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Abstract. The T—forms and the spectrum of 4 — T'—quasigroups with exactly 20
distinct parastrophes are considered in the present work. Characterizations of the
spectra of finite binary quasigroups with a prescribed number of distinct parastrophes
were given by C.C. Lindner and D. Steedly in [1]. Following the results of C.C. Lindner
and D. Steedly, M. MacLeish proved that the maximum number of distinct parastro-
phes of an n—quasigroup (@, A) is a divizor of (n+1)!, and obtained characterizations
of the spectrum of finite ternary quasigroups with a prescribed (maximum) number of
distinct parastrophes. Binary and ternary linear quasigroups over groups, with a given
maximum number of distinct parastrophes have been studied by Belyavskaya, Rotari,
Sokhatsky, Pirus, Fryz and others [4-8]. Characterizations of the general T'—form of a
4 — T —quasigroup with exactly 20 distinct parastrophes and some estimations of their
spectrum are given in the present work.
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An n—ary groupoid (Q, A) is called an n—ary quasigroup (or an n—quasigroup)
if in the equality A(z1,z2,...,2n) = xny1 every element of x1,x9,...,Tn, Tpy1 iS
uniquely determined by the remaining n ones. If (@, A) is an n—quasigroup and
0 € Sp+1, then the operation %A, defined by the equivalence

%(l’gl, ey :L'Un) = To(n+1) < A(:L’l, T2, ...y :L'n) = Tnpi+1,

is called a o—parastrophe or, simply, a parastrophe of A.

C. C. Lindner and S. Steedly showed in [1] that the possible number of distinct
parastrophes of a binary quasigroup divides 6, i.e. is 1, 2, 3, or 6. Moreover, they
proved that there exist finite binary quasigroups with a given maximum number d
of distinct parastrophes, where d € {1,2, 3,6}, of any order ¢ > 4.

M. McLeish [2,3] considered analogous questions in the ternary case. She showed
that the possible number of distinct parastrophes of an n—quasigoup devides (n+1)!
and obtained a series of estimations of the spectra of finite ternary and n—ary
quasigroups with a prescribed number of distinct parastrophes. In particular, M.
McLeish showed that there exist finite ternary quasigroups:

1) with exactly 3 or 4 distinct parastrophes of any order ¢ > 3;

2) with exactly 6, 12 or 24 distinct parastrophes of any order q > 4;
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3) with exactly 1 distinct parastrophe (i.e. a T'S—quasigroup) of any order ¢ > 1.

M. McLeish obtained also a partial characterization of the spectrum of finite ternary
quasigroups with exactly 2 or 8 distinct parastrophes.

Remark that the possible maximum number of distinct parastrophes of an
n—quasigroup depend on the order of the existing sugbgroups in S,41. Namely,
if (@, A) is an n—guasigroup, then H = {0 € S,,+1]|?4 = A} is a subgroup of S, 11
and the maximum number of distinct parastrophes of (@, A) is equal to the index
of H in Sp41.

Binary quasigoups, which are linear over abelian groups and have a prescribed
maximum number of distinct parastrophes, which are also orthogonal, were consid-
ered by G. Beleavskaya and T. Popovich (T. Rotari) in [4,5].

Partial characterizations of ternary quasigroup operations, which are linear over
groups and have a given number of distinct parastrophes, are obtained by F.
Sokhatsky, Y. Pirus and I. Fryz in [6-8].

It is known that the group 54 has a total of 30 subgroups which, up to isomor-
phism, are:

{e}, Za, Z3, Z4, K4, S3, Dg, A4, Sa. (1)

Ternary quasigroups (@, A), linear over a group (Q,+) : A(z1,z2,23) = a1 +
Ty + azxs + ¢, where ai, a2, a3 € Sg, @;(0) = 0, 0 is the neutral element of
(Q,+),i=1,3, c € Q, and such that the subgroup H = {o € S4|7A = A} is one of
the subgroups given in (1) are considered in [6,7]. Remark that a linear n—quasigoup
(Q, A) may have different general forms for different isomorphic subgroups H = {0 €
Sn+1|?A = A}.

