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Vertical Generalized Berger-type Metrics: A New
Perspective on Harmonic Vector Fields
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Abstract. In this paper, we introduce a metric called the vertical generalized Berger-
type deformed Sasaki metric, defined on the tangent bundle of an anti-paraKähler
manifold. First, we analyze the harmonicity of vector fields with respect to this new
metric, providing examples that illustrate how certain vector fields satisfy the har-
monicity condition under the introduced metric. These examples demonstrate the
unique properties and behavior of harmonic vector fields on anti-paraKähler mani-
folds equipped with this specific metric. Next, we explore the harmonicity of a vector
field along a map between Riemannian manifolds, where the target manifold is anti-
paraKähler and its tangent bundle is equipped with the vertical generalized Berger-
type deformed Sasaki metric. Finally, we investigate the harmonicity of the composi-
tion of two specific maps. The first map is the projection from the tangent bundle of
a Riemannian manifold (the source manifold) onto the manifold itself, and the second
map is from this Riemannian manifold to another Riemannian manifold. The source
manifold is an anti-paraKähler manifold, and its tangent bundle is endowed with the
vertical generalized Berger-type deformed Sasaki metric. We discuss the conditions
under which the composition of these maps produces harmonic vector fields.

Mathematics subject classification: 53C43, 58E20, 53C15, 53C07.

Keywords and phrases: Anti-paraKähler manifold, tangent bundle, vertical gener-
alized Berger-type deformed Sasaki metric, harmonic maps.

1 Introduction

The study of tangent bundles has been greatly advanced by Sasaki [25], who
introduced the Sasaki metric as a Riemannian metric on the tangent bundles of
Riemannian manifolds. This pioneering work motivated further investigations into
the geometric properties of the Sasaki metric (see [7,21–23,28]). Nevertheless, many
studies were restricted by the flatness of the underlying Riemannian manifold. To
overcome these limitations, researchers have explored various deformations of the
Sasaki metric.

Abbassi and Sarih [1] introduced natural metrics on tangent and unit tangent
bundles, which included cases such as the Sasaki metric, the Cheeger-Gromoll met-
ric, and the Kaluza-Klein type metric (see [3, 12, 26]). Their work was influenced
by earlier research in the field (see [5, 13, 29]). Yampolsky [27] proposed another
deformation method for the Sasaki metric on slashed and unit tangent bundles
over Kählerian manifolds, utilizing an almost complex structure J . This led to the
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development of the Berger-type deformed Sasaki metric, which has subsequently
been studied in relation to its geodesic properties. In [2], Altunbas, Simsek, and
Gezer defined the Berger type deformed Sasaki metric on the tangent bundle over
an anti-paraKähler manifold. They calculated the Riemannian curvature tensors
for this metric and presented several geometric results. Additionally, they intro-
duced almost anti-paraHermitian structures on the tangent bundle and investigated
the conditions for these structures to be anti-paraKähler and quasi-anti-paraKähler.
Research into deformations of the Sasaki metric on tangent or cotangent bundles
extends beyond these studies, with further references (see [14–16,29,30,32]) indicat-
ing continued exploration in this area. This field remains a vibrant area of research
within differential geometry.

This paper delves into the harmonicity properties associated with a vertical gen-
eralized Berger-type deformed Sasaki metric on the tangent bundle TM over an
anti-paraKähler manifold. The core ideas and findings are summarized as follows:

� Harmonicity of vector fields with respect to this metric:

The paper presents several theorems (Theorem 3, Theorem 4, Theorem 5 and
Theorem 6)) that explore the harmonicity of vector fields in relation to the ver-
tical generalized Berger-type deformed Sasaki metric. Harmonicity here refers to
conditions where vector fields meet specific criteria tied to this metric.

� Harmonicity of vector fields along a map between Riemannian manifolds:

The paper examines the harmonicity of vector fields along a map between Rie-
mannian manifolds, with the target manifold being an anti-paraKähler manifold
equipped with the vertical generalized Berger-type deformed Sasaki metric on its
tangent bundle. Theorem 7 discusses the principal result in this context.

� Harmonicity of the composition of the projection map and a map between
manifolds:

The final section addresses the harmonicity of the composition of the projection
map from the tangent bundle of a Riemannian manifold to the manifold itself, and
a map from this manifold to another Riemannian manifold. The source manifold is
an anti-paraKähler manifold, and its tangent bundle is endowed with the vertical
generalized Berger-type deformed Sasaki metric. Theorem 8 and Theorem 9 detail
the key findings in this area.

In conclusion, this paper investigates the harmonicity properties related to the
specified metric on tangent bundles and anti-paraKähler manifolds. The theorems
presented contribute to a deeper understanding of these harmonicity properties in
various scenarios.
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2 Preliminaries

Let TM be the tangent bundle of an m-dimensional Riemannian manifold
(Mm, g) with the natural projection π : TM → M . A local chart (U, xi)i=1,m on M

induces a local chart (π−1(U), xi, ui)i=1,m on TM . Let Γk
ij represent the Christoffel

symbols associated with the metric g, and let ∇ denote the Levi-Civita connection
of g. We define C∞(M) as the ring of smooth real-valued functions on M , and
ℑ1
0(M) as the module of smooth vector fields on M over C∞(M).
The Levi-Civita connection ∇ allows for a decomposition:

T(x,u)TM = V(x,u)TM ⊕H(x,u)TM, (1)

which separates the tangent space of TM at any (x, u) ∈ TM into the vertical
subspace:

V(x,u)TM = Ker(dπ(x,u)) =

{
ξi

∂

∂ui

∣∣∣∣
(x,u)

| ξi ∈ R

}
(2)

and the horizontal subspace:

H(x,u)TM =

{
ξi

∂

∂xi

∣∣∣∣
(x,u)

− ξiujΓk
ij

∂

∂uk

∣∣∣∣
(x,u)

| ξi ∈ R

}
. (3)

The mapping ξ 7→ Hξ = ξi ∂
∂xi

∣∣
(x,u)

− ξiujΓk
ij

∂
∂uk

∣∣
(x,u)

establishes an isomorphism

between the vector spaces TxM and H(x,u)TM . In a similar vein, the mapping

ξ 7→ Vξ = ξi ∂
∂ui

∣∣
(x,u)

serves as an isomorphism between TxM and V(x,u)TM . For any

tangent vector Z ∈ T(x,u)TM , it can be expressed as Z = HX + VY , where X and
Y are unique vectors belonging to TxM .

