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On conharmonic curvature tensor of 6-dimensional
planar Hermitian submanifolds of Cayley algebra

Mihail B. Banaru, Galina A. Banaru

Abstract. In this paper, we consider the conharmonic curvature tensor of 6-
dimensional planar Hermitian submanifolds of the octave algebra. The Hermitian
(and in general case, almost Hermitian) structure on a such submanifold is induced
by the so-called Gray–Brown 3-fold vector cross products in Cayley algebra. The
main result of the work is the calculation of the so-called spectrum of the conhar-
monic curvature tensor for an arbitrary 6-dimensional planar Hermitian submanifold
of the octave algebra. By the concept of the spectrum of a tensor, we mean the mini-
mal set of its components on the space of the associated G-structure that completely
determines this tensor.
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1 INTRODUCTION

Conformal transformations of Riemannian structures are an important and
meaningful object of differential-geometric research. Of significant interest is a spe-
cial type of such transformations — conharmonic transformations, that is, conformal
transformations that preserve the property of harmonicity of smooth functions. This
type of transformations was introduced into consideration in the 50s of the last cen-
tury by the Japanese mathematician Yoshihito Ishii [18]. It is known that such
transformations have a tensor invariant — the so-called conharmonic curvature ten-
sor. Remark that the extension of a Riemannian structure to an almost Hermitian
structure allows us to single out several more conharmonic invariants.

Note that a significant contribution to the theory of conharmonic transforma-
tions, and in particular to the geometric theory of the conharmonic curvature tensor,
was made by the outstanding specialist V.F. Kirichenko, as well as some of his stu-
dents [21–23].

In this paper, we consider the conharmonic curvature tensor of 6-dimensional
planar Hermitian submanifolds of the octave algebra. The Hermitian (and in gen-
eral, almost Hermitian) structure on such submanifolds is induced by the so-called
Gray–Brown 3-fold vector cross products in Cayley algebra [14, 15]. This note is a
continuation of the authors’ research in the field of geometry of planar Hermitian
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submanifolds of Cayley algebra, which was started more than 25 years ago (see [6–9],
etc.).

2 PRELIMINARIES

Let us consider an almost Hermitian manifold, i.e. a 2n-dimensional manifold
M2n with a Riemannian metric g = ⟨·, ·⟩ and an almost complex structure J . More-
over, the following condition must hold

⟨JX, JY ⟩ = ⟨X, Y ⟩ , X, Y ∈ ℵ(M2n),

where ℵ(M2n) is the module of smooth vector fields on M2n [17]. All considered
manifolds, tensor fields and similar objects are assumed to be smooth of the class
C∞. We recall that the fundamental form (or Kählerian form) of an almost Hermi-
tian manifold is determined by the relation

F (X, Y ) = ⟨X, JY ⟩ , X, Y ∈ ℵ(M2n).

The specification of an almost Hermitian structure on a manifold is equivalent to
the setting of a G-structure, where G is the unitary group U(n) [4,20]. Its elements
are the local frames adapted to the structure (local A-frames). They look as follows:

(p, ε1 , . . . , εn, ε1̂ , . . . , εn̂ );

where

εa =
1

2
(ea − i J ea) ; εâ =

1

2
(ea + i J ea) .

Here the index a ranges from 1 to n, and we state â = a+ n.
Therefore, the matrices of the operator of the complexified almost complex struc-

ture JC , the complexified Riemannian metric gC and the complexified fundamental
form FC written in an A-frame look as follows, respectively [2, 3]:

(
Jc k

j

)
=

(
iIn 0

0 −iIn

)
; (gc kj) =

(
0 In
In 0

)
; (F c

kj) =

(
0 iIn

−iIn 0

)
,

where In is the identity matrix; k, j = 1, . . . , 2n.
An almost Hermitian manifold is called Hermitian, if its almost complex struc-

ture is integrable. The following identity characterizes the Hermitian structure
[17,20]:

∇X(F )(Y,Z)−∇JX(F )(JY, Z) = 0,

where X,Y, Z ∈ ℵ(M2n) .The first group of the Cartan structural equations of a
Hermitian manifold written in an A-frame looks as follows [2, 20]:

dωa = ωa
b ∧ ωb +Bab

cω
c ∧ ωb,

dωa = −ωb
a ∧ ωb +Bab

cωc ∧ ωb,
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where
{
Bab

c

}
and {Bab

c} are the components of the Kirichenko tensors of M2n [1,4];
a, b, c = 1, ..., n.