Characterizations of T'—forms of the 4 — T'—quasigroups with exactly 20 distinct
parastrophes and some estimations of their spectrum are given in the present work.

Recall that an n—quasigroup is called an n — T'—quasigroup if there exist an
abelian group (Q,+), its automorphisms aq,ag,...,, and an element ¢ € @,
such that A(x1,x2,...,2,) = 121 + @222 + ... + apxy + c. In this case the tuple
((Q,+), a1, g, ..., an, ¢) is called a T—form of (Q, A) and (Q, +) is called a T—group
of (Q,A) [7.8].

The possible (maximum) number of distinct parastrophes of a 4—quasigroup is a
divisor of 120 and, if (@, A) has exactly d distinct parastrophes, then d is the index
of the subgroup H = {0 € S5|7A = A} in the group Ss. It is known that S5 has a
total of 156 subgroups and that it has no subgroups of order 15, 30 and 40. Hence,
there does not exist 4—quasigroups with exactly 8, 4 or 3 distinct parastrophes.

To obtain a full characterization of the T'—forms of a 4 — T'—quasigroup with
exactly 20 distinct parastrophes, we will consider all 30 subgroups of order 6 of the
group S35, namely:

1) 10 subgroups isomorfic to Zg :
Hy = ((123)(45)), Hy = ((124)(35)), Hz = ((125)(34)), Hy = ((134)(25)),

Hs = ((135)(24)), He = ((145)(34)), Hr = ((234)(15)), Hs = ((235)(14)),
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Hg = ((245)(13)), H1o = ((345)(12));

2) 20 subgroups isomorfic to S3, each generated by two substitutions « and 3, of
order 3 and, respectively 2, including:

2a) 10 subgroups where (3 is a transposition
Hyy = ((123), (12)), Hiz = ((124), (12)), Hiz = ((134), (13)),

Hiy = ((125), (12)), Hi5 = ((135), (13)), Hie = ((145), (14)),
Hiz = ((234),(23)), Hig = ((235), (23)), Hig = ((245), (24)),
Hayo = ((345), (34));

2b) 10 subgroups where § is a product of two independent transpositions

Theorem 1. Let (Q, A) be a 4 — T'—quasigroup with the T—group (Q,+) and let
H € {H;,i = 11,20}, where H = {0 € S5|’A = A}. Then there exist o, €
Aut(Q,+) and an element ¢ € Q, where « # f, a # 1, B # 1, ac+c # 0, fc+ ¢ #
0, [z = —z,Vo € Q, 0 is the neutral element of (Q,+), such that (Q, A) has one of
the following T—forms:
T = ((Q,-F),Oé,Oé,Oé,ﬁ,C), Ty = ((Q,+),a,a,,8,a,c), T5 = ((Q,+),a,,8,a,a,c),
Ty =((Q,4),8,a,a,a,¢), Ts = ((Q,+), I, I, B,¢), Ts = ((Q,+),I,a, I, 3, ¢),
I7 = ((Q,Jr),l,oz,ﬁ,f,c), Ty = ((Q,Jr),oz,f,],ﬁ,c), Ty = ((Q,Jr),()é,f,ﬁ,[,c),
Tio = ((Q,—i—),a,ﬁ,],[,c).

Proof. Let (Q, A) be a4—T—quasigroup, T = ((Q, +), a1, a2, a3, ay, ¢) be a T—form
and let H € {H;, i = 11,20}, where H = {0 € S5|’4A = A}.

1) If H = Hyp = ((123), (12)) = {e, (123), (132), (12), (13), (23)} then we have
(12), (13) € H, hence A =12 A and A =134, i.e.