Let X = Xi ∂
∂xi be a local vector field on M . The vertical and horizontal lifts of

X are defined as: 
VX = Xi ∂

∂ui
,

HX = Xi

(
∂

∂xi
− ujΓk

ij

∂

∂uk

)
.

(4)

We have H
(

∂
∂xi

)
= ∂

∂xi − ujΓk
ij

∂
∂uk and V

(
∂
∂xi

)
= ∂

∂ui , making (H
(

∂
∂xi

)
, V

(
∂
∂xi

)
)i=1,m

a local adapted frame on TTM .
Specifically, for each point (x, u) ∈ TM , consider a local vector field U that

remains constant across each fiber TxM and satisfies Ux = ui ∂
∂xi . The vertical lift

of this field, denoted VU , is referred to as the canonical vertical vector field or the
Liouville vector field on TM .

The bracket operations for vertical and horizontal vector fields are described by
the following equations (see [7, 28]):

[
HX,HY

]
= H [X,Y ]− V (R(X,Y )u) ,[

HX, V Y
]
= V (∇XY ) ,[

V X, V Y
]
= 0,

(5)
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for vector fields X and Y on M .
An almost paracomplex manifold is defined as an even-dimensional almost prod-

uct manifold (M2m, φ), where φ represents an almost paracomplex structure on
M2m. This structure satisfies the condition φ2 = id, with id being the identity map
on the tangent bundle TM . The eigenbundles corresponding to the eigenvalues +1
and −1 of φ are denoted T+M and T−M , respectively, and they share the same
rank.

A Riemannian metric g on the almost paracomplex manifold (M2m, φ) is referred
to as an anti-paraHermitian metric (or B-metric) if it fulfills the purity condition:

g(φX,φY ) = g(X,Y )

for all vector fields X and Y on M2m. This condition indicates that the metric g
remains invariant under the action of φ.

If the almost paracomplex manifold (M2m, φ) is endowed with an anti-paraHermitian
metric g that meets the purity condition, we refer to the triple (M2m, φ, g) as an al-
most anti-paraHermitian manifold (or almost B-manifold). Furthermore, an almost
anti-paraHermitian manifold (M2m, φ, g) is classified as an anti-paraKähler manifold
(B-manifold) if the almost paracomplex structure φ is parallel with respect to the
Levi-Civita connection ∇ of the metric g, which is expressed as ∇φ = 0. Essentially,
this indicates that the paracomplex structure is covariantly constant.

Moreover, it is known that if (M2m, φ, g) is an anti-paraKähler manifold (B-
manifold), the Riemannian curvature tensor is pure. Purity of the curvature tensor
implies that the Riemannian curvature tensor R(Y,Z) lies in the space spanned by
{Y,Z, φY, φZ} for any pair of vector fields Y and Z on M2m, i.e.,

R(φY,Z) = R(Y, φZ) = R(Y, Z)φ = φR(Y,Z),

R(φY, φZ) = R(Y, Z).

Definition 1. Let (M2m, φ, g) be an almost anti-paraHermitian manifold, and let
TM denote its tangent bundle. A fiber-wise vertical generalized Berger-type defor-
mation of the Sasaki metric on TM is defined as follows:

g̃(HX,HY ) = g(X,Y ),

g̃(VX,HY ) = g̃(HX, VY ) = 0,

g̃(VX, VY ) = g(X,Y ) + fg(X,φu)g(Y, φu),

for all vector fields X and Y on M2m. Here, f : M → (0,+∞) is a strictly positive
smooth function defined on M2m. When f = δ2, where δ is a constant, the metric
g̃ represents the Berger-type deformed Sasaki metric [2].

For each point (x, u) ∈ TM , let U be a local vector field that remains constant
across each fiber TxM , with Ux = ui ∂

∂xi . For any vector field X on M2m, it follows
that

g̃(VX, V(φU)) = (1 + fg(u, u))g(X,φu).

Here, we define λ = 1 + fr2, where r2 = g(u, u) = |u|2, with |.| representing the
norm with respect to the metric g.
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Lemma 1. Let (M, g) be a Riemannian manifold and ρ : R → R a smooth function.
Then:

(1) HX(ρ(r2)) = 0,

(2) VX(ρ(r2)) = 2(ρ′)g(X,u),

(3) HXg(Y, u) = g(∇XY, u),

(4) VXg(Y, u) = g(X,Y ),

for any vector fields X and Y on M , where r2 = g(u, u) .

Lemma 2. Let (M2m, φ, g) be an anti-paraKähler manifold. Then:

(1) HX(g(u, φu)) = 0,

(2) VX(g(u, φu)) = 2g(X,φu),

(3) HX(g(Y, φu)) = g(∇XY, φu),

(4) VX(g(Y, φu)) = g(X,φY ),

(5) H(φU)(g(Y, φu)) = g(∇φUY, φu),

(6) V (φU)(g(Y, φu)) = g(Y,U),

for any vector fields X and Y on M2m.

Proof. Locally, from the formulas of horizontal and vertical lifts we obtain:

(1) HX(g(u, φu)) = Xi ∂

∂xi
(g(u, φu))− usΓi

skX
k ∂

∂ui
(g(u, φu))

= Xi ∂

∂xi
(glju

lφj
tu

t)− usΓi
skX

k ∂

∂ui
(glju

lφj
tu

t)

= Xg(U,φU)− giju
sΓi

skX
kφj

tu
t − glju

lφj
iu

sΓi
skX

k

= Xg(U,φU)− g(∇XU,φU)− g(U,φ∇XU)

= 0.

(2) VX(g(u, φu)) = Xi ∂

∂ui
(g(u, φu))

= Xi ∂

∂ui
(glju

lφj
tu

t)

= Xi
(
gijφ

j
tu

t + glju
lφj

i

)
= g(X,φu) + g(u, φX)

= 2g(X,φu).

The other formulas can be derived similarly.

