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Some integrals for cosine families of bounded linear
operators on some non-Archimedean Banach spaces

J. Ettayb

Abstract. In this paper, we define and study the Volkenborn integral and the
Shnirelman integral for cosine families of bounded linear operators on some non-
Archimedean Banach spaces over Qp and Cp respectively. We give some functional
calculus for cosine families of infinitesimal generator A such that A is a nilpotent
operator on some non-Archimedean Banach spaces over Cp. Many results are proved
and examples are given to support our work.
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1 Introduction and preliminaries

Throughout this paper, K is a complete non-Archimedean valued field with a
non-trivial valuation | · |, X is a non-Archimedean Banach space over K, B(X)
denotes the set of all bounded linear operators on X, I is the unit operator of X
and Qp is the field of p-adic numbers (p ≥ 2 being a prime) equipped with a p-adic
valuation | · |p and Zp denotes the ring of p-adic integers. We denote the completion
of algebraic closure of Qp under the p-adic valuation | · |p by Cp.

The theory of classical C0-cosine families of bounded linear operators was initi-
ated by M. Sova [10]. From [10, Theorem 2.17], if A is the infinitesimal generator of
a C0-cosine family (C(s))s∈R+ , then A is closed. By Lemma 2.14 of [10], we have∫ t

0
(t− s)C(s)xds ∈ D(A)

and

A(

∫ t

0
(t− s)C(s)Axds) = C(t)x− x

for all x ∈ X and t ∈ R+. This is thanks to the Haar measure on the topological
group (R,+).

In non-Archimedean operator theory, A. El Amrani, A. Blali, J. Ettayb and M.
Babahmed [5] introduced the concept of cosine families of bounded linear operators
on non-Archimedean Banach spaces. Recently, J. Ettayb [7] studied the Volkenborn
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integral and the Shnirelman integral for groups of bounded linear operators on finite-
dimensional non-Archimedean Banach spaces over Qp and Cp respectively. He gave
some functional calculus for groups of infinitesimal generator A such that A is a
nilpotent operator on finite-dimensional non-Archimedean Banach spaces. Let r > 0
and Ωr = {t ∈ K : |t| < r} be the open ball of K centred at 0 with radius r [5], we
have the following definition.

Definition 1. [5] A function C : Ωr −→ B(X) is called a C0 or strongly continuous
operator cosine function on X if

(i) C(0) = I,

(ii) For every t, s ∈ Ωr, C(t+ s) + C(t− s) = 2C(t)C(s),

(iii) For each x ∈ X, t −→ C(t)x is continuous on Ωr.

A cosine family of bounded linear operators (C(t))t∈Ωr
is uniformly continuous if

lim
t→0

∥C(t)− I∥ = 0.

The linear operator A defined by

D(A) = {x ∈ X : lim
t→0

2
C(t)x− x

t2
exists}

and

for each x ∈ D(A), Ax = lim
t→0

2
C(t)x− x

t2

is called the infinitesimal generator of the cosine family (C(t))t∈Ωr .

In this paper, we extend the Volkenborn integral and the Shnirelman inte-
gral for studying the C0-cosine families of bounded linear operators on some non-
Archimedean Banach spaces and we show some results about it.

In the next definition, the notation gcd(n, p) stands for the greatest common
divisor of the integers n and p.

Definition 2. [4] Let f(z) be a Cp-valued function defined for all z ∈ Cp such that
|z − a|p = r where a ∈ Cp and r > 0 with r ∈ |Cp|p. Let Γ ∈ Cp such that |Γ|p = r.
Then the Shnirelman integral of f is defined as the following limit, if it exists,∫

a,Γ
f(z)dz = lim

n→∞
′ 1

n

∑
ζn=1

f(a+ ζΓ),

where lim
′
indicates that the limit is taken over n such that gcd(n, p) = 1.

Theorem 1. [1] Let f(z) =
∑
n∈N

anfn(z) where the series on the right converges uni-

formly to f(z) for all points z ∈ Cp such that |z−a|p = |γ|p. Suppose that for all n ∈

N,
∫
a,γ

fn(z)dz exists. Then

∫
a,γ

f(z)dz exists and

∫
a,γ

f(z)dz =
∑
n∈N

an

∫
a,γ

fn(z)dz.
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Lemma 1. [1] Let p be any integer such that 0 <| p |< n. Then

n∑
i=1

ξ
(n)p
i = 0.

Now, let f(z) =

∞∑
k=0

akz
k be a power series converging for all z ∈ Cp such that

|z|p < R
(
R > 0

)
, we have the following:

Theorem 2. [1] If |a|p < R and |γ|p < R, then∫
a,γ

f(z)dz = f(a).

Corollary 1. [1] With the same hypothesis as in Theorem 2, then∫
a,γ

(z − a)f(z)dz = 0.

