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Abstract. In this paper, we present a further improvement of the reverse Hardy
type inequality via a+3?j and ,- 35, the proportional generalized fractional integral
operators with respect to another strictly increasing continuous function . We obtain
a new result by using two parameters of integrability p and ¢, some special cases are
mentioned according to the choice of the function ®.
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1 Introduction

The classical Hardy inequality [7,8], has attracted the attention of many math-
ematicians and has been the subject of various extensions and refinements.
If  is a measurable function with non-negative values, p > 1, then

/OOO (i /OTgp(t)dt>pdT < <pfl>p/ooo (7 dr.

If the right-hand side is finite, equality holds if and only if ¢(7) = 0 almost
everywhere.

Later, Littlewood and Hardy [9] established the reverse of above inequality in
this way.

Let ¢ : [0,00) — [0,00). If 0 < p < 1, then

[ A oy () oo

This reverse inequality has drawn attention in recent years, either for time scales
or on R. Fractional calculus is one of the almost powerful branches of mathemat-
ics, it has become significant because of its important use in various fields such
as physics, engineering, computing, etc. Much distinct integral fractional opera-
tors have been established in this area by dealing with integral inequalities, such as
the Riemann-Liouville, Hadamard, Katugampola and particularly the proportional
fractional integral which was introduced in the context of generalized fractional op-
erators in relation to another function (for more details see [15,16]).
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The authors in [1,2] mentioned the following definition of the left— and right-sided
p-Riemann-Liouville fractional integrals of a function ¢, respectively.

For an integrable function ¢ on the interval [0, 63] and for an increasing function
p, where p € C[01,05] such that u'(t) # 0 , for all t € [0y, 0s].

Definition 1. The left— and right-sided Riemann—Liouville fractional integrals of
a function ¢ with respect to the function p on [01,603] are defined, respectively, as
follow

Leln) = 1 [ W0 W)~ i) el 7> 0,

ﬂﬂ<>]‘/%%>u>—<»“1<m <0
95('0T_F(B)Tus w(s) — p(r p(s)ds, T 5.

In [3], the author presented a generalization of the reverse Hardy’s inequality.
Let ¢, g be positive functions defined on [0y, 03] and
T

F(r)= (t)dt. If g is non-decreasing then
0
(i) for p > 1,

% F(r) o [Pt [P (r =6 P (Vi
p/91 g(T)dTS(GQ o) /91 g9(7) i /91 g9(1) e (r)dr,

(ii) for 0 < p < 1,

Iy GO [ L i
p/m o0 T ) /9 e(rar 9(92)/91 (7= 6P (r)dr.

Moreover, a new version of the reverse Hardy’s inequality with two parameters
has been presented on time scales in [5]. Motivated by the above literature, in
this article we formulate and prove several inverse Hardy-type results by using an
analogue of the fractional integration operator given in [6]. Furthermore, we es-
tablish new versions of the Hardy-type inverse inequality in fractional calculus by
employing the u-proportional generalized fractional integral operators involving two

parameters p, q.

2 pu-proportional generalized fractional integral operators

In this section, we present a definition of the u-proportional generalized fractional
integral of a function with respect to the function p. Let 0 < 07 < 7 < 02 < +00.

Definition 2. Let o > 0, u € C![f1, 05] be strictly increasing and positive function,
such that p'(s) # 0, for all s € [#1,65]. The left— and right-sided u-generalized
fractional integral’s of a function ¢ with respect to the function p on [y, 6] are
defined, respectively, as follows:

300 = [ & ulr) — n()el)ds, 7> 0,
01
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02
e = [ (9P us) ~ n(r)p(s)ds, T < 6

T

where @ : (0,00) — (0,00) is an increasing function satisfying the following condi-
tion.

de,n >0, / X1+ k)dT = c®* (2 + k), for k> 0. (1)
0
When ¢(s) = 1, we denote
w30 = [ @ () = uo)ds, 7> 61
1

and ;
2
I = [ 8 us) a7 <0
T
The most important characteristic of p-proportional generalized fractional inte-

grals gfjfj and o; 35 is that they give, depending on the choice of the function ¢,
certain types of pu—fractional integrals cited below.

