = (ws

x,y), where W
s = (I − γP s).

After that we can find the payoff for the players as follows

σix0
(s) =

∑
y∈X

ws
x0,y · r

i
y,s, i = 1, 2, . . . ,m,

where riy,s is determined according to (5).
The functions σ1x0

(s), σ2x0
(s), . . . , σmx0

(s) on S = S1 × S2 × · · · × Sm, de-
fined according to (4),(5), determine a static game in normal form that we denote
⟨{Si}i=1,m, {σix0

(s)}i=1,m ⟩. This game corresponds to the discounted stochas-
tic positional game in mixed stationary strategies that in extended form is de-
termined by the tuple ({Xi}i=1,m, {A(x)}x∈X , {ri}i=1,m, p, λ). The functions

σ1x0
(s), σ2x0

(s), . . . , σmx0
(s) on S = S1 × S2 × · · · × Sm, determine the static game in

normal form ⟨{Si}i=1,m, { x0i(s)}i=1,m ⟩ that corresponds to the average stochastic
positional game in pure strategies. In the extended form this game also is determined
by the tuple ({Xi}i=1,m, {A(x)}x∈X , {ri}i=1,m, p, λ).

2.3 Stochastic positional games with a random starting state:

For a stochastic positional games with average payoffs (or with discounted payoffs)
we can consider the games in which the starting state is chosen randomly according
to a given distribution {θx} on X. In the case of an average stochastic positional
game with given distribution {θx} on X we can define the game with the payoff
functions

ψi
θ(s) =

∑
x∈X

θx · ωi
x(s), i = 1, 2, . . . ,m

on S and we obtain a static game in normal form ⟨{Si}i=1,m, {ψi
θ(s)}i=1,m ⟩ that

in extended form is determined by ({Xi}i=1,m, {A(x)}x∈X , {ri}i=1,m, p, {θx}x∈X).

Similarly we can define the static game in normal form ⟨{Si}i=1,m, {ϕiθ(s)}i=1,m⟩
for a discounted stochastic positional in which the starting state is chosen randomly
according to a given distribution {θx} on X and we obtain the game with payoffs

ϕiθ(s
1, s2, . . . , sm) =

∑
x∈X

θx · σix(s1, s2, . . . , sm), i = 1, 2, . . . ,m,

that is determined by ({Xi}i=1,m, {A(x)}x∈X , {ri}i=1,m, p, {θx}x∈X , λ).

2.4 Stationary Nash equilibria for an average stochastic positional
game

In this subsection we show that an arbitrary average stochastic positional game
possesses a Nash equilibrium in mixed stationary strategies. To prove this we shall
use the normal form of this game in stationary strategies ⟨{Si}i=1,m, {ψi

θ(s)}i=1,m ⟩,
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where each Si, i ∈ {1, 2, . . . ,m} is the set of solutions of system (2) representing
the set of stationary strategies of player i. Each Si is a convex compact set and
an arbitrary extreme point corresponds to a basic solution si of system (2), where
six,a ∈ {0, 1}, ∀x ∈ Xi, a ∈ A(x), i.e. each basic solution of this system corresponds
to a pure stationary strategy si ∈ Si of player i.

On the set S = S1 × S2 × · · · × Sm we define m payoff functions

ψi
θ(s

1, s2, . . . , sm) =
m∑
k=1

∑
x∈Xk

∑
a∈A(x)

skx,a · rix,a · qx, i = 1, 2, . . . ,m, (6)

where qx for x ∈ X are determined uniquely from the following system of linear
equations 

qy −
m∑
k=1

∑
x∈Xk

∑
a∈A(x)

skx,a · pax,y · qx = 0, ∀y ∈ X;

qy + wy −
m∑
k=1

∑
x∈Xk

∑
a∈A(x)

skx,a · pax,y · wx = θy, ∀y ∈ X
(7)

for a fixed profile s = (s1, s2, . . . , sm) ∈ S. The functions ψi
θ(s

1, s2, . . . , sm),
i = 1, 2, . . . ,m, represent the payoff functions for the average stochastic game
in normal form ⟨{Si}i=1,m, {ψi

θ(s)}i=1,m ⟩. This game is determined by the tu-

ple ({Xi}i=1,m, {A(x)}x∈X , {ri}i=1,m, p, {θy}y∈X) where θy for y ∈ X are given
nonnegative values such that

∑
y∈X θy = 1.

