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1 Introduction

The Laplace transform is important in various areas of mathematics: functional
analysis, Fourier analysis and solving equations of mathematical physics (see [1–
5]). The study of holomorphic Laplace transform has for a long time interested
complex analysis. This paper is devoted the to study of the Laplace transform in the
space L1 (R+) and some problems concerning the algebras of holomorphic functions.
The Laplace transform is named in honor of mathematician and astronomer Pierre-
Simon Laplace, who used the transform in his work on probability theory. The
Laplace transform has many important applications in mathematics, physics, optics,
electrical engineering, control engineering, signal processing, and probability theory.
In mathematics, it is used for solving differential and integral equations. In physics,
it is used for analysis of linear time-invariant systems such as electrical circuits,
harmonic oscillators, optical devices, and mechanical systems.

While certain of the properties of the Laplace transformation are so well known
that they have become engineering tools, there are others that have received very
little attention, and yet are very interesting.

One of these comes about as follows: Suppose that f ∈ L1 (R+) is a complex-
valued function and s is a complex parameter. We define the Laplace transform of
f as

g (s) = Lf (s) =

∞∫
0

e−sxf (x) dx,

the integral converges at least for s ∈ Σ = {z ∈ C : Re z ≥ 0}, i.e. D (g) ⊃ Σ. We
shall suppose D (L f) = Σ for f ∈ L1 (R+). If LL1 (R+) = C0 (Σ) ∩ Hol

(
Σ0

)
,

where

C0 (Σ) =

{
f ∈ C (Σ) : lim

|z|→∞
f (z) = 0, z ∈ Σ

}
,
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we could use the Open Mapping Theorem (see e.g.[6]) and obtain that L−1 is con-
tinuous. So L would be a homeomorphism of LL1 (R+) onto C0 (Σ) ∩ Hol

(
Σ0

)
.

However, holds
LL1

(
R+

)
⊂
̸=
C0 (Σ) ∩Hol

(
Σ0

)
(see [6], p.215, Ex.2). This is the starting point of our work. It means that for any

g ∈ C0 (Σ) ∩Hol
(
Σ0

)
\vL1

(
R+

)
and for any {gn}∞n=1 ⊂ C0 (Σ)∩Hol

(
Σ0

)
such that gn ⇒ g in Σ and

{
L −1gn

}∞
n=1

⊂
L1 (R+), the sequence

{
L−1gn

}∞
n=1

has no partial limit in L1 (R+). The simplest

way how to verify it is to prove lim
n→∞

∥∥L−1gn
∥∥ = ∞.

We tried to find a necessary and sufficient condition for g ∈ C0 (Σ) ∩Hol
(
Σ0

)
to be an element of LL1 (R+), i.e. for the existence of f ∈ L1 (R+) such that
g = L f . Further, we wanted to define a norm on LL1 (R+) such that L is a
homeomorphism of L1 (R+) onto LL1 (R+) which can be calculated without an
explicit determination of L −1g. In the paper we showed some ways how to do it.

In the paper some preliminaries are stated, including the basic properties of
LL1(R+). As the appropriate conditions for g ∈ LL1(R+), we attempted to take
those ones formulated in the paper. We call special attention to the works of D.
Widder [7–9], who has great results in this way. But his theorems are, in general,
very involved and provide no practical criteria.

2 Laplace transform of the space L1(R+)

Let C be the set of all complex numbers, Σ = {s ∈ C : Re s ≥ 0} be the right
half-plane of C and Σ0 be its interior. Let C(Σ) be the set of all continuous
functions f : Σ → C ,

Cb(Σ) = {f ∈ C(Σ) : f is bounded in Σ},

C(Σ ∪ {∞}) = Cc(Σ) = {f ∈ C(Σ) : lim
|z|→∞

f(z) = c, c ∈ C, z ∈ Σ}

and
C0(Σ) = {f ∈ C(Σ) : lim

|z|→∞
f(z) = 0, z ∈ Σ}.

Denote by Hol(Σ0) the set of all analytic functions on Σ0.
Suppose that f ∈ L1(R+) is a complex-valued function and s is a complex

parameter. We define the Laplace transform of f as

g(s) = L f(s) =

∞∫
0

e−sxf(x)dx,

the integral converges at least for s ∈ Σ, i.e. D(g) ⊂ Σ. We shall suppose
D(L f) = Σ for f ∈ L1(R+).

