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About the Laplace transform on L' (R™)
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Abstract. In the paper some preliminaries are stated, including the basic properties
of ZL'(RT). As the appropriate conditions for g € ZL*(R"), we attempted to
take those ones formulated in the paper.
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1 Introduction

The Laplace transform is important in various areas of mathematics: functional
analysis, Fourier analysis and solving equations of mathematical physics (see [1—
5]). The study of holomorphic Laplace transform has for a long time interested
complex analysis. This paper is devoted the to study of the Laplace transform in the
space L! (R*) and some problems concerning the algebras of holomorphic functions.
The Laplace transform is named in honor of mathematician and astronomer Pierre-
Simon Laplace, who used the transform in his work on probability theory. The
Laplace transform has many important applications in mathematics, physics, optics,
electrical engineering, control engineering, signal processing, and probability theory.
In mathematics, it is used for solving differential and integral equations. In physics,
it is used for analysis of linear time-invariant systems such as electrical circuits,
harmonic oscillators, optical devices, and mechanical systems.

While certain of the properties of the Laplace transformation are so well known
that they have become engineering tools, there are others that have received very
little attention, and yet are very interesting.

One of these comes about as follows: Suppose that f € L' (R*) is a complex-
valued function and s is a complex parameter. We define the Laplace transform of

f as

o0

95 =Lf(s) = [ @)
0
the integral converges at least for s € ¥ = {z € C:Rez >0}, ie. D(g) D X. We
shall suppose D (Zf) = X for f € L' (RY). If ZL'(RT) = Cy(X) N Hol (X°),

where

C’O(E):{fEC(Z‘): lim f(z) =0, zEE},

|z]—o0
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we could use the Open Mapping Theorem (see e.g.[6]) and obtain that L~ is con-
tinuous. So . would be a homeomorphism of ZL! (R) onto Cy (X) N Hol (X°).
However, holds

2L (RY) ¢ Co (2) N Hol ()

(see [6], p.215, Ex.2). This is the starting point of our work. It means that for any
g€ Co(2)Nn Hol (£°) \vL' (RT)

and for any {g,}o", C Co (X)NHol (£°) such that g, = ¢ in ¥ and {f‘lgn}f;l C
L' (RT), the sequence {L 'g,} _ has no partial limit in L' (R*). The simplest
way how to verify it is to prove lim HL‘lgnH = 00.
n—00

We tried to find a necessary and sufficient condition for g € Cp (X) N Hol (X°)
to be an element of ZL' (R*), i.e. for the existence of f € L' (R") such that
g = Zf. Further, we wanted to define a norm on .ZL' (R") such that .Z is a
homeomorphism of L' (RT) onto .ZL' (R*) which can be calculated without an
explicit determination of Z~1g. In the paper we showed some ways how to do it.

In the paper some preliminaries are stated, including the basic properties of
ZLY(RT). As the appropriate conditions for g € ZL'(R*"), we attempted to take
those ones formulated in the paper. We call special attention to the works of D.
Widder [7-9], who has great results in this way. But his theorems are, in general,
very involved and provide no practical criteria.

2 Laplace transform of the space L!'(R")

Let C be the set of all complex numbers, ¥ = {s € C:Res >0} be the right
half-plane of C and X° be its interior. Let C(X) be the set of all continuous
functions f:X — C,

Cy(X)={f € C(X): fis bounded in X},
CEU{o})=C(2)={feC(®): |z1|iinoof(z) =c,ceC, ze¥}

and
Co(X)={feC(X): lim f(z)=0, z€ X}.

|z| =00

Denote by Hol(X%) the set of all analytic functions on X°.
Suppose that f € L'(R") is a complex-valued function and s is a complex
parameter. We define the Laplace transform of f as

4(s) = Zf(s) = / e f(2)do,

0

the integral converges at least for s € ¥, ie. D(g) C X. We shall suppose
D(Zf)=% for fe LYR").
Now, we develop some useful properties of the Laplace transform.
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Proposition 1. The Laplace transform is an injective linear mapping L*(RY) to
Co(X) N Hol(X°).