Lemma 3. Let (M2m, φ, g) be an anti-paraKähler manifold and (TM, g̃) its tangent
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bundle equipped with the generalized Berger-type deformed Sasaki metric. We have:

(1) HX
(
g̃(HY,HZ)

)
= X(g(Y, Z)),

(2) VX
(
g̃(HY,HZ)

)
= 0,

(3) HX
(
g̃(VY, VZ)

)
= g̃(V(∇XY ), VZ) + g̃(VY, V(∇XZ)) +X(f)g(Y, φu)g(Z,φu),

(4) VX
(
g̃(VY, VZ)

)
= f (g(X,φY )g(Z,φu) + g(Y, φu)g(X,φZ)) ,

for all vector fields X,Y, Z on M2m.

Proof. The results follow directly from the definition of the metric and previous
lemmas.

The Levi-Civita connection ∇̃ on TM , associated with the vertical generalized
Berger-type deformed Sasaki metric g̃, is defined using the Koszul formula:

2g̃(∇̃
X̃
Ỹ , Z̃) = X̃

(
g̃(Ỹ , Z̃)

)
+ Ỹ

(
g̃(Z̃, X̃)

)
− Z̃

(
g̃(X̃, Ỹ )

)
+ g̃(Z̃, [X̃, Ỹ ]) + g̃(Ỹ , [Z̃, X̃])− g̃(X̃, [Ỹ , Z̃]),

for all vector fields X̃, Ỹ , Z̃ on TM .

Theorem 1. Let (M2m, φ, g) be an anti-paraKähler manifold and (TM, g̃) its tan-
gent bundle equipped with the generalized Berger-type deformed Sasaki metric. Then,
we have:

(1) ∇̃HX
HY = H(∇XY )− 1

2
V(R(X,Y )u),

(2) ∇̃HX
VY =

1

2
H(R(u, Y )X) + V(∇XY ) +

1

2λ
X(f)g(Y, φu)V(φU),

(3) ∇̃VX
HY =

1

2
H(R(u,X)Y ) +

1

2λ
Y (f)g(X,φu)V(φU),

(4) ∇̃VX
VY = −1

2
g(X,φu)g(Y, φu)H(grad f) +

f

λ
g(X,φY )V(φU),

for any vector fields X and Y on M2m, where ∇ is the Levi-Civita connection of
(M2m, φ, g) and R is its Riemannian curvature tensor.

Proof. The proof is obtained by explicit calculation using the definition of the lifts,
the Koszul formula, and the previously established lemmas.

3 Vertical generalized Berger-type deformed Sasaki metric and
harmonicity

A smooth map Φ from a Riemannian manifold (Mm, g) to another Riemannian
manifold (Nn, h) is defined as harmonic if it serves as a critical point of the energy
functional. This functional is expressed as:
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E(Φ,K) =

∫
K
e(Φ) vg, (6)

for any compact domain K ⊆ Mm. Here, e(Φ), the energy density of Φ, is given by:

e(Φ) :=
1

2
Trg h(dΦ, dΦ), (7)

where vg denotes the Riemannian volume form on Mm.
In more detail, e(Φ) represents the trace of the pullback of the metric h on N

via the differential dΦ, taken with respect to the metric g on M . Essentially, it
measures how much Φ distorts the geometry of M when mapping it to N .

To determine whether a map Φ is harmonic, one considers any smooth one-
parameter variation {Φt}t∈I of Φ, where Φ0 = Φ and V = d

dtΦt

∣∣
t=0

is the variation
vector field. For such variations, the first variation of the energy functional can be
written as:

d

dt
E(Φt)

∣∣∣∣
t=0

= −
∫
K
h(τ(Φ), V ) vg.

Thus, the map Φ is harmonic if it satisfies the associated Euler-Lagrange equa-
tions, which are given by the formula:

0 = τ(Φ) := Trg∇dΦ, (8)

where τ(Φ) denotes the tension field of Φ. The tension field τ(Φ) is a vector field
on N that essentially represents the divergence of the differential dΦ, providing a
measure of how far Φ is from being a geodesic mapping.

Harmonic maps are significant objects in differential geometry because they gen-
eralize the notion of harmonic functions to mappings between manifolds. These maps
minimize the energy functional, analogous to how harmonic functions minimize the
Dirichlet energy in potential theory.

Research into harmonic maps has been extensive and multifaceted, encompassing
theoretical advancements, applications in physics, and contributions to geometric
analysis. For example, in physics, harmonic maps appear in the study of minimal
surfaces, and in general relativity, they describe certain field configurations. In
geometric analysis, they relate to the study of the heat flow of harmonic maps
and stability questions. The references we provided, including [4, 6, 9–11, 17, 19,
30–32] contain more detailed information and further developments on this topic,
and they can be consulted for in-depth understanding and specific applications. In
conclusion, harmonic maps, defined by the critical points of the energy functional,
form a fundamental concept in differential geometry, with wide-ranging applications
and extensive literature dedicated to their study.

3.1 Harmonicity of a vector field X : (M2m, g, φ) → (TM, g̃)

A vector field X on (M2m, g, φ) can be viewed as an immersion:
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X : (M2m, g, φ) → (TM, g̃)

where x 7→ (x,Xx) maps each point x inM2m to the point (x,Xx) in its tangent bun-
dle TM . Here, TM is equipped with the vertical generalized Berger-type deformed
Sasaki metric g̃.

Lemma 4. [19, 20] Let (Mm, g) be a Riemannian manifold. For vector fields X
and Y on Mm, and for any point (x, u) ∈ TM where Yx = u, we have the following
relation:

dxY (Xx) =
HX(x,u) +

V(∇XY )(x,u). (9)

Lemma 5. Let (M2m, φ, g) be an anti-paraKähler manifold, and let X be a vector
field on M2m. Then the following equation holds:

Trg(g(∇∗X,φ∇∗X)) = g(∆̄X,φX) +
1

2
∆(g(X,φX)), (10)

where ∆̄X denotes the rough Laplacian of X, defined as −Trg∇2X = −Trg(∇∗∇∗−
∇∇∗∗)X, and ∆ represents the standard Laplace-Beltrami operator applied to func-
tions.