Now, we develop some useful properties of the Laplace transform.
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Proposition 1. The Laplace transform is an injective linear mapping L1(R+) to
C0(Σ) ∩Hol(Σ0).

Proof. Since the integral

g(s) =

∞∫
0

e−sxf(x)dx

uniformly converges on Σ, it follows that g ∈ C(Σ) ∩Hol(Σ0). Since

|g(s)| ≤
∞∫
0

|f(x)|dx = ∥f∥1

we have g ∈ Cb(Σ). Now we will prove that g ∈ C0(Σ) ⊂ Cb(Σ).
Let s = σ + it ∈ Σ0, then

|g(s)| ≤
∞∫
0

|f(x)|e−σxdx

and the relation

lim
σ→+∞

∞∫
0

|f(x)|e−σxdx = 0

follows from Lebesgue’s Dominated Convergence Theorem. Thus for any ε >
0 there exists σ0 > 0 such that |g(σ+ it)| < ε for σ > σ0. Let σ ∈ ⟨0;σ0⟩. We
can find A > 0 such that

∞∫
A

|f(x)|dx < ε

4
.

Since the set AC(⟨0;A⟩) of all absolutely continuous functions on ⟨0;A⟩ is dense
in L1(0;A) (cf.[6], 5.14, p.120), there exists ψ ∈ AC(⟨0;A⟩) such that

A∫
0

|f(x)− ψ(x)|dx < ε

4
.

Since

|g(σ + it)| ≤
∞∫
A

|f(x)|dx+

A∫
0

|f(x)− ψ(x)|dx+

+

∣∣∣∣∣∣
A∫
0

ψ(x)e−σx cos txdx

∣∣∣∣∣∣+
∣∣∣∣∣∣

A∫
0

ψ(x)e−σx sin txdx

∣∣∣∣∣∣ ,
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it’s enough to estimate the last two integrals. Using integration by parts we get

A∫
0

ψ(x)e−σx cos txdx =

[
ψ(x)e−σx sin tx

t

]A
0

− 1

t

A∫
0

(ψ′(x)− σψ(x))e−σx sin txdx

and so∣∣∣∣∣∣
A∫
0

ψ(x)e−σx cos txdx

∣∣∣∣∣∣ ≤ 1

|t|
(|ψ(A)|+ |ψ(0)|)+ 1

|t|

A∫
0

(|ψ′(x)|+σ0|ψ(x)|)dx =
K

|t|
<
ε

4

for |t| > t0 =
4K
ε . For the integral

A∫
0

ψ(x)e−σx sin txdx

holds the same. Thus for σ ∈ ⟨0;σ0⟩ and |t| > t0 we have also |g(σ + it)| < ε.
The linearity of L is obvious. The transform L is injective according to ([6], 9.12,
p.208.)

Let us define in Cb(Σ) the norm

∥g∥ = sup
s∈Σ

|g(s)|.

For g ∈ Cc(Σ) we have

∥g∥ = max
s∈Σ∪{∞}

|g(s)|.

Theorem 1. The space C0(Σ) ∩Hol(Σ0) is a Banach space.

Proof. We know that C(K) is a Banach space with the norm

∥g∥ = max
s∈K

|g(s)|

for the compact set K . It follows Cc(Σ) is a Banach space. In particular, C0(Σ)
is a closed subspace of Cc(Σ). Since every closed subspace of a Banach space is a
Banach space, it follows C0(Σ) is a Banach space.

Note also that for {gn} ⊂ C0(Σ) ∩ Hol(Σ0) such that gn ⇒ g in Σ, we
have g ∈ C0(Σ)∩Hol(Σ0). Hence C0(Σ)∩Hol(Σ0) is a Banach space as a closed
subspace of C0(Σ).

Proposition 1 contains some properties of L . We have LL1(R+) ⊂ C0(Σ) ∩
Hol(Σ0) according to Proposition 1. Moreover, the next theorem holds.
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Theorem 2. The mapping L : L1(R+) → C0(Σ) ∩Hol(Σ0) is continuous.