If θy = 0, ∀y ∈ X \ {x0} and θx0 = 1, then we obtain an average stochastic
game in normal form ⟨{Si}i=1,m, {ωi

x0
(s)}i=1,m ⟩ when the starting state x0 is

fixed, i.e. ψi
θ(s

1, s2, . . . , sm) = ωi
x0
(s1, s2, . . . , sm), i = 1, 2, . . . ,m. So, in this

case the game is determined by (X, {Ai(x)}i=1,m, {ri}i=1,m, p, x0).
If θy > 0, ∀y ∈ X and

∑
y∈X θy = 1, then we obtain an average stochastic

game when the play starts in the states y ∈ X with probabilities θy. In this case
for the payoffs of the players in the game in normal form we have

ψi
θ(s

1, s2, . . . , sm) =
∑
y∈X

θy · ωi
y(s

1, s2, . . . , sm), i = 1, 2, . . . ,m.

Let ⟨{Si}i=1,m, {ψi
θ(s)}i=1,m ⟩ be the non-cooperative game in normal form that

corresponds to the average stochastic positional game in stationary strategies deter-
mined by ({Xi}i=1,m, {A(x)}x∈X , {ri}i=1,m, p, {θy}y∈X). So, Si, i = 1, 2, . . . ,m,

and ψi
θ(s), i = 1, 2, . . . ,m, are defined according to (2) and (6),(7).

In [6, 8] is proven the following theorem.

Theorem 1. The game ⟨{Si}i=1,m, {ψi
θ(s)}i=1,m⟩ possesses a Nash equilib-

rium s∗ = (s1
∗
, s2

∗
, . . . , sm∗) ∈ S which is a Nash equilibrium in mixed sta-

tionary strategies for the average stochastic positional game determined by
({Xi}i=1,n, {A(x)}x∈X , {ri}i=1,m, p, {θy}y∈X). If θy > 0, ∀y ∈ X, then s∗ =

(s1
∗
, s2

∗
, . . . , sm∗) is a Nash equilibrium in mixed stationary strategies for the aver-

age stochastic positional game ⟨{Si}i=1,m, {ωi
y(s)}i=1,m ⟩ with an arbitrary starting

state y ∈ X.
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2.5 Pure stationary equilibria for a two-player zero-sum average
positional game

For a two-player zero-sum stochastic positional game the existence of equilibria
in pure stationary strategies can be derived from the following theorem.

Theorem 2. Let a two-player zero-sum average stochastic positional game game
that is determined by the tuple (X = X1 ∪ X2, {A(x)}x∈X , {rx,a}x∈X , p) be given.
Then the system of equations

εx + ωx = max
a∈A(x)

{
rx,a +

∑
y∈X

pax,yεy

}
, ∀x ∈ X1;

εx + ωx = min
a∈A(x)

{
rx,a +

∑
y∈X

pax,yεy

}
, ∀x ∈ X2;

(8)

has a solution under the set of solutions of the system of equations
ωx = max

a∈A(x)

{ ∑
y∈X

pax,yωy

}
, ∀x ∈ X1;

ωx = min
a∈A(x)

{ ∑
y∈X

pax,yωy

}
, ∀x ∈ X2,

(9)

i.e. the system of equations (13) has such a solution ω∗
x, x ∈ X for which there

exists a solution ε∗x, x ∈ X of the system of equations
εx + ω∗

x = max
a∈A(x)

{
rx,a +

∑
y∈X

pax,yεy

}
, ∀x ∈ X1;

εx + ω∗
x = min

a∈A(x)

{
rx,a +

∑
y∈X

pax,yεy

}
, ∀x ∈ X2.