Q1T] + QX2 + a3T3 + gy + € = a1 T2 + QX1 + a3T3 + Qqxq + C
Q121 + 0T + Q3T3 + (aTy + € = 1X3 + a9 + Q3T1 + 4Ty + C

Q121 + QX2 = 1T + Qe
171 + a3xr3 = X3 + a3

Taking x1; = 0, the last two equalities imply a3 = as = as. Denoting o = ag =
a3 = «a and a4 = 3, the operation A takes the form:

A(a:‘ll) = ar] + axy + axs + Bxg + c,
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where the 4—tuple (1,72, 3, 74) is denoted by (z7).
As (14) ¢ Hyp, we have: A £ A & ax) + By # Pr1 + axy & a(ry — xy) #
B(xy — x4) ie. a# B. Also, (15) ¢ Hyp = A #I9A = A(A(x}), 2, 23, 24) # 21, =

alary + are + axs + Bry + ¢) + axg + axs + frg + ¢ # x1.
Denoting axe + axs 4+ Bx4 + ¢ by y in the last inequality we obtain:

alary +y) +y # x1,

which for a = I, implies —(—x1 + y) + y # 1 < 1 # x1, a contradiction, hence
a # I. Analogously, as (45) ¢ Hy; we have:

A 7&(45)14 = A(x, $2,$3),A($%)) 7 Ty &

ary + axg + axs + flar) + axg + axs + frg + ¢) + ¢ # x4.

Denoting ax1 + axs + axs + ¢ by y in the last inequality we have:

Y+ By + Bry) # x4,

which implies 8 # I (as for 5 = I we get x4 # x4, a contradiction).

9) Let H = Hip = ((124),(12)) = {e,(124),(142), (12), (24), (14)}. Then
(12),(14) € H, ie. A =024 and A =9 A so aqz + asxs = ayxp + gz and
Q121+ ayry = a4+ aqxy, which imply a; = ag = ay4. Denoting a; = as = a4 = «
and ag = 3, we get the T—form: Th = ((Q,+), o, o, B, v, ¢).

As (13), (15) and (35) are not in Hya, we have: A #13 A, A £ A and A £B% A,
hence:

ary + Brg # ars + B,

alaxy + axe + frs + axy + ¢) + axs + Brs + axy + ¢ # x1,
ary + axg + Blax; + axg + Brs + axy + ¢) + axy + ¢ # x3,

which imply, analogously to item 1), a # 3, # I and 8 # I, respectively.

3) H = Hiz = ((134),(13)) = {,(134),(143),(13),(34), (14)}. Using the fact
that (13),(14) € Hy3, we obtain A =134 and A =WA, so a121 + azrs = arz3 +
aszxry and a1r] + ayry = a1y + aqxy, which imply o = a3 = a4. Denoting a; =
a3 = ayg by a and ay by 3, we get the T—form: ((Q,+),«, 3, a,a,¢) = Ts.

Using the fact that (12),(15) and (25) are not in Hys, i.e. A #02A A £054
and A #2% A, we obtain:

171 + Ty # 1T + aory,

alaxy + Brg + axs + axy + ¢) + Bre + axs + axy + ¢ # x1,
azy + Blazy + fre + axs + axy + ¢) + axs + axg + ¢ # 2,

which imply a # B,a # I and 8 # 1.
4) H = Hy4 = ((125), (12)) = {¢, (125), (12), (152), (25), (15)}.
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As (12),(15) € Hig, we have A =124 and A =154, i.e.
121 + QT2 = a1 T2 + a1, (2)

a1(arxy + agxs + agxs + ayxy + ¢) + agxs + agxrs + aury + ¢ = x1. (3)

Taking z2 = 0 in (2), we obtain
a1 = (9. (4)

For 1 = 9 = x5 = ¢4 = 0, (3) implies
ajc+c=0. (5)

Using (4) and (5), and taking x1 = 23 = 4 = 0 in (3), we get a1 (agze) = I(aex2),
ie. a1 =1, so

Denoting a3 = a and oy = 8, we obtain the T'—form Ty = ((Q,+), I, I, «, 3, ¢).
Now, using the fact that the transpositions (23), (35), (14) do not belong to Hi4,
we have the inequalities:

QT2 + a3T3 # QT3 + a3,

Iz + Izg + a(lxy + [zo + axs + By + ¢) + Bry + ¢ # 3,
Iz + Izo + axs + B(Ixy + [xg + aws + By + ¢) + ¢ # x4,

which imply « # 8,a # I and 8 # I, respectively.
(15) € Hys, we have: (184 = A and (P4 = A, i.e.