Proof. Let fn, f ∈ L1(R+), gn = L fn, g = L f, gn, g ∈ C0(Σ) ∩Hol(Σ0).

fn → f in L1(R+), ∥fn − f∥1 =
∞∫
0

|fn(t)− f(t)|dt→ 0. Then

|gn(s)− g(s)| =

∣∣∣∣∣∣
∞∫
0

e−st(fn(t)− f(t))dt

∣∣∣∣∣∣ ≤
∞∫
0

|e−st||fn(t)− f(t)|dt ≤

≤
∞∫
0

|fn(t)− f(t)|dt = ∥fn − f∥1

for all s ∈ Σ. It follows

∥gn − g∥ = max
s∈Σ

|gn(s)− g(s)| ≤ ∥fn − f∥1.

Hence ∥fn − f∥1 → 0 as n→ ∞, which implies

∥L fn − L f∥ = ∥gn − g∥ → 0 as n→ ∞.

The question of equality of the sets LL1(R+) and C0(Σ) ∩Hol(Σ0) appears.

It seems the answer is negative. To prove this fact we have to find some function
F ∈ C0(Σ)∩Hol(Σ0) such that F /∈ LL1(R+), i.e. F ∈ C0(Σ)∩Hol(Σ0)−LL1(R+).
We can use the open mapping theorem (see [3]): the continuous injective mapping
L : L1(R+) → C0(Σ) ∩Hol(Σ0) is on, it follows L −1 is continuous.

If LL1(R+) = C0(Σ) ∩ Hol(Σ0), we could use the Open Mapping Theorem
(see [6], p.115, 5.9) and obtain that L −1 is continuous. So L would be a
homeomorphism of LL1(R+) onto C0(Σ) ∩Hol(Σ0). However,

LL1(R+) ⫋ C0(Σ) ∩Hol(Σ0)

holds (see Example p.215, Ex.2). It means that for any

g ∈ C0(Σ) ∩Hol(Σ0) \ LL1(R+)

and for any

{gn}∞n=1 ⊂ C0(Σ) ∩Hol(Σ0)

such that gn ⇒ g in Σ and {L −1gn}∞n=1 ⊂ L1(R+), the sequence {L −1gn}∞n=1

has no partial limit in L1(R+). The simplest way how to verify it is to prove
lim
n→∞

∥L −1gn∥ = ∞.
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3 Growth conditions on g(n) for g ∈ LL1(R+)

For ε > 0 put Σε = {s ∈ C : Re s ≥ ε}. Let n ∈ N, f ∈ L1(R+). Since
the function xnf(x)e−εx is an element of L1(R+) for all ε > 0, it follows the
integral

∞∫
0

xnf(x)e−sxdx

converges uniformly in Σε for all ε > 0. Therefore we have

g(n)(s) = (−1)n
∞∫
0

xnf(x)e−sxdx

for s ∈ Σ0. Using Proposition 1 for the function

g(n)(s+ ε) = (−1)nL [xnf(x)e−εx](s), s ∈ Σ

we get the following

Proposition 2. For all n ∈ N and for any ε > 0 we have g(n) ∈ C0(Σε).

Definition 1. Let g ∈ Hol(Σ0), n ∈ N. We define on Σ the function hn by the
formulas

hn(s) = hn(σ + it) =

{
0, σ = 0
σn

n!
g(n)(s), σ > 0.

Proposition 3. Let f ∈ L1(R+), g = L f, hn are as in Definition 1. Then
a) hn ∈ C0(Σ) for all n ∈ N . In particular,

lim
σ→0+

σng(n)(σ + it) = lim
σ→∞

σng(n)(σ + it) = 0

uniformly in t ∈ R.

b) ∥hn∥ = O

(
1√
n

)
, n→ ∞.

Proof. For n ∈ N and s = σ + it ∈ Σ0 the relation

σn|g(n)(s)| =

∣∣∣∣∣∣
∞∫
0

(σx)nf(x)e−sxdx

∣∣∣∣∣∣ ≤
∞∫
0

(σx)n|f(x)|e−σxdx

holds. Using Lebesgue’s Dominated Convergence Theorem we obtain that the limit
of right hand side of this inequality is equal to 0 as σ → 0+ or σ → +∞ . Thus
for any ε > 0 there exists δ ∈ (0; 1) such that σn|g(n)(s)| < ε if σ = Re s ∈
(0; δ) ∪ (1δ ; +∞). According to Proposition 2 we have

σn|g(n)(s)| ≤
(
1

δ

)n

|g(n)(s)| < ε
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if σ = Re s ∈ ⟨δ; 1δ ⟩ and |t| = | Im s| is large enough.
Since max

x≥0
xne−x = nne−n we can estimate

|hn(s)| ≤
nne−n

n!
∥f∥1

for all n ∈ N, s ∈ Σ. By Stirling’s formula (nne−n ∼ n!√
2πn

, n→ ∞) we obtain

∥hn∥ = max
s∈Σ0

∣∣∣∣σnn! g(n)(s)
∣∣∣∣ = O

(
1√
n

)
, n→ ∞.