1. Setting ®(7) = 7 and a = 0, then p-proportional generalized fractional inte-
grals G{r’JZ) and 0; 3’;{; are identical with the y—Riemann integral operator:

Lorep(r) = /07 p(s)du(s), 7> 01,

02
I (r) = / p(s)duls), T < b,

a_q
k
2. Setting (1) = 14;7() , then p-proportional generalized fractional integrals
k(a

Q{r’JE and o5 35 are identical with the p-fractional integral of the k-Riemann-
Liouville operator of order av > 0.

Io0) = s | ) = W) el)dn(s), 7>,

oM _ ” % Lo(s)d 0
) = s [ ) =) ) duls). 7 <00

(r) F
1 <1n - _T>
3. Setting ®%*(7) = FTr(0) :ET)) — , then p-generalized fractional in-

tegrals 91”35 and o5 33’ are identical with the p-fractional integral of the k-
Hadamard operator of order a > 0.

P B T N Y I
o) = f, () 0t e

S

o L () du(s)
B = [ (i) et <o

S




26 B. BENAISSA, J. NAPOLES, B. BAYRAKTAR

4. Setting
(p+ 1) (u(r) = 7
L) (u(r)Ptt = (u(r) — 7)ptt)i-e

and a > 0, then p—generalized fractional integrals o} ﬁﬁ and o5 Jg’ are identical

(1) =

with the u-fractional integrals of the Katugampola operator:

1 11—« T P(s s
g} pQD(T) = (p ;(04)) /91 [MP+1(7/-L) (_Lsp(i)z)-i-l]l—a du(s), 7 > 01,
« + 1 1=a 02 P(s S
Ie;,pSO(T) = (v I‘(o?) / [Np+1(:; E Liil)@.)pa du(s), T < 5.

5. Setting ®*(7) = (u(7) — 7)*! and a € (0,1), then u-generalized fractional
integrals oF JE’ is identical with the p—fractional conformal integrals operator:

Igplr) = /9 "N s pls)dp(s), 7> 0y

Remark 1. Choose u(s) = s, we get respectively the Riemann integral operator,
k—Riemann-Liouville integral operator, k-Hadamard integral operator, Katugam-
pola integral operator and fractional conformal integral operator.

We need the following Lemma and Proposition to prove our results.

Lemma 1. ([}]) Let 1 < p < g < 0o and ¢, w be non-negative measurable functions
on [01, O2]. We suppose that, 0 < feef o' (s)w(s)ds < oo, forr >1, then

/(:2 @P(s)w(s)ds < </:2 w(s)ds> B (/;2 gpq(s)w(s)d5>g , 2)

Proof. If p = q, then we get equality and for p # ¢, we use Holder’s integral inequality
)
with = > 1. We have

p
/92 P(s)w(s)ds = /:2 (w%(s» (cpp(s)wg(s)) ds

01

Proposition 1. ([5]) Let 0 < B < A be two positive real values, then

for p>1:  A—B< (AP~ BP)r, (3)
for 0<p<l1l: A—B>(AP—BP)s.
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3 Inverse Hardy type inequalities for p-proportional generalized
fractional integral operators
Let 0 <601 < 6y < +00.

Theorem 1. Let 1 <p<g<oo,a>0 and ¢ > 0,9 >0 on [0, 2], such that g is
non-decreasing. If p/'(t) > 1, then 3¢, no,m1 > 0, the inequality

0 ’ B

» [Tt )

/61 eg(T)dT <c <9+J¢g(92)> :
. {@g((a+n0)(p1)+m)(u(92) — u(91))91+3§ [Sﬁgq((ai?))]

SIS

—eﬂf |:S0‘1(92)q)g((oz-i-no)(p—l)'i‘m)('u(QQ) - u(ﬁl))]} ,
hold.

Proof. For 7 > 601, we put u(7) — p(s) = t, then

T (7)—=n(61)
gIUD = [ 6w ) —uends= [ e
= @ (u(r) — p(61)), co,m0 > 0.

Setting 7 = -, we have

o+ Ip1(02) = co @O (pu(6a) — p(61)).