Q121 + a3x3 = T3 + 0371, (7)
(i1 + aas + azzs + auzy + ) + aoxa + a3+ uas +c=x1. (8)

The equality (7) implies
a1 = as, (9)

and (8) implies ajc+c¢ = 0 (for 21 = 22 = z3 = x4 = 0). Using the equality
arc+ ¢ =0 and taking 1 = 9 = z3 = 0 in (8), we get

a1 (aygxy) + agxy = 0,

i.e. ay = I. According to (9),

o] = 3 = I,
so, denoting ag = v and oy = 3, we get T = ((Q,+), I, o, I, B,¢). As (24),(25) and
(45) are not in Hys, the following inequalities hold:

axo + Bry # axy + Pxa,
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Iz —|—a(Ix1 + axg + Ix3 + Py +C) + Ixs + Py + ¢ # x2,
Izy + axe + Iz + B(Lxy + axg + [x3 + Brg + ¢) + ¢ # x4,

which imply, resctively, a # 5,a #£ I, 8 # 1.
6) H = Hig = ((145), (14)) = {e, (145), (154), (14), (14), (45)}. From (14), (15) €
Hig it follows A =094 and A =154, i.e.

a1x1 + oqrs = a4 + a4,

a1(onxy + aexs + agxs + ayxg + ¢) + avxs + agxs + ayxy + ¢ = x1, (10

)

which imply, respectively a; = a4 and ajc + ¢ = 0. Using the last equality in (10)

and taking 1 = x3 = 4 = 0, we have aj(aoxs) = I(agxs2), Ve € Q, ie. oy = 1,
hence

A1 = 0y = I. (11)

Denoting ag = o and a3 = 3, we get Ty = ((Q,+), I, «, 58,1, c). Now, using the
fact that (23),(25) and (35) do not belong to Hig, we get the inequalities
arry + frs # axs + P,

Iz + a(lzy + axg + fas + [xg + ¢) + Pas + [xg + ¢ # x3,
Izy +axo+ Iz + ax — 2+ Brg + [xg + ¢) + [x4 + ¢ # x3,

which imply, respectively, o # S, £ 1,5 # 1.

7) Hir = ((234),(23)) = {e,(234),(243),(23),(24), (34)}. From the fact that
(23), (24), (34) € Hy7 it follows: A =94 A =CHA A =CYA ie. asre + azzs =
QX3 + a3Ta, Qoo + uxTy = Qx4 + T, Q33 + Qyxy = 3Ty + g3, which imply:
as = ag = ag4. Denoting as = a3 + a4 = «a and a7 = [, we get the T—form:
Tr = ((Q,4), 8, a, a, vy €).

The inequalities a # 3,8 # I and a # I follow, respectively, from those given
by (12) ¢ H17, (15) ¢ H17, (25) ¢ H17, as:

Bx1 + axo # Pro + axq,

B(Br1 + axs + axs + axy + ¢) + axs + axs + axy + ¢ # x1,
Bx1 + a(Bry + axs + axs + axy + ¢) + axs + axg + ¢ # a.
8) H = His = ((235), (23)) = {&, (235), (23), (35), (253), (25) }.
From (23), (35) € Hyg, we have A =234 and A =G% A, hence