To prove the existence of g ∈ C0(Σ)∩Hol(Σ0) \LL1(R+) it is sufficient to find
a convergent sequence {gn}∞n=1 in C0(Σ) ∩ Hol(Σ0) such that {L −1gn} ⊂ L1(R+)
is not fundamental in L1(R+).

4 Integrability conditions on g(n) for g ∈ LL1(R+)

Proposition 4. Let f ∈ L1(R+), g = L f. Then g′(σ) ∈ L1(R+) (i.e. the
restriction of g′ to (0;+∞) is an integrable function or g has the finite variation
along the real half-axis in Σ ).

We can prove the more general case of this proposition.

Proposition 5. Let f ∈ L1(R+), g = L f. Then

σn−1

(n− 1)!
g(n)(σ) ∈ L1(R+)

for all n ∈ N, and

∞∫
0

σn−1

(n− 1)!
|g(n)(σ)|dσ = O(1), n→ ∞.

Proof. Firstly, we prove this theorem in the case f ≥ 0 . Then

|g(n)(σ)| =
∞∫
0

xnf(x)e−σxdx = (−1)ng(n)(σ)

for σ > 0 and using Propositions 1 and 3 we get

∞∫
0

σn−1

(n− 1)!
|g(n)(σ)|dσ = (−1)n

∞∫
0

σn−1

(n− 1)!
g(n)(σ)dσ =
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= (−1)n

[
σn−1

(n− 1)!
g(n−1)(σ)

]∞
0

−
∞∫
0

σn−2

(n− 2)!
g(n−1)(σ)dσ

 =

= (−1)n−1

∞∫
0

σn−2

(n− 2)!
g(n−1)(σ)dσ = ... = −

∞∫
0

g′(σ)dσ = g(0).

For a real valued function f ∈ L1(R+) denote

f(x) = f+(x)− f−(x), x > 0, f+, f− ≥ 0

be the positive and negative parts of f , respectively. Then

f+, f− ∈ L1(R+), f+ + f− = |f |

and

∞∫
0

σn−1

(n− 1)!
|g(n)(σ)|dσ =

∞∫
0

σn−1

(n− 1)!
|(L f+)(n)(σ)− (L f−)(n)(σ)|dσ ≤

≤
∞∫
0

σn−1

(n− 1)!
(|(L f+)(n)(σ)|+ |(L f−)(n)(σ)|)dσ =

∞∫
0

σn−1

(n− 1)!
|(L f+)(n)(σ)|dσ+

+

∞∫
0

σn−1

(n− 1)!
|(L f−)(n)(σ)|dσ = L f+(0)+L f−(0) = L |f |(0) =

∞∫
0

|f(x)|dx = ∥f∥1

by the previous part of the proof.
Finally, for a complex valued function f ∈ L1(R+) it is enough to use the fact

that the function f ∈ L1(R+) if and only if {Re f, Im f} ⊂ L1(R+).

We shall try to find the property characterizing LL1(R+) in the sense that
every function g ∈ C0(Σ)∩Hol(Σ0) has this property if and only if g ∈ LL1(R+).
As the appropriate conditions we shall try to take those ones proved in Proposition
3 and Proposition 5. Moreover, we shall try to find the norm on LL1(R+), which
is equivalent to ∥L −1g∥1 and can be calculated without an explicit determination
of L −1g.

In the fifth section for any g ∈ C0(Σ) ∩ Hol(Σ0) one approximating sequence
{gn}∞n=1 is constructed. It is enough to prove {L −1gn}∞n=1 ⊂ L1(R+) has no partial
limit in L1(R+) for this only sequence {gn}∞n=1 if g ∈ C0(Σ)∩Hol(Σ0)\LL1(R+).
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5 Growth conditions on g(n) for g ∈ Cb(Σ) ∩Hol(Σ0)

In this section the growth conditions on g(n) are shown for g ∈ Cb (Σ)∩Hol
(
Σ0

)
and g ∈ C0 (Σ) ∩Hol

(
Σ0

)
, where

Cb(Σ) = {f ∈ C(Σ) : f is bounded in Σ} .