Proof. Since the integral

o

o(s) = [ e sy

0

uniformly converges on Y, it follows that g € C(X)N Hol(X"). Since

o0

9(s)] < / (@) ldz = | £l

0

we have g € Cp(2). Now we will prove that g € Cyp(X) C Cp(X).
Let s=0+it€ X% then

and the relation

o——+00

lim /\f(x)\e”da; =0
0

follows from Lebesgue’s Dominated Convergence Theorem. Thus for any & >
0 there exists o¢ > 0 such that |g(o +it)| <e for o> 0p. Let o € (0;00). We
can find A > 0 such that

/|f(9c)\d:1; <
A

Since the set AC((0; A)) of all absolutely continuous functions on (0; A) is dense
in L'(0; A) (cf.[6], 5.14, p.120), there exists ¢ € AC({0; A)) such that

Since
o0 A
so+iv) < [1@lar+ [ 1) - v+
A 0

A

A
+ /w(x)e_‘m costxdx| + /w(m)e_” sintzdz|,
0

0
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it’s enough to estimate the last two integrals. Using integration by parts we get

A

4 : A

/w(:v)e_” costxdr = [w(x)e_‘msmm] - - /(w’(x) —o(x))e” 7% sintedx

0 bdo f 0
and so

i 1 1 i K
[ wtate o costada| < A+ O+ [ (/)4 abtalde = 15 < §
0 0
for |t| >ty = &, For the integral

£

A
/ Y(x)e T sintedr
0

holds the same. Thus for o € (0;0¢) and [t| >ty we have also |[g(o + it)| < e.
The linearity of .Z is obvious. The transform £ is injective according to ([6], 9.12,
p.208.)

O

Let us define in Cy(X) the norm
lgll = sup |g(s)|-
LI

For g € C.(¥) we have
= ma .
loll = _max_lo(s)
Theorem 1. The space Co(X) N Hol(X°) is a Banach space.

Proof. We know that C(K) is a Banach space with the norm
lgll = max |g(s)]

for the compact set K . It follows C.(X) is a Banach space. In particular, Cy(X)
is a closed subspace of C.(X). Since every closed subspace of a Banach space is a
Banach space, it follows Cj(X) is a Banach space.

Note also that for {g,} C Co(X) N Hol(X%) such that g, = g in X, we
have g € Co(X) N Hol(X%). Hence Co(X)N Hol(X") is a Banach space as a closed
subspace of Cp(X).

O

Proposition 1 contains some properties of .. We have ZL'(RT) C Cy() N
Hol (%) according to Proposition 1. Moreover, the next theorem holds.
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Theorem 2. The mapping £ : LY(RT) — Co(X) N Hol(XY) is continuous.

Proof. Let fu, f € LYRY), gn=Lfn, 9=2Lf, gn g€ Co(X) N Hol(XO).
fo = fin LNRY), ([ fo = fli = g |fu(t) — f(£)|dt — 0. Then

|gn(s) — g(s)] = /B“(fn(t)—f(t))dt S/IeStan(t)—f(t)!dtS
0 0

< / Fult) = F(B)IdE = | £ — £l
0

for all s € X. It follows
lgn — gll = max |gn(s) — g(s)| < [[fn — fll1-
SEY
Hence ||f, — flli =0 as n — oo, which implies
||$fn_$f|| = Hgn—9|| —0 as n— oo

O]

The question of equality of the sets ZL'(R*) and Co(X) N Hol(X°) appears.

It seems the answer is negative. To prove this fact we have to find some function
F € Co(X)NHol(X%) such that F ¢ ZLY(RT),ie. F € Co(X)NHol(X°)—ZL L (RT).
We can use the open mapping theorem (see [3]): the continuous injective mapping
L LYRT) — Co(X) N Hol(X) is on, it follows £~ is continuous.

If ZLYRT) = Co(X) N Hol(X°), we could use the Open Mapping Theorem
(see [6], p.115, 5.9) and obtain that .£~! is continuous. So £ would be a
homeomorphism of ZL'(R*) onto Co(X) N Hol(X%). However,

ZLYRY) G Co(2) N Hol(2Y)
holds (see Example p.215, Ex.2). It means that for any
g€ Co(X)NHol(X°)\ ZLYRT)

and for any
{gn}nz1 € Co(2) N Hol(2?)

such that g, = ¢ in ¥ and {£ !¢}, C L}(R"), the sequence {£1g,}>°,
has no partial limit in L!'(RT). The simplest way how to verify it is to prove
lim [.21g,| = ox.

n—oo
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3 Growth conditions on ¢™ for g ZL'(RY)

For ¢ >0 put . ={s€C:Res>¢}. Let n€N, fe L'(R"). Since
the function z"f(x)e % is an element of L'(RT) for all & > 0, it follows the

integral
oo

/ac"f(a:)esxda:
0
converges uniformly in Y. for all € > 0. Therefore we have

o0

g = (1) [ @ () o

0

for s € X°. Using Proposition 1 for the function
9" (s +¢) = (~1)"L[2" f(x)e ")(s), s€X
we get the following

Proposition 2. For all n €N and for any € >0 we have ¢ € Co(%e).