QoT9 + (i3x3 = k3 + (3T2,

a1x1 + aoxg + as(aiz1 + aors + asrs + aurs + ¢) + aaxy + ¢ = w3, (12)

which imply, respectively,
o = (3 (13)
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and asc + ¢ = 0. Using the last equality and taking xo = x3 = 24 = 0 in (12), we
have ag(ayx1) = I(aj21), which implies ag = I, so (according to (13)), a1 = az = 1.
Denoting ag = aand oy = 8, we get T'=Ts = ((Q,+), o, I, I, 3, ¢).
Using T3 and the fact that (14) ¢ His, (15) ¢ Hig and (45) ¢ Hig, we obtain the
inequalities:
ary + Bry # awy + By,
alaxy + Ixg + [x3 + frg +¢) + Ixg + Tx3 + By + ¢ # 71,
axy + Ixe + Ixg + B(axy + [xg + Txs + frg + ¢) + ¢ # x4,
which imply, respectively, a # 5, o # I and 8 # I.
0) H = Hig = ((245), (24)) = {=, (245), (254), (24), (25), (25), (45)}.
From (24), (25) € Hyg it follows, respectively,

QoT9 + 4Ty = Q%4 + (4T2,

a1x1 + ag(arxy + agxs + asxs + auxy + ¢) + azxs + auxy + ¢ = T3, (14)
which imply, as = a4 and asc + ¢ = 0. Using the equality asc 4+ ¢ = 0 and taking
x1 =x9 = x4 = 0in (14), we get ag(agxs) = I(agxs), so ag = I, ie. ag =ay = 1.
Denoting ay = « and ag = 3, we obtain the T—form Ty = ((Q,+),,I,1,5,1,c).
Now, using Ty and the fact that (13) ¢ Hy, (15) ¢ Hig and (45) ¢ Hig9 we obtain
the inequalities:

ary + Brg # ars + By,
alax — 14 Ire + Bas + Txy + ¢) + [xo + Brs + [xg + ¢ # 21,
ary + Ire + Blaxy + [xe + fas + Txy + ¢) + L3 + ¢ # w3,

which imply, respectively, « # 3, 8 # I, a # I.
As (34), (35) € Hyg, we have A =G94 and A =94, i.e.

as3xs + aqrq = 3Ty + a3,

a1 + axa + az(aqz + aexe + a3xs + uxy + ) + ouxy + ¢ = T3, (15)

which imply, respectively, as = a4 and asc + ¢ = 0. Using the equality asc +
¢ = 0 and taking 1 = 22 = x3 = 0 in (15), we obtain a(aszs) = I(ayxy), so
acg = I, ie. ag = a4 = I. Denoting vy = a and as = [ we get the T—form
Too = ((Q,+),, B,1,1,c). The inequalities o # (3, a # I and 8 # I follow from the
fact that (12) ¢ Hap, (15) ¢ Hoo and (25) ¢ Ha (using the T'—form T1p), i.e. from
the following inequalities, respectively:

ary + Bre # aws + By,

alaxy + Prg + [xg + [xg + ¢) + Pag + [x3 + 24 + ¢ # 271,
axry + flaxy + Pro+ Txs + [xg + ¢) + [xs + x4 + ¢ # x9.
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Proposition 1. The 4 — T—quasigroup (Q, A) with the T'—form

Tl - ((Qa +)) o, o, &, /87 C)?
where o # B, a £ 1, B # I, I(x) = —x,Yx € Q, has exactly 20 distinct parastrophes.

Proof. 1t is sufficient to show that H = {o € S5|°A = A} is a subgroup of order six.
If T} is a T—form of the n — T—quasigroup (Q, A), then

A(xil) = ax1 + axe + awg + By + ¢, Vo1, 22, 23,74 € Q,

so A = A,Vo € SL, where S, = {0 € S5|0(4) = 4,0(5) =5}, i.e. S C H.

Let consider the following set of representativies of the cosets {SE7|T € S5} :
U = {e, (14),(24), (34), (15), (25), (35), (45), (14)(25), (14)(35), (15)(24),

(15)(34), (24)(35), (25)(34), (145), (154), (245), (254), (345), (354)}.

If 7 € U, then B € Sit & Jo € SL: B =01 &PA=TA="(A) =7 A. We will
prove below that 7 ¢ H,Vr € U \ {e}, i.e. that H = S.

If (14) € H then: A =A o ax + azo + axs + Bay + ¢ = axy + axg + axs +
fx1 + c = a = f3, a contradiction, so (14) ¢ H.