5.1 General case

Let g ∈ Cc(Σ) ∩Hol(Σ0). Put

f(z) = g

(
1− z

1 + z

)
if |z| ≤ 1, z ̸= −1, f(−1) = g(∞).

Then f ∈ C(U) ∩Hol(U), where C0(U) = {f ∈ C(U); f(−1) = 0}, and
U = {z ∈ C; |z| < 1} is the unit ball in C. It means that the values of f in U can
be uniquely determined by the values of f |∂U and there exists unique h ∈ C0(U)
harmonic in U such that h̃|∂U = |f ||∂U .

Denote g0(t) = g(it), t ∈ R. Transforming the formula for f and U to the
corresponding one for g and Σ we obtain

g(x+ iy) =
1

π

∞∫
−∞

xg0(t)dt

x2 + (y − t)2

for x > 0. This formula holds for g ∈ Cb(Σ) ∩ Hol(Σ0), too (cf.[10], the first
theorems on p.134 and p.138; the convergence is only locally uniform here).

and h ∈ C0(Σ) if h(x+ iy) = |g(x+ iy)| = |g0(y)| for x = 0 and

m̃

(
1− z

1 + z

)
= h(x+ iy) =

1

π

∞∫
−∞

x|g0(t)|dt
x2 + (y − t)2

;

the function h is harmonic in Σ0 but we don’t use this property in our proof.

Proposition 6. Let for g ∈ Cb(Σ) ∩Hol(Σ0) and n ∈ N the function hn be as
in Definition 1. Then
a) hn ∈ Cb(Σ),
b) ∥hn∥ = sup

s∈Σ0

|hn(s)| = O(4n), n→ ∞.

Proof. It holds
∂n

∂yn

(
1

x2 + (y − t)2

)
=

Pn(x, y − t)

(x2 + (y − t)2)n+1

for all n ∈ N and x > 0, where Pn are polynomials of two variables x, u,
defined inductively by

P0(x, u) = 1, Pn+1(x, u) = (−1)n+1[2(n+ 1)uPn(x, u)− (x2 + u2)P ′
n(x, u)],
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(here ”′” means the derivative by u ). It is clear that Pn is a homogeneous
polynomial of degree n. Let’s denote

Pn(x, u) =
n∑

k=0

cn,kx
n−kuk.

We have the estimate
n∑

k=0

|cn,k| ≤ 4nn! for the height of Pn. Really, this estimate

holds for n = 0. Supposing it is satisfied for n, we obtain by the inductive
definition of Pn+1

n+1∑
k=0

|cn+1,k| ≤ 2(n+ 1)
n∑

k=0

|cn,k|+ 2
n∑

k=0

|kcn,k| ≤ 4(n+ 1)
n∑

k=0

|cn,k| ≤ 4n+1(n+ 1)!.

It means

x|Pn(x, u)| ≤
n∑

k=0

|cn,k|xn+1−k|u|k ≤ 4nn!(x2 + u2)
n+1
2

and ∣∣∣∣ ∂n∂yn
(

x

x2 + (y − t)2

)∣∣∣∣ ≤ 4nn!

(x2 + (y − t)2)
n+1
2

≤ 4nn!

(△2 + (y − t)2)
n+1
2

for x ≥ △ ≥ 0. The last function is integrable over R for any n ∈ N and y ∈ R.
So

g(n)(x+ iy) =
1

π

∞∫
−∞

xPn(x, y − t)

(x2 + (y − t)2)n+1
g0(t)dt,

|hn(x+ iy)| = xn

n!
|g(n)(x+ iy)| = x

πn!

∣∣∣∣∣∣
∞∫

−∞

xnPn(x, y − t)

(x2 + (y − t)2)n+1
g0(t)dt

∣∣∣∣∣∣ ≤

≤ x

πn!

∞∫
−∞

n∑
k=0

|cn,k|x2n−k|y − t|k

(x2 + (y − t)2)n+1
|g0(t)|dt ≤

x

πn!