Proof. Let {ei}i=1,2m be a local orthonormal frame on M2m, then we have

g(∆̄X,φX) = −g(Trg(∇∗∇∗ −∇∇∗∗)X,φX)

= −
2m∑
i=1

(
g(∇ei∇eiX,φX)− g(∇∇eiei

X,φX)
)

= −
2m∑
i=1

(
ei(g(∇eiX,φX))− g(∇eiX,φ∇eiX)− 1

2
∇eiei(g(X,φX))

)
= −

2m∑
i=1

(1
2
eiei(g(X,φX))− g(∇eiX,φ∇eiX)− 1

2
∇eiei(g(X,φX))

)
= Trg(g(∇∗X,φ∇∗X))− 1

2
∆(g(X,φX)).

Lemma 6. Let (M2m, φ, g) be an anti-paraKähler manifold and X a vector field on
M . For a smooth function ρ on M2m, the following relation holds:

∆̄(ρX) = ρ∆̄X − (∆ρ)X − 2∇grad ρX, (11)

where grad ρ denotes the gradient of the function ρ.
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Proof. Let {ei}i=1,2m be a local orthonormal frame on M2m, then we have

∆̄(ρX) = −
2m∑
i=1

(
∇ei∇ei(ρX)−∇∇eiei

(ρX)
)

= −
2m∑
i=1

(
∇ei(ei(ρ)X + ρ∇eiX)−∇eiei(ρ)X − ρ∇∇eiei

X
)

= −
2m∑
i=1

(
eiei(ρ)X + ei(ρ)∇eiX + ei(ρ)∇eiX

+ρ∇ei∇eiX −∇eiei(ρ)X − ρ∇∇eiei
X
)

= −
2m∑
i=1

(
(eiei(ρ)−∇eiei(ρ))X + 2∇ei(ρ)eiX

+ρ(∇ei∇ei −∇∇eiei
)X

)
= ρ∆̄X − (∆ρ)X − 2∇gradρX.

Lemma 7. Let (M2m, φ, g) be an anti-paraKähler manifold and (TM, g̃) its tangent
bundle equipped with a vertical generalized Berger-type deformed Sasaki metric. For
a vector field X on M2m, the energy density associated with X is given by:

e(X) = m+
1

2
|∇X|2 + f

2
Trg (g(∇∗X,φX))2 , (12)

where f is a constant and Trg denotes the trace with respect to the metric g.

Proof. Let (x, u) ∈ TM , X be a vector field on M2m, Xx = u and {ei}i=1,2m be a

local orthonormal frame on M2m, from (7), we have

e(X)x =
1

2
Trg g̃(dX, dX)(x,u)

=
1

2

2m∑
i=1

g̃(dX(ei), dX(ei))(x,u).

Using (9), we obtain

e(X) =
1

2

2m∑
i=1

g̃(Hei +
V(∇eiX),Hei +

V(∇eiX))

=
1

2

2m∑
i=1

(
g̃(Hei,

Hei) + g̃(V(∇eiX), V(∇eiX))
)

=
1

2

2m∑
i=1

(
g(ei, ei) + g(∇eiX,∇eiX) + fg(∇eiX,φX)2

)
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= m+
1

2
|∇X|2 + f

2
Trgg(∇∗X,φX)2.

Theorem 2. Let (M2m, φ, g) be an anti-paraKähler manifold, and let (TM, g̃) de-
note its tangent bundle equipped with the vertical generalized Berger-type deformed
Sasaki metric. For a vector field X on M2m, the associated tension field is expressed
as follows:

τ(X) = H
(
Trg

(
R(X,∇∗X) ∗ −1

2
g(∇∗X,φX)2gradf

))
(13)

+V
( 1
λ

(
g(∇gradfX,φX) + f Trgg(∇∗X,φ∇∗X)

)
φX − ∆̄X

)
,

where λ = 1 + f |X|2.

Proof. Let (x, u) ∈ TM and let {ei}i=1,2m be a local orthonormal frame on M2m

such that ∇eiei = 0 at the point x and Xx = u. Utilizing equations (8) and (9), we
obtain the following results:

τ(X)x = Trg∇dX

=

2m∑
i=1

(
∇X

eidX(ei)
)
x

=

2m∑
i=1

(
∇̃Hei

Hei + ∇̃Hei
V(∇eiX) + ∇̃V(∇eiX)

Hei + ∇̃V(∇eiX)
V(∇eiX)

)
(x,u)

.

Using Theorem 1, we obtain

τ(X) =

2m∑
i=1

(
H(∇eiei)−

1

2
V(R(ei, ei)X) +

1

2
H(R(X,∇eiX)ei)

+V(∇ei∇eiX) +
1

2λ
ei(f)g(∇eiX,φX)V(φX)

+
1

2
H(R(X,∇eiX)ei) +

1

2λ
ei(f)g(∇eiX,φX)V(φX)

−1

2
g(∇eiX,φX)2H(gradf) +

f

λ
g(∇eiX,φ∇eiX)V(φX)

)
=

2m∑
i=1

(
H(R(X,∇eiX)ei)−

1

2
g(∇eiX,φX)2H(gradf) + V(∇ei∇eiX)

+
1

λ
ei(f)g(∇eiX,φX)V(φX) +

f

λ
g(∇eiX,φ∇eiX)V(φX)

)
= H

(
Trg

(
R(X,∇∗X) ∗ −1

2
g(∇∗X,φX)2gradf

))
+V

( 1
λ
g(∇gradfX,φX)φX + Trg

(
∇2X
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+
f

λ
g(∇∗X,φ∇∗X)φX

))
= H

(
Trg

(
R(X,∇∗X) ∗ −1

2
g(∇∗X,φX)2gradf

))
+V

( 1
λ

(
g(∇gradfX,φX) + f Trgg(∇∗X,φ∇∗X)

)
φX − ∆̄X

)
.

Theorem 3. Let (M2m, φ, g) be an anti-paraKähler manifold, and let (TM, g̃) be
its tangent bundle equipped with the vertical generalized Berger-type deformed Sasaki
metric. A vector field X on M2m is considered a harmonic map if and only if the
following conditions are satisfied:

Trg
(
R(X,∇∗X) ∗ −1

2
g(∇∗X,φX)2gradf

)
= 0, (14)

and

∆̄X =
1

λ

(
g(∇gradfX,φX) + f Trgg(∇∗X,φ∇∗X)

)
φX. (15)

Proof. The proof is a direct consequence of Theorem 2.