Analogously, o #  implies (24) ¢ H and (34) ¢ H.

If (15) € H then: A =154 & A(A(}), 72, 23, 74) = 72 & alax) + azs + axs +
Bx4 + ¢) + axe + axs + fxg + ¢ = 1. Denoting axs + axs + axy + ¢ by y, we get
a(ar;+y)+y = x1, which (for z; = 0) implies @ = I— a contradiction, so (15) ¢ H.

Analogously, we get (25) ¢ H and (35) ¢ H.

Also:

A="4 o A3 At) =24 &

ary + axg + axs + flary + axg + axs + g+ ¢) + ¢ = x4.

Denoting ax; + axs + axs + x = y in the last equality we get: S(Bz4+vy) +y = 24,
which (for x4 = 0) implies 5 = I— a contradiction, hence (45) ¢ H.

If (14)(35) € H, then: A =096% A o A(2z}) =0Y A(xy,29,23,11) <
A(zy, 12, A(z]), 71) = 73 &

ary + axg + alaxr) + axs + axs + Bry + ¢) + fxy + ¢ = x3. (16)
Taking z1 = xo = 3 = x4 in the last equality we get ac+ c= 0. Using ac+c =10
and taking 1 = z3 = x4 = 0 in (16) we obtain a(axs) = I(axs), ie. a =1, a
contradiction, so (14)(35) ¢ H. Analogously, we obtain (14)(25) ¢ H, (15)(24) ¢ H,

(15)(34) ¢ H, (24)(35) ¢ H and (25)(34) ¢ H.
If (145) € H, then we have:

A=UDA & Ay, w0, 23, A(2])) = 11 &

ary + axg + axs + f(ary + axg + axs + g+ ¢) + ¢ = x1. (17)
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Taking 1 = 9 = 23 = x4 = 0 in (17) we get Sc + ¢ = 0. Using the equality
fc+ ¢ =0 and taking x; = 23 = x4 = 0 in (17), we obtain S(axs) = I(ax2), which
implies 8 = I, a contradiction, so (145) ¢ H.

Analogously, we get that each of the substitutions: (154), (245), (254), (345), (354)
does not belong to H. Hence, H = S = S3, i.e. (Q, A) has exactly 20 distinct paras-
trophes. ]

Corollary 1. A 4 — T'—quasigroup (Q, A), where {o € S5|A =7 A} = ((123), (23)),
has ezxactly 20 distinct parastrophes if and only if it has a T—form ((Q,+), o, o, ¢, 5, ¢),

where « # B, a £ 1, B# 1,1(x) = —x,Vx € Q.

Theorem 2. There do not exist 4 — T'—quasigroups (Q,A) such that the group
H = {0 € S5|A =A} is isomorphic to Zsg.

Proof. Let (Q,A) be a 4 — T—quasigroup with T—form ((Q,+), a1, a9, a3, ay,c),
and let H = {0 € S5|A = ?A}. The group S5 has 10 subgroups isomorphic to Zg :
H;,1,10. It will be shown below that H # H;, for every ¢ = 1, 10.

1) Let H = Hy = ((123)(45)) = {e,(123)(45), (132),(45), (123), (132)(45)}.
As (123) € Hy, we have A =(123)4 o A(x}) = A(xs, 21,72, 74), which implies

Q121 + Qe + 3Ty = a1x3 + aor1 + Q3. (18)

Taking x1 = x3 = 0, and respectively 1 = x9 = 0, in (18) we get as = a3 and
a] = asg, 1.e. @] = ag = as.

Denoting ay = ay = a3 = «, we obtain T = ((Q,+),q, o, @, ay,c), ie.
A(a:‘f) = az1 + axy + ars + aszy + c. Also, (45) € Hp, so A =(15) A je.
x4 = A1y, 20, 73, A(2])) &

axy + axg + axs + ay(axy + axg + axs + agry + ¢) + ¢ = w4, (19)

which (for 1 = 29 = z3 = x4 = 0) implies ayc + ¢ = 0. Using the last equality in
(19) and taking x1 = o = x4 = 0, we have ay(a(x3)) = I(axs), i.e. acy = I, hence
T =((Q,+),a,,, I, ¢). But an 4 — T—quasigroups (Q, A) with such a T—form
satisfies, for example, the equality A =12 A and (12) ¢ H, hence H # H;.