Theorem 3. [1] Let f(z) =
∞∑
k=0

akz
k be a power series converging for all z ∈ Cp

such that |z|p < R (R > 0). Suppose that x, r ∈ Cp such that |x|p, |r|p < R. Then,∫
0,r

zf(z)

z − x
dz =

{
f(x) if |x|p < |r|p,
0 if |x|p > |r|p.

Theorem 4. [1] With the same hypothesis as in Theorem 3, we have:∫
0,r

zf(z)

(z − x)n+1
dz =

fn(x)

n!
for |x|p < |r|p.

Theorem 5. [9] Additive, translation invariant and bounded Qp-valued measure on
clopens of Zp is the zero measure.

We denote C(Zp,Qp) the space of all functions defined and continuous from Zp

into Qp.

Theorem 6. [9] Let f ∈ C(Zp,Qp). The function defined on N by

F (0) = 0, F (n) = f(0) + f(1) + · · ·+ f(n− 1),

is uniformly continuous. The extended function is denoted by Sf(x) (called indefinite
sum of f). If f is strictly differentiable, so is Sf .

We denote C1
s (Zp,Qp) the space of all functions defined and strictly differentiable

in Zp taking values in Qp. For more details, we refer to [9].
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Definition 3. [9] The Volkenborn integral of f ∈ C1
s (Zp,Qp) is defined by∫

Zp

f(t)dt = lim
n→∞

p−n
pn−1∑
j=0

f(j) = lim
n→∞

Sf(pn)− Sf(0)

pn
= (Sf)′(0).

Lemma 2. [9] For all t ∈ Ω∗
p

−1
p−1

,∫
Zp

etudu =
t

et − 1
.

From Lemma 2 and setting for all t ∈ Ω
p

−1
p−1

, cosh(t) = et+e−t

2 , we have the

following lemma.

Lemma 3. For all t ∈ Ω∗
p

−1
p−1

,

∫
Zp

cosh(tu)du =
1

2

(
t

et − 1
− t

e−t − 1

)
.

Recall that c0(K) is the set of all sequences (xi)i∈N in K such that lim
i→∞

xi = 0.

Moreover, the space c0(K) equipped with the norm ∥(xi)i∈N∥ = supi∈N |xi| is a non-
Archimedean Banach space. For more details on non-Archimedean Banach spaces
and free Banach spaces, we refer to [4].

2 Integral for C0-cosine families on some non-Archimedean Banach
spaces over Cp

We have the following definition.

Definition 4. Let X be a non-Archimedean Banach space over Cp and let r > 0 be
a real number. A one-parameter family (C(t))t∈Ωr

of bounded linear operators on
X is said to be an analytic cosine family on X if

(i) C(0) = I.

(ii) For all t, s ∈ Ωr, C(t+ s) + C(t− s) = 2C(t)C(s).

(iii) For all x ∈ X, t → C(t)x is analytic on Ωr.

In the next definition, the notation gcd(n, p) stands for the greatest common
divisor of the integers n and p. From Definition 4.10 of [4], we obtain:

Definition 5. Let (C(t))t∈Ωr be an analytic cosine family of bounded linear oper-
ators on c0(Cp). The cosine family (C(t))t∈Ωr

is said to be integrable in the sense
of Schnirelman if for all a ∈ Ωr and γ ∈ Ωr\{0}, the sequence (Sn)n ⊂ B(c0(Cp))
defined by

Sn =
1

n

∑
ζn=1

C(a+ ζγ),
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converges strongly as n → ∞
(
the limit is taken over n such that gcd(n, p) = 1

)
to

a bounded linear operator. More precisely∫
a,γ

C(t)dt = lim
n→∞

′ 1

n

∑
ζn=1

C(a+ ζγ),

where lim′ indicates that the limit is taken over n such that gcd(n, p) = 1.

Lemma 4. Let (C(t))t∈Ωr
be an analytic cosine family on c0(Cp) such that∫

a,γ
C(t)dt exists and sup

t∈Ωr

∥C(t)∥≤ M where a ∈ Ωr and γ ∈ Ωr\{0}. Then

(i) For all x ∈ c0(Cp),

∥∥∥∥∥
∫
a,γ

C(t)xdt

∥∥∥∥∥ ≤ M∥x∥.

(ii) For all a ∈ Ωr and x ∈ c0(Cp),

∫
a,γ

C(t)xdt = C(a)xdt.

Proof.

(i) It suffices to apply Definition 5.

(ii) By Definition 5, (C(t))t∈Ωr is analytic and Theorem 2.

Definition 6. Let A ∈ B(c0(Cp)). A is said to be nilpotent of index d if there is

an integer number d ≤ n such that Ad = 0c0(Cp) and Ad−1 ̸= 0c0(Cp)

(
where 0c0(Cp)

denotes the null operator from c0(Cp) into c0(Cp)
)
.