Let (M2m, φ, g) be a compact oriented anti-paraKähler manifold, and let (TM, g̃)
denote its tangent bundle equipped with the vertical generalized Berger-type de-
formed Sasaki metric. For a vector field X on M , the energy E(X) is defined as
the energy of the corresponding map X : (M2m, φ, g) → (TM, g̃). More specifically,
from equation (12), we obtain:

E(X) =

∫
M

e(X)vg (16)

=

∫
M

(
m+

1

2
|∇X|2 + f

2
Trgg(∇∗X,φX)2

)
vg

= mV ol(M) +
1

2

∫
M

|∇X|2vg + 1

2

∫
M

f Trgg(∇∗X,φX)2vg.

Definition 2. Let (M2m, φ, g) be an anti-paraKähler manifold, and let (TM, g̃)
represent its tangent bundle equipped with the vertical generalized Berger-type de-
formed Sasaki metric. A vector field X is termed a harmonic vector field if the
corresponding map X : (M2m, φ, g) → (TM, g̃) serves as a critical point for the en-
ergy functional E, considering only variations among maps defined by vector fields.

In the following theorem, we analyze the first variation of the energy functional
constrained to the space ℑ1

0(M
2m).

Theorem 4. Let (M2m, φ, g) be a compact oriented anti-paraKähler manifold, and
let (TM, g̃) denote its tangent bundle equipped with the vertical generalized Berger-
type deformed Sasaki metric. Let X be a vector field on M2m, and define the energy
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functional E : ℑ1
0(M

2m) → [0,+∞) as the energy restricted to the space of all vector
fields. Then,

d

dt
E(Xt)

∣∣
t=0

=

∫
M

g
(
∆̄X − 1

λ
g(∇gradfX,φX)φX (17)

−f

λ
Trgg(∇∗X,φ∇∗X)φX, V

)
vg

for any smooth 1-parameter variation Φ : M2m× (−ϵ, ϵ) → TM of X through vector
field, i.e., Φ(x, t) = Xt(x) ∈ TM for any x ∈ M2m and any |t| < ϵ, (ϵ > 0), or
equivalently Xt ∈ ℑ1

0(M
2m) for any |t| < ϵ. Also, V is the vector field on M2m given

by

V (x) = lim
t→0

1

t
(Xt(x)−X(x)) =

d

dt
Φx(0), x ∈ M,

where Φx(t) = Xt(x), (x, t) ∈ M2m × (−ϵ, ϵ).

Proof. We consider the smooth 1-parameter variation Φ : M2m × (−ϵ, ϵ) → TM of
X, i.e., Φ(x, t) = Xt(x) ∈ TxM for any (x, t) ∈ M2m×(−ϵ, ϵ) and Φ(x, 0) = X0(x) =
X(x). From (6), we have

E(Xt) =

∫
M

e(Xt)v
g.

Then, as well known the theory of harmonic maps [18]

d

dt
E(Xt)

∣∣∣
t=0

= −
∫
M

g̃(V, τ(X))vg, (18)

where V is the infinitesimal variation induced by Φ, i.e.,

V(x) = d(x,0)Φ(0,
d

dt
)
∣∣
t=0

= dΦx(
d

dt
)
∣∣
t=0

=
d

dt
Xt(x)

∣∣
t=0

∈ TX(x)T
∗M.

It is well known that

V = VV ◦X, (19)

which was proven in [8, p.58]. Finally, by taking into account (13), (18) and (19),
we find

d

dt
E(Xt)

∣∣∣
t=0

= −
∫
M

g̃(VV, τ(X))vg

=

∫
M

g
(
V, ∆̄X − 1

λ
g(∇gradfX,φX)φX

−f

λ
Trgg(∇∗X,φ∇∗X)φX

)
vg.
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Remark 1. Theorem 4 is applicable when (M2m, φ, g) is a non-compact oriented
anti-paraKähler manifold. Specifically, if M2m is non-compact, we can choose an
open subset D within M2m such that its closure is compact, and select an arbitrary
vector field V whose support lies entirely within D. In this context, Theorem 4 can
be expressed as follows:

d

dt
E(Xt)

∣∣
t=0

=

∫
D
g
(
V, ∆̄X − 1

λ
g(∇gradfX,φX)φX

−f

λ
Trgg(∇∗X,φ∇∗X)φX

)
vg.

Corollary 1. Let (M2m, φ, g) be an anti-paraKähler manifold, and let (TM, g̃) rep-
resent its tangent bundle equipped with the vertical generalized Berger-type deformed
Sasaki metric. A vector field X is considered a harmonic vector field if and only if

∆̄X =
1

λ

(
g(∇gradfX,φX) + f Trgg(∇∗X,φ∇∗X)

)
φX.

From Theorem 3 and Corollary 1, we get the following result.

Corollary 2. Let (M2m, φ, g) be an anti-paraKähler manifold, and let (TM, g̃) de-
note its tangent bundle equipped with a vertical generalized Berger-type deformed
Sasaki metric. A vector field X qualifies as a harmonic map if and only if it is a
harmonic vector field and

Trg
(
R(X,∇∗X) ∗ −1

2
g(∇∗X,φX)2gradf

)
= 0.

It is important to observe that if X is parallel, then X is indeed a harmonic
vector field. Conversely, the following theorem holds:

Theorem 5. Let (M2m, φ, g) be a compact oriented anti-paraKähler manifold, and
let (TM, g̃) represent its tangent bundle equipped with the vertical generalized Berger-
type deformed Sasaki metric. For a vector field X on M2m, X is a harmonic vector
field if and only if it is parallel.

Proof. We assume that the vector field X is a harmonic vector field, meaning it is
a critical point of the energy functional E restricted to the space of all vector fields
on (M2m, φ, g). We consider the smooth one-parameter variation Xt = (1+ t)X for
any t ∈ (−ϵ, ϵ), where ϵ > 0. From equation (16), we obtain:

E(Xt) = mV ol(M) +
(1 + t)2

2

∫
M

|∇X|2vg + (1 + t)4

2

∫
M

f Trgg(∇∗X,φX)2
)
vg.