Let us also recall the explicit form of Gray–Brown 3-fold vector cross products
in the octave algebra [14]:

P1(X, Y, Z ) = −X(Ȳ Z) + ⟨X, Y ⟩Z + ⟨Y, Z⟩X − ⟨Z,X⟩Y ;

P2(X, Y, Z ) = −(XȲ )Z + ⟨X, Y ⟩Z + ⟨Y, Z⟩X − ⟨Z,X⟩Y.

Here O ≡ R8 is Cayley algebra; X, Y, Z ∈ O; ⟨·, ·⟩ is the scalar product in O,
X → X̄ is the conjugation operator in O.

In the article [19], V.F. Kirichenko obtained structural equations of an arbitrary
almost Hermitian structure induced by a 3-fold vector cross product in Cayley alge-
bra on its 6-dimensional submanifold of general type. For the case of a Hermitian
structure, these equations were refined [4, 10,12] in the following form:

dωa = ωa
b ∧ ωb +

1√
2
εabhDhcω

c ∧ ωb;

dωa = −ωb
a ∧ ωb +

1√
2
εabhD

hcωc ∧ ωb;

dωa
b = ωa

c ∧ ωc
b −

1

2
δahbg DhdD

gc +
∑
ϕ

T ϕ
âĉT

ϕ
bd

ωc ∧ ωd,

where {ωk} are the components of the displacement form and {ωk
j } are the com-

ponents of the Riemannian connection of the metric. Here and further φ = 7, 8;
a, b, c, d, g, h = 1, 2, 3; â = a + 3 ; k, j = 1, 2, 3, 4, 5, 6. As in [2] and [5], ωa = ωâ.
Note that εabc = ε123abc , εabc = εabc123 are the components of Kronecker tensor;
δahbg = δab δ

h
g − δagδ

h
b ; Dhc = Dĥĉ; Dcj = ∓T 8

cj + iT 7
cj ; Dĉj = ∓T 8

ĉj − iT 7
ĉj , where{

Tφ
kj

}
are the components of the configuration tensor, or of the second fundamental

form of the immersion of M6 into O . A 6-dimensional submanifold is called planar
(or flattening) if it is contained in a hyperplane of Cayley algebra. Note that the
concept of planar submanifold of the octave algebra was introduced into considera-
tion by V.F. Kirichenko and M. Banaru [11]. It turned out that all 6-dimensional
Kählerian submanifolds of the octave algebra (which were completely classified by
V.F. Kirichenko [19]) are planar. It should be noted that there are known examples
of 6-dimensional planar submanifolds of Cayley algebra with a Hermitian structure
different from the Kählerian structure [2, 7, 9].

We also recall that the conharmonic curvature tensor on a Riemannian manifold
of dimension m is defined by the equality [18]:

Ch(X,Y, Z,W ) = R(X,Y, Z,W )−

− 1

m− 2
[⟨X,W ⟩Ric (Y, Z)− ⟨X,Z⟩Ric (Y,W ) + ⟨Y, Z⟩Ric (X,W )−
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−⟨Y,W ⟩Ric (X,Z)] .

Here R and Ric are the Riemannian curvature tensor and the Ricci tensor, respec-
tively.

The conharmonic curvature tensor has all the classical properties of the Rieman-
nian curvature tensor and the Weyl conformal curvature tensor [21,23], namely:

Ch(X,Y, Z,W ) = −Ch (X,Y,W,Z);

Ch(X,Y, Z,W ) = −Ch (Y,X,W,Z);

Ch(X,Y, Z,W ) + Ch(Y,Z,X,W ) + Ch(Z,X, Y,W ) = 0;

Ch(X,Y, Z,W ) = Ch(Z,W,X, Y ).

3 THE MAIN RESULTS

Let us calculate the components of the conharmonic curvature tensor on the space
of the associated G-structure for a 6-dimensional planar Hermitian submanifolds of
the octave algebra. In terms of covariant components, the formula that defines the
conharmonic curvature tensor can be written as follows:

Chijkl = Rijkl −
1

4
(Ricjl gik + Ricik gjl − Ricjk gil − Ricil gjk).

As in the cases of the Riemannian curvature tensor and the Weyl tensor of
conformal curvature [20], based on the classical properties of this tensor mentioned
above, it is sufficient to find only the components Chabcd; Châbcd; Châb̂cd; Châbĉd
that completely determine this tensor.