∞∫
−∞

(x2 + (y − t)2)n
n∑

k=0

|cn,k|

(x2 + (y − t)2)n+1
|g0(t)|dt ≤

≤ 4n

π

∞∫
−∞

x

x2 + (y − t)2
|g0(t)|dt ≤

4nK

π

∞∫
−∞

x

x2 + (y − t)2
dt = 4nK

for x+ iy ∈ Σ0, if K = sup
s∈Σ0

|g(s)|. It follows

hn ∈ Cb(Σ
0) and ∥hn∥ = sup

s∈Σ0

|hn(s)| = O(4n), n→ ∞.

It remains to prove hn is continuous at any point of ∂Σ with respect to Σ.
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Let y0 ∈ R. Choose ε > 0. There exists δ > 0 such that

|g0(t)− g0(y0)| <
ε

3 · 4n

if |t− y0| < δ. We can find △ > 0 such that

−△∫
−∞

du

1 + u2
=

∞∫
△

du

1 + u2
<

επ

4n6K
.

As hn is the same for both functions g and g − g0(y0), we have

|hn(x+ iy)| ≤ 4n

π

∞∫
−∞

x

x2 + (y − t)2
|g0(t)− g0(y0)|dt ≤

≤ 4n

π

∞∫
−∞

|g0(xu+ y)− g0(y0)|
du

1 + u2
=

=
4n

π

 −△∫
−∞

+

△∫
−△

+

∞∫
△

 |g0(xu+ y)− g0(y0)|
du

1 + u2
<

<
ε

3
+

4n

π

△∫
−△

|g0(xu+ y)− g0(y0)|
du

1 + u2
+
ε

3
<

2ε

3
+

ε

3π

∞∫
−∞

du

1 + u2
= ε

if |xu + y − y0| < δ for all u ∈ ⟨−△,△⟩. This condition is satisfied for |x| <
δ
2△ , |y − y0| < δ

2 . These inequalities describe a neighborhood U(iy0). It holds
|hn(s)| < ε for s ∈ U(iy0) ∩ Σ.

5.2 Special case: g ∈ C0(Σ) ∩Hol(Σ0)

The property a) of Proposition 3 doesn’t characterize LL1(R+) as all
functions g ∈ C0(Σ) ∩Hol(Σ0) satisfy this condition.

Remark 1. It holds hn ∈ C0(Σ), n ∈ N, for any function g ∈ C0(Σ) ∩Hol(Σ0).

For g ∈ C(Σ) ∩Hol(Σ0) denote g0(t) = g(it), t ∈ R, C̃(R) = {f ; f = g0 for g ∈
C(Σ) ∩Hol(Σ0)}. Clearly, C̃(R) ⊂ C(R).

Let g0 ∈ C̃b(R). Then the function g ∈ C(Σ) ∩Hol(Σ0) satisfies the relation

g(s) = g(x+ iy) =
1

π

∞∫
−∞

xg0(t)dt

x2 + (y − t)2
.
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Moreover, we have

1

π

∞∫
−∞

xg0(t)dt

x2 + (y − t)2
→ g0(y)

as x→ 0+ for all y ∈ R, if g0 ∈ C0(Σ) ∩Hol(Σ0).

Proposition 7. Let for g ∈ C0(Σ) ∩ Hol(Σ0) and n ∈ N the function hn be
defined in Definition 1. Then
a) hn ∈ C0(Σ),
b) ∥hn∥ = max

σ∈Σ0
|hn(s)| = O(4n), n→ ∞.

Proof. According to Proposition 6 we know only hn ∈ Cb(Σ). But

|hn(x+ iy)| ≤ 4n

π

∞∫
−∞

x

x2 + (y − t)2
|g0(t)|dt = 4nh(x+ iy),

where h ∈ C0(Σ) (and is harmonic in Σ0), such that h(iy) = |g0(y)| for all
y ∈ R. It follows hn ∈ C0(Σ), too.

It holds
∂n

∂yn

(
1

x2 + (y − t)2

)
=

Pn(x, y − t)

(x2 + (y − t)2)n+1

two variables x, u are defined inductively by

P0(x, u) = 1, Pn+1(x, u) = (−1)n+1[2(n+ 1)uPn(x, u)− (x2 + u2)P ′
n(x, u)]

(here is means the derivative by u). It is clear that Pn is a homogenous polynomial
of degree n. Let’s denote

Pn(x, u) =
n∑

k=0

cn,kx
n−kuk.