We get

0 =
d

dt
E(Xt)|t=0

=
d

dt

(
mV ol(M) +

(1 + t)2

2

∫
M

|∇X|2vg
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+
(1 + t)4

2

∫
M

f Trgg(∇∗X,φX)2
)
vg
)
t=0

=

∫
M

|∇X|2vg + 2

∫
M

f Trgg(∇∗X,φX)2vg

=

∫
M

(
|∇X|2 + 2f Trgg(∇∗X,φX)2

)
vg,

which gives

|∇X|2 + 2f Trgg(∇∗X,φX)2 = 0,

hence ∇X = 0.

Theorem 6. Let (M2m, φ, g) be a compact oriented anti-paraKähler manifold, and
let (TM, g̃) denote its tangent bundle equipped with the vertical generalized Berger-
type deformed Sasaki metric. A vector field X on M2m defines a harmonic map
X : (M2m, g) → (TM, g̃) if and only if X is parallel.

Proof. Assuming that X : (M2m, g) → (TM, g̃) is a harmonic map, we can invoke
Corollary 2 to conclude that X is a harmonic vector field, which implies that X
is parallel. Conversely, if we assume that the vector field X is parallel, then by
Theorem 3, X qualifies as a harmonic map.

Example 1. Let (R∗ × R∗, g, φ) be an anti-paraKähler manifold such that

g = x2dx2 + y2dy2,

and

φ∂x =
x

y
∂y, φ∂y =

y

x
∂x.

Relatively to the orthonormal frame

e1 =
1

x
∂x, e2 =

1

y
∂y.

We have

φe1 = e2, φe2 = e1

and

∇eiej = 0, for all i, j = 1, 2.

We examine the vector field X = ρ(x)e1, where ρ is a smooth real function that
depends on the variable x. By performing direct calculations, we determine that:

∆̄e1 = 0,
∇gradρe1 = 0,

∆ρ = − 1

x3
ρ′ +

1

x2
ρ′′.

(20)
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Combining relations (10), (11) and (20), we obtain

∆̄X = (
1

x3
ρ′ − 1

x2
ρ′′)e1,

g(∇gradfX,φX) =
1

2
(gradf)(g(X,φX)) = 0,

T rgg(∇∗X,φ∇∗X) = 0.

i) From Corollary 1, we conclude that the vector field X = ρ(x)e1 is a harmonic
vector field if and only if ∆̄X = 0. This is equivalent to stating that the function ρ
must satisfy the following homogeneous second-order differential equation:

1

x
ρ′ − ρ′′ = 0. (21)

The general solution of differential equation (21) is

ρ(x) = ax2 + b,

where a and b are real constants.
Given that Trg

(
R(X,∇∗X) ∗ −1

2g(∇∗X,φX)2∇f
)
= 0, we can infer from Corollary

2 that the vector field X = (ax2 + b)e1 is also a harmonic map.
On the other hand ∇e1X = 2ae1 ̸= 0, then the vector field X = (ax2 + b)e1 is
harmonic but non parallel.

Example 2. Let R2 be equipped with the anti-paraKähler structure (φ, g) in polar
coordinates defined by:

g = dr2 + r2dθ2,

φe1 = sin 2θe1 + cos 2θe2, φe2 = cos 2θe1 − sin 2θe2,

where {e1, e2} is an orthonormal frame on R2 with respect to g, we have

∇e1e1 = ∇e1e2 = 0, ∇e2e1 =
1

r
e2, ∇e2e2 = −1

r
e1,

The vector field X = sin θe1 + cos θe2 is parallel, then it is harmonic.

Proposition 1. Let (M2m, φ, g) be an anti-paraKähler manifold, and let (TM, g̃)
denote its tangent bundle equipped with the vertical generalized Berger-type deformed
Sasaki metric. A vector field X on M2m is an isometric immersion if and only if it
is parallel.

Proof. Let Y and Z be vector fields on M2m. From Lemma 5, we have

g̃(dX(Y ), dX(Z)) = g̃(Y H + (∇Y X)V , ZH + (∇ZX)V )

= g̃(Y H , ZH) + g̃((∇Y X)V , (∇ZX)V )

= g(Y,Z) + g(∇Y X,∇ZX) + fg(∇Y X,φu)g(∇ZX,φu)

Hence, X is an isometric immersion if and only if

g̃(dX(Y ), dX(Z)) = g(Y,Z)

for any Y and Z two vector fields on M2m. Therefore, X is an isometric immersion
if and only if ∇X = 0.
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As a direct result of Proposition 1, we derive the following corollaries.

Corollary 3. Let (M2m, φ, g) be an anti-paraKähler manifold, and let (TM, g̃) rep-
resent its tangent bundle equipped with the vertical generalized Berger-type deformed
Sasaki metric. In this context, any isometric vector field on M2m is considered to
be harmonic.

Corollary 4. Let (M2m, φ, g) be a compact anti-paraKähler manifold, and let
(TM, g̃) denote its tangent bundle equipped with the vertical generalized Berger-type
deformed Sasaki metric. In this setting, every harmonic vector field on M2m is
isometric.

3.2 Harmonicity of vector fields along smooth maps

Lemma 8. [31] Let Φ : (Mm, g) → (Nn, h) be a smooth map between Riemannian
manifolds and Y be a vector field on N . Let σ be a smooth map defined by σ := Y ◦Φ.
Then

dσ(X) = H(dΦ(X)) + V(∇Φ
Xσ), (22)

for any vector field X on Mm.

Proposition 2. Let (Mm, g) be a Riemannian manifold, and let (N2n, h, φ) be an
anti-paraKähler manifold. Consider a strictly positive smooth function f defined
on N2n, and let (TN, H̃) represent its tangent bundle equipped with the vertical
generalized Berger-type deformed Sasaki metric. If Φ : Mm → N2n is a smooth map
and Y is a vector field on N2n, then the tension field of the composition σ := Y ◦Φ
is expressed as follows:

τ(σ) = H
(
τ(Φ) + Trg

(
RN (σ,∇Φ

∗ σ)dΦ(∗)−
1

2
h(∇Φ

∗ σ, φσ)
2gradf

))
+V

( 1
λ
Trg

(
h(gradf, dΦ(∗))h(∇Φ

∗ σ, φσ)

+fh(∇Φ
∗ σ, φ∇Φ

∗ σ)
)
φσ −∆Φσ

)
,

where ∆Φσ := −Trg(∇Φ)2σ = −Trg(∇Φ
∗ ∇Φ

∗ −∇Φ
∇∗∗)σ denotes the rough Laplacian

of σ on the pull-back bundle Φ−1TN , λ = 1 + f |σ|2 and |σ|2 = h(σ, σ).