Definition 1. Let g € Hol(X"), n € N. We define on ¥ the function h, by the

formulas
0, oc=0

hn(s) = hy it) = "
(8) (U—f—l) { %g(n)(s)7 o> 0.

Proposition 3. Let f € L'(RY), g=2Zf, hy, are as in Definition 1. Then
a) hy € Co(X) forall neN . In particular,
. n (n) A n (n) oy
Ulg&ra g™ (o +it) 011_)11;100 g (o +it) =0

uniformly in t € R.
1

Proof. For n €N and s =0 +it € £° the relation

019 (s)| = / (o) f ()" der| < / (o) | f(x)]e"%dx
0 0

holds. Using Lebesgue’s Dominated Convergence Theorem we obtain that the limit
of right hand side of this inequality is equal to 0 as ¢ — 0+ or o — +o0o . Thus
for any & > 0 there exists & € (0;1) such that o"|g"(s)| < e if o0 = Res €
(0;6) U (4;400). According to Proposition 2 we have

n n 1 " n
o) < (5) 19 <
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if o=Res€ (§;%) and |t|=|Ims| is large enough.

Since maxz"e * = n"e "™ we can estimate
x>0
ne "
()l < ==
|
for all n € N, s € ¥. By Stirling’s formula (n"e™" ~ ; , n— 00) we obtain
™
o” 1
hn|l = max |—g¢™(s)| =0 (=), n— .
el = max| T g )| =0 (7). m o

O]

To prove the existence of g € Co(X) N Hol(X°) \ £ L' (RY) it is sufficient to find
a convergent sequence {g,}°; in Co(3) N Hol(X%) such that {£1g,} c L'(RT)
is not fundamental in L'(R").

4 Integrability conditions on ¢™ for ¢g<c ZL'Y(R™)

Proposition 4. Let f € LY(RY), g = £f. Then ¢'(o) € LY(RT) (i.e. the
restriction of g to (0;4+00) is an integrable function or g has the finite variation
along the real half-azis in X ).

We can prove the more general case of this proposition.

Proposition 5. Let f € L'(RY), g=_2f. Then

O.n—l (n) 1 "
eIk (o) € L'(RT)
for all neN, and
® O,n—l
/(n_l)!\g(")(aﬂda ~0(1), n— oo

Proof. Firstly, we prove this theorem in the case f > 0. Then

[e.o]

16 (0)] = / ™ f(2)e="dz = (~1)"g™ (o)

0

for ¢ >0 and using Propositions 1 and 3 we get

[e.o] oo

o1 (n) n o1 (n)
[ Gl et = b [ G e -
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n—1 oo ? -2
=(=1)" g =1 (g - 7 =D(g)do | =
| g e 0/(n_2)!g (0)a
® O.n—2 I
= (1! [ T oo = . = = [ (o) = g00).
0 0

For a real valued function f € L'(R*) denote

fl@)=f"@)—f (), >0, f1.f =20

be the positive and negative parts of f, respectively. Then
L e MR, [P+ =1/

and

* O_nfl 0_1171
[ gl @lde = [ 28 0) - (287 o)lde <
0 0

[ o +)() —)(m) [ o +(n)
So/(nl)!(l(éff o) +1(257) <o>|>da:0/ I

(n—

2 @de = L5 O+ 21 = 21010) = [ 17@)dz = ],
0

0

by the previous part of the proof.
Finally, for a complex valued function f € L'(R*) it is enough to use the fact
that the function f € L'(RY) if and only if {Ref, Im f} C LY(R").
O

We shall try to find the property characterizing .ZL'(R*) in the sense that
every function g € Co(X)NHol(X%) has this property if and only if g € ZL'(R™).
As the appropriate conditions we shall try to take those ones proved in Proposition
3 and Proposition 5. Moreover, we shall try to find the norm on ZL'(R*), which
is equivalent to ||.Z~g|l1 and can be calculated without an explicit determination
of £ 1g.

In the fifth section for any g € Co(X) N Hol(X°) one approximating sequence
{gn}52; is constructed. It is enough to prove {.£1g,}°°, C L'(R*) has no partial
limit in L!(R™) for this only sequence {g,}°; if g € Co(X)N Hol(X°)\ ZLY{(RT).
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5 Growth conditions on ¢ for g < Cy(X)N Hol(X°)

In this section the growth conditions on ¢(™ are shown for g € Cj, (X)NHol (20)
and g € Cy (X) N Hol (£Y), where

Cy(X)={f € C(X) : fisbounded in X}.