Example 1. Let A ∈ B(c0(Cp)) be defined by

Ae1 = e2, Ae2 = e3 and Aei = 0 for all i ≥ 3.

Then A ̸= 0 and A3 = 0. Consequently A is nilpotent of index 3.

Proposition 1. Let A be a nilpotent operator of index n on c0(Cp) such that ∥A∥ <

p
−1
p−1 . Then C(t) =

n−1∑
k=0

t2kAk

(2k)!
is an analytic cosine family on c0(Cp).

Proof. Since A is a nilpotent operator of index n on c0(Cp). Set C(t) =
n−1∑
k=0

t2kAk

(2k)!
,

then (C(t))t is analytic on c0(Cp), since for each k ∈ {1, · · · , n}, t2k

(2k)! is analytic.

Theorem 7. Let A be a nilpotent operator of index n on c0(Cp). Set C(t) =
n−1∑
k=0

t2kAk

(2k)!
. Then for all x ∈ c0(Cp),

∫
a,γ

C(t)xdt = C(a)x.
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Proof. Let C(t) =
n−1∑
k=0

t2kAk

(2k)!
. Using Proposition 1 and Theorem 2, we have for all

x ∈ c0(Cp), ∫
a,γ

C(t)xdt =

n−1∑
k=0

Ak

(2k)!

∫
a,γ

t2kxdt

=
n−1∑
k=0

a2kAk

(2k)!
x = C(a)x.

Corollary 2. Under the hypothesis of Theorem 7, then for all x ∈ c0(Cp),∫
a,γ

(t− a)C(t)xdt = 0.

Remark 1. Let A ∈ B(c0(Cp)) be a nilpotent operator, then etA is integrable in the
sense of Shnirelman.

Set for all λ ∈ ρ(A), R(λ,A) = (λI−A)−1 where ρ(A) is the resolvent set of the
linear operator A defined on c0(Cp), we have the following:

Proposition 2. Let A ∈ B(c0(Cp)). If A is a nilpotent operator of index n, then
for all λ ∈ C∗

p, R(λ,A) exists. Furthermore, for each λ ∈ C∗
p, we have

R(λ,A) =
n−1∑
k=0

Ak

λk+1
.

Proof. The proof is similar to the proof of Proposition 2 of [7].

We have the following proposition.

Proposition 3. Let A be a nilpotent operator of index n on c0(Cp) and r = −1
p−1 .

Then

for all t ∈ Ωr, e
tA =

∫
0,γ

λeλtR(λ,A)dλ where γ ∈ Ωr\{0}.

Proof. The proof is similar to the proof of Proposition 3 of [7].

By Proposition 3 and setting C1(t) =
etA+e−tA

2 , we have the following:

Proposition 4. Let A be a nilpotent operator on c0(Cp) and r = −1
p−1 . Then

for all t ∈ Ωr, C1(t) =

∫
0,γ

λcosh(λt)R(λ,A)dλ where γ ∈ Ωr\{0}.
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Proof. By Proposition 3, we have etA =

∫
0,γ

λeλtR(λ,A)dλ and e−tA =

∫
0,γ

λe−λtR(λ,A)dλ.

Since cosh(λt) = etλ+e−tλ

2 and C1(t) =
etA+e−tA

2 , we have

C1(t) =
etA + e−tA

2

=
1

2

(∫
0,γ

λeλtR(λ,A)dλ+

∫
0,γ

λe−λtR(λ,A)dλ

)
=

∫
0,γ

λcosh(λt)R(λ,A)dλ.

Proposition 5. Let A and B be two nilpotent operators on c0(Cp) and let C1(t) and
C2(t) be two C0-cosine families of infinitesimal generators A and B respectively. If
R(λ,A) and R(λ,B) commute, then C1(t) and C2(t) commute.

Proof. By Proposition 4, we have C1(t) =

∫
0,γ

λcosh(λt)R(λ,A)dλ and C2(t) =∫
0,γ

λcosh(λt)R(λ,B)dλ. Assume that R(λ,A) and R(λ,B) commute, then

C1(t)C2(t) =

∫
0,γ

λcosh(λt)R(λ,A)dλ

∫
0,γ

λcosh(λt)R(λ,B)dλ

=

∫
0,γ

∫
0,γ

λcosh(λt)R(λ,A)λcosh(λt)R(λ,B)dλdλ

=

∫
0,γ

∫
0,γ

λcosh(λt)R(λ,B)λcosh(λt)R(λ,A)dλdλ

= C2(t)C1(t).