Proof. Let x ∈ Mm, v ∈ TΦ(x)N and {ei}i=1,m be a local orthonormal frame on Mm

such that ∇eiei = 0 at x and σ(x) = (Φ(x), YΦ(x)), YΦ(x) = v ∈ TΦ(x)N . Using (22),
we have

τ(σ)x =
m∑
i=1

(
∇σ

eidσ(ei)− dσ(∇eiei)
)
x

=

m∑
i=1

∇TN
dσ(ei)

dσ(ei))(Φ(x),v)
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=

m∑
i=1

(
∇TN

(H(dΦ(ei))+V(∇Φ
ei
σ))(

H(dΦ(ei)) +
V(∇Φ

eiσ))

=

m∑
i=1

(
∇TN

H(dΦ(ei))
H(dΦ(ei)) +∇TN

H(dΦ(ei))
V(∇Φ

eiσ)

+∇TN
V(∇Φ

ei
σ)

H(dΦ(ei)) +∇TN
V(∇Φ

ei
σ)

V(∇Φ
eiσ).

From Theorem 1, we obtain

τ(σ) =

m∑
i=1

(
H(∇N

dΦ(ei)
dΦ(ei))−

1

2
V(RN (dΦ(ei), dΦ(ei))σ)

+
1

2
H(RN (σ,∇Φ

eiσ)dΦ(ei)) +
V(∇N

dΦ(ei)
∇Φ

eiσ)

+
1

2λ
dΦ(ei)(f)h(∇Φ

eiσ, φσ)
V(φσ) +

1

2
H(RN (σ,∇Φ

eiσ)dΦ(ei))

+
1

2λ
dΦ(ei)(f)h(∇Φ

eiσ, φσ)
V(φσ)− 1

2
h(∇Φ

eiσ, φσ)
2H(gradf)

+
f

λ
h(∇Φ

eiσ, φ∇
Φ
eiσ)

V(φσ)
)

=
m∑
i=1

(
H
(
∇Φ

eidΦ(ei) +RN (σ,∇Φ
eiσ)dΦ(ei)

−1

2
h(∇Φ

eiσ, φσ)
2gradf

)
+ V

(
∇Φ

ei∇
Φ
eiσ

+
1

λ
h(gradf, dΦ(ei))h(∇Φ

eiσ, φσ)φσ +
f

λ
h(∇Φ

eiσ, φ∇
Φ
eiσ)φσ

))
= H

(
τ(Φ) + Trg

(
RN (σ,∇Φ

∗ σ)dΦ(∗)−
1

2
h(∇Φ

∗ σ, φσ)
2gradf

))
+V

( 1
λ
Trg

(
h(gradf, dΦ(∗))h(∇Φ

∗ σ, φσ)

+fh(∇Φ
∗ σ, φ∇Φ

∗ σ)
)
φσ −∆Φσ

)
.

From Proposition 2, we obtain the following.

Theorem 7. Let (Mm, g) be a Riemannian manifold, and let (N2n, h, φ) be an anti-
paraKähler manifold. Assume f is a strictly positive smooth function on N2n, and
(TN, H̃) denotes its tangent bundle equipped with the vertical generalized Berger-
type deformed Sasaki metric. Consider a smooth map Φ : Mm → N2n and a vector
field Y on N2n, with σ := Y ◦Φ. The map σ is harmonic if and only if the following
conditions are satisfied:

τ(Φ) = Trg
( 1
2
h(∇Φσ, φσ)2gradf −RN (σ,∇Φσ)dΦ(∗)

)
,
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and

∆Φσ =
1

λ
Trg

(
h(gradf, dΦ(∗))h(∇Φσ, φσ) + fh(∇Φσ, φ∇Φσ)

)
φσ.

3.3 Harmonicity of a composition of the projection map of the
tangent bundle with a smooth map

Lemma 9. Let (M2m, φ, g) be an anti-paraKähler manifold, and let (TM, g̃) denote
its tangent bundle equipped with the vertical generalized Berger-type deformed Sasaki
metric. The tension field associated with the canonical projection

π : (TM, g̃) → (M2m, φ, g)

is expressed as follows:

τ(π) =
λ− 1

2fλ
(gradf) ◦ π, (23)

where λ = 1 + f |u|2.

Proof. First case: Let (x, u) ∈ TM with u = 0 and {ei}i=1,2m be a local orthonor-

mal frame on M2m at x. Then {Hei, Vej}i=1,2m,j=1,2m is a local orthonormal frame
on TM at (x, 0). We have

τ(π) =
2m∑
i=1

(
∇dπ(Hei)dπ(

Hei)− dπ(∇̃Hei
Hei)

)
+

2m∑
j=1

(
∇dπ(Vej)dπ(

Vej)− dπ(∇̃Vej
Vej)

)
.

But since dπ(VX) = 0 and dπ(HX) = X ◦ π, for any vector field X on M2m, then
we find

τ(π) =
2m∑
i=1

(
∇(ei◦π)(ei ◦ π)− dπ(∇eiei)

H
)

= 0.