The optimal pure stationary strategies s1
∗
, s2

∗
of the players can be found by fixing

arbitrary maps s1
∗
(x) ∈ A(x) for x ∈ X1 and s2

∗
(x) ∈ A(x) for x ∈ X2 such that

s1
∗
(x)∈

{
arg max

a∈A(x)

{ ∑
y∈X

pax,yω
∗
y

}}⋂{
arg max

a∈A(x)

{
rx,a+

∑
y∈X

pax,yε
∗
y

}}
, x ∈X1,

s2
∗
(x) ∈

{
arg min

a∈A(x)

{ ∑
y∈X

pax,yω
∗
y

}}⋂{
arg min

a∈A(x)

{
rx,a+

∑
y∈X

pax,yε
∗
y

}}
, x ∈X2,

and ωx(s
1∗, s2

∗
) = ω∗

x, ∀x ∈ X, i.e.

ωx(s
1∗, s2

∗
) = max

s1∈S1
min
s2∈S2

ωx(s
1, s2) = min

s2∈S2
max
s1∈S1

ωx(s
1, s2), ∀x ∈ X.

The full proof of this theorem is presented in [6, 10]. Based on this theorem all
optimal pure stationary strategies of the players can be found.
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2.6 Pure stationary equilibria for a discounted stochastic positional
game

The existence of stationary Nash equilibria for discounted stochastic games in general
has been proven in [3]. Here we show that for an arbitrary stochastic positional
games with discounted payoffs there exists a Nash equilibria in pure stationary
strategies. This fact follows from the theorem bellow the full proof of which can be
found in [9].

Theorem 3. Let a discounted stochastic positional game that is determined by the
tuple ({Xi}i=1,m, {A(x)}x∈X , {ri}i=1,m, p, λ) be given. Then there exist the values

σix for x ∈ X, i = 1, 2, . . . ,m that satisfy the following conditions:

1) rix,a + λ
∑
y∈X

pax,yσ
i
y − σix ≤ 0, ∀x ∈ Xi, ∀a ∈ A(x), i = 1, 2, . . . ,m,

2) max
a∈A(x)

{rix,a + λ
∑
y∈X

pax,yσ
i
y − σix} = 0, ∀x ∈ Xi, i = 1, 2, . . . ,m;

3) on each position set Xi, i ∈{1, 2, . . . ,m} there exists a map

si
∗
:Xi→∪x∈XiA(x) such that

si
∗
(x) = a∗ ∈ arg max

a∈A(x)

{
rix,a + λ

∑
y∈X

pax,yσ
i
y − σix

}
and

rjx,a∗ + λ
∑
y∈X

pa
∗

x,yσ
j
y − σjx = 0, ∀x ∈ Xi, j = 1, 2, . . . ,m,

where s∗ = (s1
∗
, s2

∗
, . . . , sm∗) represents a stationary Nash equilibrium in pyre

strategies for the discounted stochastic positional game determined by the tuple
({Xi}i=1,m, {A(x)}x∈X , {ri}i=1,m, p, λ)and such an equilibrium is a pure stationary
Nash equilibrium for the game with an arbitrary starting position x ∈ X.

Based on this theorem all optimal pure stationary strategies of the players in a
discounted stochastic positional game can be found.

3 Stationary Nash equilibria in mixed stationary strategies for
dynamic positional games on graphs

It is easy to observe that the considered dynamic positional games with av-
erage and and discounted payoffs on graph G = (X,E) with given position sets
X1, X2, . . . Xm and rewards functions ri : E → R represent the particulary cases of
the stochastic positional games with average and discounted payoffs for a Markov
decision process from previous section. Indeed, for the dynamic positional game
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on graph G with average payoffs (or discounted payoffs) the set of outgoing di-
rected edges E(x) = {e = (x, y) ∈ E|y ∈ X} in a position x ∈ Xi of player
i ∈ {1, 2, . . . .m} can be regarded as the set of actions A(x) of the stochastic po-
sitional game for a Markov process with average payoffs (or discounted payoffs),
where an action a ∈ A(x) corresponds to a directed edge e = (x, y) ∈ E(x), i.e.
a = (x, y) and this action in the game is chosen by the corresponding player with
probability pax,y = 1 and rix,a = rix,y; obviously, if in position x ∈ Xi the action
a = (x, y) ∈ A(x) = E(x) is chosen with the probability pax,y = 1, then for the rest
of the actions a = (x, z) ∈ A(x) the corresponding probabilities pax,z = 0. So, the
dynamic positional game on G represents the case of stochastic positional game in
which the probability transitions pax,y take the values 1 or 0.