5.1 General case
Let g€ C.(X)N Hol(X%). Put

1@ =g (1) i <1 s £ -1 J-D) = g(0)
Then f € C(U)NHol(U), where Co(U) = {f € C(U); f(—=1) =0}, and
U={z¢€C;lz|] <1} istheunit ballin C. It means that the values of f in U can
be uniquely determined by the values of f|sy and there exists unique h € Cy(U)
harmonic in U such that klay = | f||ov-
Denote go(t) = g(it), t € R. Transforming the formula for f and U to the

corresponding one for g and ¥ we obtain

. 1 T x d

—00

for 2 > 0. This formula holds for g € C,(X) N Hol(X°), too (cf.[10], the first
theorems on p.134 and p.138; the convergence is only locally uniform here).
and h € Cy(X) if h(z +iy) = |g(x + iy)| = |go(y)| for z = 0 and

m<1‘2> b :% 7 zlgo(t)|dt

1+2 22 F (y— 1)

the function A is harmonic in X% but we don’t use this property in our proof.

Proposition 6. Let for g € Cy(X) N Hol(X°) and n € N the function h, be as
in Definition 1. Then
a) hy € Cb(z)7
b) [lhnll = sup |hn(s)| = O(4"), n — oo.
sex0

Proof. 1t holds

o" 1 _ Py(z,y—t)

oy" <x2 +(y— t)2> C (@4 (y -2t
forall n € N and z > 0, where P, are polynomials of two variables =z, wu,
defined inductively by

Py(z,u) =1, Pyyi(x,u) = (—1)"+1[2(n + DuPy,(z,u) — (2% + u2)P7;(:L‘,u)],
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(here ””” means the derivative by w« ). It is clear that P, is a homogeneous
polynomial of degree n. Let’s denote

n
P, (z,u) = Z Cn et Rk,
k=0

n

We have the estimate ) |c, x| < 4"n! for the height of P,. Really, this estimate
k=0

holds for n = 0. Supposing it is satisfied for n, we obtain by the inductive

definition of P,11

n+1 n n n

S lensral <200+ 1) lenl +2 3 Thensl <4+ 1) 3 Jenul < 4™ (0 + 1)L
k=0 k=0 k=0 k=0

It means

n

2| Po(z,u) <) len

k=0

xn+1—k|u‘k < 4””!(%‘2 +u2)"T+1

and

‘ o < x )‘ < 4"n! < 4"n!
O N+ =017 @24 (y - )T T (A2 -0

for x > A > 0. The last function is integrable over R for any n € N and y € R.
So

_ 17 xPy(z,y — 1)
(n) B
e = [ G s

—00

= T o™ (4 :x/ Y D) go(tyar] <

mn!
o
n n
2 el Hy — o . T E =L e
=0 =0
< — t)dt < — t)|dt <
— 7n! (22 4 (y — t)2)nt! lgo(t)]dt < ! / (22 + (y — t)2)n+L lgo(t)|dt <
oo e
a7 KT
< — | —sla®ldt < / . dt =4"K
T ) 2?4 (y—1)? ™ a2+ (y —1)?
5 e

for x+iy € X0 if K = sup |g(s)|. It follows
sexo

hy € Cb(EO) and ||hy|| = sup |hn(s)] = O(4"), n — oco.
sex0

It remains to prove h, is continuous at any point of 9% with respect to X.
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Let yo € R. Choose € > 0. There exists ¢ > 0 such that

l90(t) — g0(v0)| <

3-4n
if |t —yo| <d. We can find A >0 such that
—A\ fo%e)
/ du _/ du < em
1+u2 ) 14+u? = 476K’
—00 A

As hy is the same for both functions g and ¢ — go(yp), we have

| (x + iy)] 77/ 2\90() go(yo)|dt <
—00

4n T du
< [l ) = sl T =

1+ u?

o0

A
4n /+/—|—/\xu+ ()‘d
90 y goyo1+
A

— 00

x
<5+ /| + ) — go(wo)| du +5<25+€ du
— U - < — 4+ — =c
golzuty) =gl mz+3 <3 T30 | T30

,A —o0

if Jzu4+y—yo| <6 forall ue (—A,A). This condition is satisfied for |z| <
%, ly — yo| < g. These inequalities describe a neighborhood U(iyp). It holds
|hn(s)| <e for s e Uliyy) NX.

O]

5.2 Special case: g€ Cy(X) N Hol(X%)

The property a) of Proposition 3 doesn’t characterize ZL'(R") as all
functions g € Co(X) N Hol(X%) satisfy this condition.

Remark 1. Tt holds h,, € Cy(2),n € N, for any function g € Co(X) N Hol(XY).