We have the estimate
n∑

k=0

|cn,k| ≤ 4nn! for the height of Pn. Really, for n we obtain

by the inductive definition of Pn+1

n+1∑
k=0

|cn+1,k| ≤ 2(n+ 1)

n∑
k=0

|cn,k|+ 2

n∑
k=0

|kcn,k| ≤ 4(n+ 1)

n∑
k=0

|cn,k| ≤ 4n+1(n+ 1)!.

It means

x|Pn(x, u)| ≤
n∑

k=0

|cn,k|xn+1−k|u|k ≤ 4nn!(x2 + u2)
n+1
2
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and ∣∣∣∣ ∂n∂yn
(

x

x2 + (y − t)2

)∣∣∣∣ ≤ 4nn!

(x2 + (y − t)2)
n+1
2

≤ 4nn!

(△2 + (y − t)2)
n+1
2

for x ≥ △ ≥ 0. The last function is integrable over R for any n ∈ N and y ∈ R. So

g(n)(x+ iy) =
1

π

∞∫
−∞

xPn(x, y − t)

(x2 + (y − t)2)n+1
g0(t)dt,

|h(n)(x+ iy)| = xn

n!
|g(n)(x+ iy)| = x

n!

∣∣∣∣∣∣
∞∫

−∞

xnPn(x, y − t)

(x2 + (y − t)2)n+1
|g0(t)|dt

∣∣∣∣∣∣ ≤

≤ x

n!

∞∫
−∞

n∑
k=0

|cn,k|x2n−k|y − t|k

(x2 + (y − t)2)n+1
|g0(t)|dt ≤

x

n!

∞∫
−∞

(x2 + (y − t)2)n
n∑

k=0

|cn,k|

(x2 + (y − t)2)n+1
|g0(t)|dt ≤

≤ 4n
∞∫

−∞

x

x2 + (y − t)2
|g0(t)|dt = 4nh(x+ iy), x > 0.

It follows lim
s→0

hn(s) = 0, s ∈ Σ0, and ∥hn∥ = sup
s∈Σ0

|hn(s)| = O(4n), n → ∞. It

remains to prove hn is continuous in any point it0 ∈ ∂Σ, t0 ∈ R, with respect to Σ.
As gt0 ∈ C0(Σ) ∩Hol(Σ0) for all t0 ∈ R, it is enough to prove

lim
s→0
s∈Σ0

(Re s)ng(n)(s) = 0

for all n ∈ N. Define

h(s) = g(
1

s
)− g(0), s ∈ Σ ∪ {∞}.

Then h ∈ C0(Σ) ∩Hol(Σ0), and so

lim
z→∞

(Re z)nh(n)(z) = 0, z ∈ Σ,

for all n ∈ N. Specially for n = 1 we have

0 = lim
z→∞
z∈Σ0

Re z[g(
1

z
)]′ = − lim

z→∞
z∈Σ0

(Re z)

z2
g′(

1

z
) = − lim

s→0
s∈Σ0

s2(Re
1

s
)g′(s) =

= − lim
s→0
s∈Σ0

s2

|s|2
Re s g′(s), z =

1

s
.

It follows
lim
s→0
s∈Σ0

Re s g′(s) = 0.
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Suppose lim
s→0
s∈Σ0

(Re s)j [g(s)](j) = 0, s ∈ Σ0, for j = 1, 2, ..., n− 1. Then

0 = lim
z→∞
z∈Σ0

(Re z)n[g(
1

z
)](n) = lim

z→∞
z∈Σ0

(Re z)n

(− 1

z2
)ng(n)(

1

z
) +

n−1∑
j=1

Ajnz
−n−jg(j)(

1

z
)

 =

= lim
s→0
s∈Σ0

(Re
1

s
)n

(−1)ns2ng(n)(s) +
n−1∑
j=1

Ajns
n+jg(j)(s)

 =

= (−1)n lim
s→0
s∈Σ0

s2n

|s|2n
(Re s)ng(n)(s)+

+
n−1∑
j=1

Ajn lim
s→0
s∈Σ0

(Re s)n−jsn+j

|s|2n
(Re s)jg(j)(s) =

= (−1)n lim
s→0
s∈Σ0

s2n

|s|2n
(Re s)ng(n)(s), z =

1

s
,

for some Ajn ∈ R. It follows

lim
s→0
s∈Σ0

(Re s)ng(n)(s) = 0.

The proof is finished.

Proposition 6 means that the property hn ∈ C0(Σ), n ∈ N, of the function
g ∈ C0(Σ) ∩Hol(Σ0)
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