The pure and mixed stationary strategies in a positional game on G can be
defined in a similar way as for a stochastic positional game, i.e. we identify the set
of mixed stationary strategies Si of player i ∈ {1, 2, . . . ,m} in a positional game on
G with the set of solutions of the system

∑
y∈X(x)

six,y = 1, ∀x ∈ Xi;

six,y ≥ 0, ∀x ∈ Xi, y ∈ X(x)
(10)

where X(x) represents the set of neighbor vertices for the vertex x, i.e. X(x) = {y ∈
X|e = (x, y) ∈ E}.

So, based on this theorem all optimal pure stationary strategies of the players
can be found.

3.1 Nash equilibria in mixed stationary strategies for average po-
sitional games on graphs

For a given average positional game on graph G we can consider a static
game in normal form ⟨{Si}i=1,m, {ψi

θ(s)}i=1,m ⟩ that is determined by the tuple

(G, {Xi}i=1,m, {rie}e∈E(x),i=1,m, {θx}x∈X), where

ψi
θ(s

1, s2, . . . , sm) =
m∑
k=1

∑
x∈Xk

∑
y∈X(x)

skx,y · rix,y · qx, i = 1, 2, . . . ,m, (11)

and qx for x ∈ X are determined uniquely from the following system of linear
equations 

qy −
m∑
k=1

∑
x∈Xk

skx,yqx = 0, ∀y ∈ X;

qy + wy −
m∑
k=1

∑
x∈Xk

skx,ywx = θy, ∀y ∈ X
(12)

for a fixed profile s = (s1, s2, . . . , sm) ∈ S. The functions ψi
θ(s

1, s2, . . . , sm),
i = 1, 2, . . . ,m, represent the payoff functions for the stutic game in normal form
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⟨{Si}i=1,m, {ψi
θ(s)}i=1,m ⟩ o that corresponds to the average positional game in sta-

tionary strategies on graph G. Therefore from Theorem 4 as a corollary we obtain
the following result.

Theorem 4. The game in normal form ⟨{Si}i=1,m, {ψi
θ(s)}i=1,m⟩ for the average

positional game on graph G has a Nash equilibrium which is a stationary Nash
equilibrium in mixed stationary strategies of the average positional game on G with
an arbitrary starting state x ∈ X.

This means that an arbitrary average positional game on a graph possesses a
Nash equilibrium in mixed stationary strategies.

3.2 Pure stationary equilibria for a two-player zero-sum average
positional game on graphs

A two-player zero-sum average positional on graph G = (X,E), represents the
case of the game on G with m = 2 and r1e = −r2e = re, ∀e ∈ E; this game is
determined by the tuple (X = X1∪X2, {re}e∈E). The existence of equilibria in pure
stationary strategies for this case of the game can be derived on the basis of the
following theorem.

Theorem 5. Let a two-player zero-sum average stochastic positional game that is
determined by the tuple (X = X1 ∪ X2, {rx,a}x∈X) be given. Then the system of
equations 

εx + ωx = max
y∈X(x)

{
rx,y + εy

}
, ∀x ∈ X1;

εx + ωx = min
y∈X(x)

{
rx,y + εy

}
, ∀x ∈ X2;

has a solution under the set of solutions of the system of equations
ωx = max

y∈X(x)

{
ωy

}
, ∀x ∈ X1;

ωx = min
y∈X(x)

{
ωy

}
, ∀x ∈ X2,

(13)

i.e. the system of equations (13) has such a solution ω∗
x, x ∈ X for which there

exists a solution ε∗x, x ∈ X of the system of equations
εx + ω∗

x = max
y∈X(x)

{
rx,a + εy

}
, ∀x ∈ X1;

εx + ω∗
x = min

y∈X(x)

{
rx,a + εy

}
, ∀x ∈ X2.