We have the following:

Proposition 6. Let A and (Ak)k∈N be two nilpotent operators on c0(Cp). If
R(λ,Ak) → R(λ,A) as k → ∞, then etAk converges to etA as k → ∞.

Proof. The proof is similar to the proof of Proposition 5 of [7].

One can see the following proposition.

Proposition 7. Let A and (Ak)k∈N be two nilpotent operators on c0(Cp). Set for all

k ∈ N, Ck(t) =
etAk+e−tAk

2 and C(t) = etA+e−tA

2 . If R(λ,Ak) → R(λ,A) as k → ∞,
then Ck(t) converges to C(t) as k → ∞.

Remark 2. The results mentioned above remain valid for any free Banach space over
Cp.
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3 Integral of cosine families of linear operators on free Banach
spaces over Qp

In this section, we assume that K = Qp and X is a free Banach space over Qp,
we have the following definition:

Definition 7. Let f ∈ C1
s (Zp, X). The sequence (Sm)m ⊂ B(X) defined by

Sm = p−m
pm−1∑
j=0

f(j),

converges strongly as m → ∞ to a bounded linear operator. More precisely∫
Zp

f(t)dt = lim
m→∞

p−m
pm−1∑
j=0

f(j).

Set Br(X) = {A ∈ B(X) : 0 < ∥A∥ < r} where r = p
−1
p−1 . We have the following

results.

Proposition 8. Let A ∈ Br(X) be an invertible diagonal operator, then (etA)t∈Zp

is a C1-function and (eA − I)−1 ∈ B(X).

Proof. The proof is similar to the proof of Proposition 6 of [7].

Proposition 9. Let A ∈ Br(X) be an invertible diagonal operator such that∫
Zp

etAdt exists. Then for all x ∈ X, (eA − I)

∫
Zp

etAxdt = Ax.

Proof. The proof is similar to the proof of Proposition 7 of [7].

Set C1(t) =
etA+e−tA

2 , we have the following proposition.

Proposition 10. Let A ∈ Br(X) be an invertible diagonal operator such that∫
Zp

etAdt exists. Then for all x ∈ X,

∫
Zp

C1(t)xdt =
A

2

(
(eA − I)−1 − (e−A − I)−1

)
x.

Proof. By Proposition 9, for all x ∈ X,

∫
Zp

etAxdt = A(eA−I)−1x and

∫
Zp

e−tAxdt =

−A(e−A − I)−1x. Then∫
Zp

C1(t)xdt =
1

2

(∫
Zp

etAxdt+

∫
Zp

e−tAxdt

)

=
A

2

(
(eA − I)−1 − (e−A − I)−1

)
x.
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Example 2. Let r = −1
p−1 , (λi)i∈N ∈ Ω∗

r and let A ∈ B(c0(Qp)) be defined by

for all i ∈ N, Aei = λiei

where (ei)i∈N is the canonical basis of c0(Qp). Then for all t ∈ Zp, we have

for all i ∈ N, etAei = eλitei.

Hence for all i ∈ N, ∫
Zp

etAeidt =

∫
Zp

eλiteidt.

Thus for all x =
∑

i∈N xiei ∈ X, we have∫
Zp

etAxdt =
∑
i∈N

λi

eλi − 1
xiei

= (eA − I)−1Ax.

Set C1(t) = etA+e−tA

2 and cosh(at) = eta+e−at

2 . From Example 2, we have the
following example.

Example 3. Let r = −1
p−1 , (λi)i∈N ∈ Ω∗

r and let A ∈ B(c0(Qp)) be defined by

for all i ∈ N, Aei = λiei

where (ei)i∈N is the canonical basis of c0(Qp). Then for all t ∈ Zp, we have

for all i ∈ N, C1(t)ei = cosh(λit)ei.

Hence for all i ∈ N, ∫
Zp

C1(t)eidt =

∫
Zp

cosh(λit)eidt.

Then for all i ∈ N,∫
Zp

C1(t)eidt =

(
λi

2(eλi − 1)
− λi

2(e−λi − 1)

)
ei.

Thus for all x =
∑

i∈N xiei ∈ X, we have∫
Zp

C1(t)xdt =
A

2

(
(eA − I)−1 − (e−A − I)−1

)
x.

Definition 8. Let A ∈ B(X). A is said to be a scalar multiple of identity operator
on X if A = aI for some a ∈ Qp and I is the identity operator on X.

Example 4. Let A be an invertible scalar multiple of identity operator on X such
that A = aI where a ∈ Ω∗

r with r = −1
p−1 . Hence for all t ∈ Zp, C(t) = cosh(ta)I,

then for all x ∈ X and a ∈ Ω∗
r , we have∫

Zp

C(t)xdt =

(
a

ea − 1
− a

e−a − 1

)
x =

A

2

(
(eA − I)−1 − (e−A − I)−1

)
x.
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