The components of the Riemannian curvature tensor of a 6-dimensional planar
Hermitian submanifold of the octave algebra are known [13]:

Rabcd = 0, Râbcd = 0, Râb̂cd = 0,

Râbĉd = −2 |µ|2 T 7
âĉT

7
bd,

where µ is a complex constant. The components of the Ricci tensor are also known:

Ricab = 0; Ricâb = −2 |µ|2 T 7
âĉT

7
cb.

Taking into account the components of the complexified Riemannian metric [13]:

gab = 0, gâb = δab , gab̂ = δba, gâb̂ = 0,

we get:

Chabcd = Rabcd −
1

4
(Ricbdgac +Ricacgbd −Ricbcgad −Ricadgbc) = 0;

Châbcd = Râbcd −
1

4
(Ricbdgâc +Ricâcgbd −Ricbcgâd −Ricâdgbc) = 0;
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Châb̂cd = Râb̂cd −
1

4
(Ricb̂dgâc +Ricâcgb̂d −Ricb̂cgâd −Ricâdgb̂c) =

= −1

2
|µ|2

(
T 7
âĥ
T 7
hcδ

b
d + T 7

b̂ĥ
T 7
hdδ

a
c − T 7

âĥ
T 7
hdδ

b
c − T 7

b̂ĥ
T 7
hcδ

a
d

)
;

Châbĉd = Râbĉd −
1

4
(Ricbdgâĉ +Ricâĉgbd −Ricbĉgâd −Ricâdgbĉ) =

= −2 |µ|2 T 7
âĉT

7
bd +

1

2
|µ|2

(
T 7
âĥ
T 7
hdδ

c
b + T 7

ĉĥ
T 7
hbδ

a
d

)
.

So the following result is proved.

Theorem 1. The conharmonic curvature tensor of a 6-dimensional planar Hermi-
tian submanifold of Cayley algebra is defined by the equalities:

Chabcd = 0; Châbcd = 0;

Châb̂cd = −1

2
|µ|2

(
T 7
âĥ
T 7
hcδ

b
d + T 7

b̂ĥ
T 7
hdδ

a
c − T 7

âĥ
T 7
hdδ

b
c − T 7

b̂ĥ
T 7
hcδ

a
d

)
;

Châbĉd = −2
∣∣µ2

∣∣T 7
âĉT

7
bd +

1

2

∣∣µ2
∣∣ (T 7

âĥ
T 7
hdδ

c
b + T 7

ĉĥ
T 7
hbδ

a
d

)
.

We observe that when µ =
√
−1 (i.e.

∣∣µ2
∣∣ = 1 ) these formulae correspond to

the conharmonic curvature tensor of a 6-dimensional Kählerian submanifold of the
octave algebra which, as it was mentioned above, are an important particular case
of planar Hermitian submanifolds.

A 6-dimensional planar Hermitian submanifold of Cayley algebra is conharmon-
ically flat if and only if all the components of the configuration tensor vanish. That
is why this submanifold is Riicci-flat and its scalar curvature also vanishes. It means
that this submanifold is locally holomorphically isometric to a trivial 6-dimensional
Kählerian flat manifold, namely, to the Euclidean space C3. So, we can formulate
our second result.

Theorem 2. A 6-dimensional planar Hermitian submanifold of Cayley algebra is
a conharmonically flat manifold if and only if it is locally holomorphically isometric
to the space C3 equipped with a standard Kählerian structure.

4 A REMARK

It is clear that the calculated components of the conharmonic curvature ten-
sor allow us to study the so-called conharmonic analogues of the Gray’s identities
from [16]. Such analogues were introduced into consideration by V.F. Kirichenko,
A. Rustanov and A. Shihab in [21]. We note that the main part of the results
obtained in the article [21], as well as in the works [22] and [23], relate to nearly
Kählerian manifolds, mainly 4-dimensional. Another possible application of the ob-
tained results is the further development of the theory of 6-dimensional Hermitian
submanifolds of the octave algebra.
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gebra. Bul. Ştiinţ. Univ. Politeh. Timiş., Ser. Mat.-Fiz., 46(60) (1), (2001), 3–17.

[7] Banaru M., Banaru G. A note on six-dimensional planar Hermitian submanifolds of Cayley
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