For g € C(X) N Hol(X") denote go(t) = g(it), t € R, CR)={f;f=goforge
cX)n Hol(go)}. Clearly, C(R) C C(R).

Let go € Cp(R). Then the function g € C(X) N Hol(X°) satisfies the relation

o(s) = gl +iy) = / mf‘}%

—00
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Moreover, we have

1 7 x d
p / 2 (0—12 _fo((yt)_tt)z — 90(y)

as x — 0+ for all y € R, if go € Co(X) N Hol(XV).
Proposition 7. Let for g € Co(X) N Hol(X°) and n € N the function h, be
defined in Definition 1. Then

a) hy, € C()(Z),
b) ||hnl = m:;)}g |hn(s)| = 0O(4"), n — oo.
oc

Proof. According to Proposition 6 we know only h, € Cy(X). But

, a7 x n .
e+ i) < = [ i ln(ola = #7h(a + i),

where h € Co(¥) (and is harmonic in %), such that h(iy) = |go(y)| for all
y € R. It follows h, € Cy(X), too.
O

It holds

o 1 _ Py(z,y—1)
oy" <w2 +(y - t)2> C (@4 (y -ttt

two variables x, u are defined inductively by
Po(,u) = 1, Payi(z,u) = (=1 [2(n + DuPy (1) — (2% + u?) P, u)]

(here is means the derivative by u). It is clear that P, is a homogenous polynomial
of degree n. Let’s denote

n

P, (z,u) = Z cn’kxnfkuk.
k=0

n
We have the estimate ) |c, | < 4™n! for the height of P,. Really, for n we obtain

k=0
by the inductive definition of P,

n+1

D lentikl <2(n+1) Z\an|+22|kcnk|<4n+ Zlcnk\<4n+1(n+1)
k=0 k=0

It means

n+1

x| Py (z,u) <A4"pl(z? +u?) 2

k=0
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and

‘ o < T >‘ < 4"n! < 4"n)
O N+ (=017 @24 (y—02)"F T (A2 (02T
for z > A > 0. The last function is integrable over R for any n € N and y € R. So
(n)($+ . ) . l 70 l'Pn(l'ay - t) (t)dt
ST TR ] @y

—00

) = ) ; :x/ 2" Po(2,y — 1) <
hwy (@ +ay)l = g™ (@ +ay)l = @z+@_wamJ%@Wt—

n

wzwmw"% t* o (224 (y = )2)" 3 lenkl
<X / lgo(t)|dt < z k=0
“nl ) @+ -t nl (y

—0oQ

o0

X
<4" | ——————|go(t)|dt = 4"h j ,
< /a¢+@wﬂmﬁl @+ig), 250

It follows lirr(l)hn(s) =0, s € X0 and ||hy,|| = sup |hn(s)| = O(4"), n — oo. It
5= sex0
remains to prove h, is continuous in any point ity € 0%, tg € R, with respect to X.

As gy, € Co() N Hol(X°) for all ty € R, it is enough to prove

lim (Res)"g™(s) =0
sexn

for all n € N. Define
1
h(s) = 9(2) ~ 9(0), 5 € BU oo},
Then h € Cy(X) N Hol (%), and so

lim (Re 2)"h™M(2) =0, z € &,

Z—00

for all n € N. Specially for n = 1 we have

1 R 1 1
0= lim Rez[g(-)] = — lim ( eZ>g’(7) = — lim s*(Re-)g/(s) =
Z—>00 Z2—>00 2 [0}
2% z o 2 z 9 s
2
.S 1
:7£1£%||2Resg() =3

sex0
It follows
lim Re s g(s) =0.

sex0
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Suppose 11_13% (Res)[g(s)]9) =0, s € X0, for j =1,2,....,n — 1. Then

sex0

n—1

. S Y I O RN | i 1
0= lim (Rez)"[g(2)]™ = lim (Re2)" | (—=)"g™ () + > Amz"7gV(5)| =
zex0 z 2ex0 z z j_l z

n—1
T 1o n 2n (n) n+j () =
= lim (Re )" | (~1)"s™"g (s)+ ) Ajns™Hgli(s)| =
sex0 jzl
SZn
= (—1)" lir% —%(Re s)"g(”)(s)+
b sl

(Res)"Jsnti

n—1
+ZAjn lim B (Re s)7 g\ (s) =
j=1 sex0 s
2n 1
= (1" lin S (Res)"g(s), ==,
sEX

for some A, € R. It follows

The proof is finished.
O

Proposition 6 means that the property h, € Cp(X), n € N, of the function
g€ Co(X)N HOZ(EO)
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