1 1
For 1 < p < ¢ < oo, by using Holder inequality for — + — =1, we have
p P

[ [NW - /:9 ( / W9 (r) ~ u (o)) o
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< ([ w2 u(r) = uonere)as ) ar

01

02 T
- / / G7() e @M (pu(r) — u(61))]"

01 JO01

X W (8) 2 (u(T) — p(s)) P (s)dsda

02
=7 [ e () — (o))
01
X fy, 1 (8)2(u(T) — pu(s)) P (s)dsduw.
Since g is non-decreasing on [s, 2] and p(7) — p(s) < u(f2) — p(s), hence by the
change of integration order, we obtain

p

2 [grjg()@(T)} p—1 02 M,(S) (Pp('s) e
/@1 Tdrgco /@1 W(b (1(02) — p(s)) (5)

02
) U APV (1) — p(61))dr | ds.

S

From the hypothesis (1) and p/(7) > 1, we deduce that
02
| e D) — u(o)ar

02
< [ W@ @D ) — )in

o
= [q)(oa+no)(p—1)+m (u(r) — M(91>)] 2 ,

S

(atng)(g—=1)+n
P

Denote ¥ = @ , apply the inequality (3) for % > 1 and

[ u(02) — u(01))]” = P (u(02) — u(01),

() = 1(01))|” = WP (pu(s) = (1)),

A
(atng)(p—1)+m
B [CD b

we get

/ "4l D) (o) (6)
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D
q

< e (WI(pu(05) — p(01)) — W9 (u(s) — pu(61)))
Put (6) in (5) and apply (2), therefore

o e @] e o).
/91 TdTﬁcg c1 /91 W‘I) (1(02) — p(s))

x [ (WO(02) = u(81)) = W(pu(s) — p61))) 7] ds

1 &
_ ol /0 1(5)8(u(0) — p(s))g 1 (s)

g(s)
0 2(s v
= [ )8 u0n) = ) E ) — o) ds]
01 g(s)
= e (4007 0) T [W90) — 00)y 98 ()

Q3

7(6
038 (S wa(u(02) — u(01))) |
Putting ¢ = cg_l c1, we get the required inequality (4).
O

We present some results which are special cases of Theorem 1 in the corollaries
mentioned below.

1. Setting ®(7) = u(7) =7 and a« =0, then we get co =9 =m1 =1, c1 = % and

Ry p(r) = / p(t)dt, 7> 61
01
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Corollary 1. (Hardy type inequality via Riemann integral operator.)
Let 1 <p<g<ooandp>0,9>0 on [0, 02], such that g is non-decreasing,
then

p

) /:2 (Ro: (“”()T)))pmg (e (1 >> .

1 g(T g(02)

oo (Gay )~ oo (G @ —o0))

The inequality (7) via Riemann operator with two parameters 0 < p < ¢
coincides with [5, Corollary 4.1], taking ¢ = p, we get [3, Theorem 2.2].

Q3

o
k

2. Setting ®%(7) = }7(), a > 0 and u(7) = 7, then we get ¢cg =19 = ¢ =
kO

n =k and
1 T o
k a_q
L@ = t p(t)dt ;.
o (7) k() /91(7 )* (W)t 7> 6

Corollary 2. (Hardy type inequality via a k-Riemann-Liouville operator.) Un-
der the assumptions of Corollary 1, we have

p

/:QWdTSkp (%( ; )) ”

. g(r 9(62)

2
q

1
- (krk@(a(p— 1) +kp>>)

(12D gy ©?(62)
X{(92 o) Ror 4000

P
ok ($002) 0 (eeGob gy |
i (g 000

where the k-gamma function verified for all a > 0, k > 0,

00 k
Ii(a) = / o le= % dt, Ir(a+ k) = al'g(a).
0

The inequality (8) is a new result via k-Riemann-Liouville operator on [0, 7]
with two parameters 0 < p < ¢, if we put k = 1, we get a new result of
Riemann-Liouville.
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Conclusions

In this paper, by using u-proportional generalized fractional integral operators, a

generalization of the Inverse Hardy Inequality is obtained. From Theorem 1, we ob-
tain several corollaries that establish new extensions for different integral operators.
Our work technique can be used to obtain inverse inequalities of another nature, for
example, in [12] new inequalities of the Hardy type are obtained, so obtaining their
inverse inequalities remains an open problem.
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