Second case: Let (x, u) ∈ TM with u ̸= 0 and {ei}i=1,2m such that e1 = u
|u| be a

local orthonormal frame on M2m at x. Then {Hei, 1√
λ
V(φe1),

V(φej)}i=1,2m,j=2,2m is

a local orthonormal frame on TM at (x, u). Using Theorem 1, we obtain

τ(π) =

2m∑
i=1

(
∇dπ(Hei)dπ(

Hei)− dπ(∇̃Hei
Hei)

)
+∇dπ( 1√

λ
V(φe1))

dπ(
1√
λ
V(φe1))

−dπ(∇̃( 1√
λ
V(φe1))

(
1√
λ
V(φe1))) +

2m∑
j=2

(
∇dπV(φej)dπ

V(φej)
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−dπ(∇̃V(φej)
V(φej))

)
=

2m∑
i=1

(
∇(ei◦π)(ei ◦ π)− dπ(∇eiei)

H
)
− 1√

λ
dπ

(
V(φe1)(

1√
λ
)V(φe1)

+
1√
λ
∇̃V(φe1)

V(φe1)
)

−
2m∑
j=2

dπ
(
− 1

2
g(ej , u)

2H(gradf) +
f

λ
g(φej , ej)

V(φU)
)

=
2m∑
i=1

(
(∇eiei) ◦ π − (∇eiei) ◦ π

)
− 1

λ
dπ

(
− 1

2
g(e1, u)

2H(gradf)

+
f

λ
g(φe1, e1)

V(φU)
)

=
1

2λ
|u|2(gradf) ◦ π =

λ− 1

2fλ
(gradf) ◦ π.

Theorem 8. Let (M2m, φ, g) be an anti-paraKähler manifold, and let (Nn, h) be
a Riemannian manifold. Consider a strictly positive smooth function f defined on
M2m, along with its tangent bundle (TM, g̃) equipped with the vertical generalized
Berger-type deformed Sasaki metric. If Φ : (M2m, g, φ) → (Nn, h) is a smooth map,
then the tension field of the composition Φ ◦ π is given by:

τ(Φ ◦ π) =
(
τ(Φ) +

λ− 1

2fλ
dΦ(gradf)

)
◦ π.

Proof. First case: Let (x, u) ∈ TM with u = 0, let {ei}i=1,2m be a local orthonor-

mal frame on M2m at x. Then {Hei, Vej}i=1,2m,j=1,2m is a local orthonormal frame
on TM at (x, 0). The tension field of the composition Φ ◦ π is given by [9, 11]

τ(Φ ◦ π) = dΦ(τ(π)) + Trg̃∇dΦ(dπ, dπ).

From which we have

Trg̃∇dΦ(dπ, dπ) =

2m∑
i=1

(
∇N

dΦ(dπ(Hei))
dΦ(dπ(Hei))− dΦ(∇dπ(Hei)dπ(

Hei))
)

+

2m∑
j=1

(
∇N

dΦ(dπ(Vej))
dΦ(dπ(Vej))− dΦ(∇dπ(Vej)dπ(

Vej))
)

=
2m∑
i=1

(
(∇N

dΦ(ei)
dΦ(ei)) ◦ π − dΦ(∇eiei) ◦ π

)
= τ(Φ) ◦ π.
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Using (23), we obtain

τ(Φ ◦ π) = τ(Φ) ◦ π.

Second case: Let (x, u) ∈ TM with u ̸= 0 and {ei}i=1,2m such that e1 = u
|u| be a

local orthonormal frame on M2m at x. Then {Hei, 1√
λ
V(φe1),

V(φej)}i=1,2m,j=2,2m is

a local orthonormal frame on TM at (x, u). As in the previous case, we calculate

Trg̃∇dΦ(dπ, dπ) =

2m∑
i=1

(
∇N

dΦ(dπ(Hei))
dΦ(dπ(Hei))− dΦ(∇dπ(Hei)dπ(

Hei))
)

+
2m∑
j=2

(
∇N

dΦ(dπ(V(φej)))
dΦ(dπ(V(φej)))

−dΦ(∇dπ(V(φej))dπ(
V(φej)))

)
+∇N

dΦ(dπ( 1√
λ
V(φe1)))

dΦ(dπ(
1√
λ
V(φe1)))

−dΦ(∇dπ( 1√
λ
V(φe1))

dπ(
1√
λ
V(φe1)))

=
2m∑
i=1

(
(∇N

dΦ(ei)
dΦ(ei)) ◦ π − dΦ(∇eiei) ◦ π

)
= τ(Φ) ◦ π.

Using (23), we obtain

τ(Φ ◦ π) = τ(Φ) ◦ π + dΦ(
λ− 1

2fλ
(gradf) ◦ π)

=
(
τ(Φ) +

λ− 1

2fλ
dΦ(gradf)

)
◦ π.

Theorem 9. Let (M2m, φ, g) be an anti-paraKähler manifold, and let (TM, g̃) rep-
resent its tangent bundle equipped with the vertical generalized Berger-type deformed
Sasaki metric. Additionally, let (Nn, h) be a Riemannian manifold, and let f be a
strictly positive smooth function defined on M2m. If Φ : (M2m, φ, g) → (Nn, h) is a
smooth map, then the composition Φ ◦ π is harmonic if and only if:

τ(Φ) =
1− λ

2fλ
dΦ(gradf).

Conclusion

In this study, we have introduced the vertical generalized Berger-type deformed
Sasaki metric on the tangent bundle of an anti-paraKähler manifold. Our exploration
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began with a detailed examination of the harmonicity conditions for vector fields
under this novel metric, supplemented by illustrative examples that highlight the
unique properties of harmonic vector fields in this context.

We further investigated the interplay between harmonicity and smooth maps
between Riemannian manifolds, particularly focusing on cases where the target
manifold is anti-paraKähler. Through rigorous analysis, we established criteria for
harmonicity in vector fields arising from the composition of projections and maps
between manifolds, thereby enhancing our understanding of how these mappings
behave under the influence of the introduced metric.

Key findings demonstrate that a vector field on a compact oriented anti-
paraKähler manifold is harmonic if and only if it is parallel, emphasizing a significant
connection between these two concepts. Moreover, we established that the tension
field associated with the composition of maps could be articulated in terms of the
underlying structures of the manifolds involved, providing a framework for analyzing
harmonic maps in more complex geometrical settings.

The results presented herein not only advance the theoretical foundations of
harmonic maps and vector fields in the context of anti-paraKähler geometry but
also open avenues for future research. Potential directions include investigating fur-
ther applications of the vertical generalized Berger-type deformed Sasaki metric,
exploring its implications in different geometrical contexts, and examining the inter-
play between harmonicity and other geometric structures in broader mathematical
frameworks.
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