The optimal pure stationary strategies s1
∗
, s2

∗
of the players can be found by fixing

arbitrary maps s1
∗
(x) ∈ A(x) for x ∈ X1 and s2

∗
(x) ∈ A(x) for x ∈ X2 such that

s1
∗
(x) ∈

{
arg max

y∈X(x)

{
ω∗
y

}}⋂{
arg max

y∈X(x)

{
rx,y + ε∗y

}}
, x ∈ X1,
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s2
∗
(x) ∈

{
arg min

y∈X(x)

{
ω∗
y

}}⋂{
arg min

y∈X(x)

{
rx,y + ε∗y

}}
, x ∈X2,

and ωx(s
1∗, s2

∗
) = ω∗

x, ∀x ∈ X, i.e.

ωx(s
1∗, s2

∗
) = max

s1∈S1
min
s2∈S2

ωx(s
1, s2) = min

s2∈S2
max
s1∈S1

ωx(s
1, s2), ∀x ∈ X.

Proof. The two-player zero-sum average positional game on graph G can be repre-
sented as a two-player zero-sum average stochastic positional game with transition
probabilities pax,y in positions x ∈ X, where a = (x, y) ∈ A(x) = E(x) and pax,y
take only the value 1 and 0 and rewards rx,a = rx,y for (x, y) ∈ E. Therefor if
we take onto account these conditions in Theorem 2 we obtain Theorem 5. So, the
two-player zero-sum average positional game on G has a pure stationary equilibrium
and all pure stationary strategies of the players can be found on the basis of this
theorem.

3.3 Pure stationary equilibria for a discounted stochastic positional
game on graphs

A discounted positional game on graph G can be represented as a discounted
stochastic positional game in similar way as we proceeded in previous subsections
for average positional games on G. Therefore from Theorem 3 as a corollary we
obtain the following result.

Theorem 6. Let an m-player discounted stochastic positional game on graph
G = (X,E) be given, where the elements of this game are determined by the tu-
ple (G, {Xi}i=1,m, {ri}i=1,m, λ). Then there exist the values σix for x ∈ X,
i = 1, 2, . . . ,m that satisfy the following conditions:

1) rix,y + λσiy − σix ≤ 0, ∀x ∈ Xi, ∀y ∈ E(x), i = 1, 2, . . . ,m,

2) max
y∈E(x)

{rix,y + λσiy − σix} = 0, ∀x ∈ Xi, i = 1, 2, . . . ,m;

3) on each position set Xi, i ∈{1, 2, . . . ,m} there exists a map

si
∗
: Xi → ∪x∈XiE(x) such that

si
∗
(x) = y∗ ∈ arg max

y∈E(x)

{
rix,y + λσiy − σix

}
and

rjx,y∗ + λσiy∗ − σjx = 0, ∀x ∈ Xi, j = 1, 2, . . . ,m,

where s∗ = (s1
∗
, s2

∗
, . . . , sm∗) represents a stationary Nash equilibrium in pure

strategies for the discounted stochastic positional game on graph G determined by
({Xi}i=1,m, {ri}i=1,m, p, λ) and such an equilibrium is a pure stationary Nash equi-
librium for the game with an arbitrary starting position x ∈ X.

Based on this theorem all pure stationary strategies of the players can be found.
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4 Conclusion

For an arbitrary m-player average dynamic positional game on a graph there ex-
ists a Nash equilibrium in mixed stationary strategies and for a two-player zero-sum
average positional game on a graph there exists equilibrium in pure stationary strate-
gies. For an m-player discounted positional game there exists a Nash equilibrium in
pure stationary strategies.
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