2) Let H = Hy = ((124)(35)) = {e, (124)(35), (1142), (35), (124), (142)(35)}.
As (124) € H, we have A =12V 4 & A(z?) = A(z4, 21, 23, T2), which implies

171 + Qo9 + Ty = QT4 + Q2T1 + auTo. (20)

Taking x1 = x2 = 0 and respectively 1 = x4 = 0, in (20), we get a1 = ay = ay.

Denoting oy = az = a4 = a, we get T = ((Q,+), 0, o, a3,,¢), i.e. A(x}) =
a1 + axs + aszs + axy + ¢, which implies in particular A =12 A, a contradiction,
as (12) ¢ Hy, so H # Hs.

3) Let H = Hs = ((125)(34)) = {e,(125)(34), (152), (34), (125), (152)(34) }.

As (34) € H3 we have A =69 A which implies aszs + auzs = a3zs + auxs, SO
(taking x4 = 0) a3 = ay4.
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Let us denote az = a4 = o and let us consider (125) € Hz. As A =129 A, we get
A(zo, A(x}), 23, 74) = 71, 1.0

a1x2 + ag(arxy + agxs + axs + axy + ¢) + axs + axy + ¢ = x1, (21)

which (for 1 = 29 = z3 = x4 = 0) implies azyc + ¢ = 0. Using the last equality in
(21) and taking z1 = z2 = x4 = 0, we get ag(axs) = I(axs), i.e. ag = I. Also, for
x1 = x3 = x4 = 0, the equality (21) implies

a%xg = I(a122) & 29 = I(a1x9),

ie. a; = I, hence T = ((Q,+),I,I,a,a,c). In particular, we obtained A =12 4,
impossible, as (12) ¢ Hj.

4) Let H = Hy = ((134)(25)) = {¢, (134)(25), (143), (25), (134), (143)(25)}. From
(134) € Hy we have A =394 & A(x}) = A(x4, 22,71, 73), hence

Q121 + a3r3 + aury = 14 + a3r1 + qTs. (22)

Taking 1 = xz3 = 0 and, respectively z; = x4 = 0, in (22) we get ay = a4 and
a3 = (4, SO (] = (3 — Q4.

Denoting oy = a3 = a4 = «, we obtain the T—form T = ((Q, +), o, a2, a, a, ¢),
so A(x}) = ary + asry + axs + axy + ¢, which implies, for example, A =134 a
contradiction as (13) ¢ Hy, so H # Hy.

5) Let H = Hs = ((135)(24)) = {e, (135)(24), (153), (24), (135), (153)(24)}.
As (24) € Hjs we have A =(24) A, ie. woxo + ayxry = qoxy4 + aqxo, which im-
plies o = ay. Let us denote ay = a4 = « and let us consider A =(135) 4 &
A(A(2}), w2, 21, 74) = 73 &

a% + (aaq)ze + (azaq)zs + (aar)zs + arc+ axs + agx; + axg +c=x3. (23)

Taking 1 = zo = x3 = 0 and, respectively o = 3 = x4 = 0, we obtain a1 = a3 =
I, 50 A(x}) = Izy + g + I3 4+ axy + ¢, which implies A =0 A, where (13) ¢ Hs.
6) Let H = Hg = ((145)(23)) = {e, (145)(23), (154), (23), (145), (154)(23)}. From
(23) € H, ie. A =) A, we get aoxo + a3x3 = Qax3 + a3x2, SO g = ag. Denoting
ag = ag = a, it follows T = ((Q, +), a1, a, a, ay, ¢).
Also, (145) € Hg, so A ="9)A & A(A(x}), 22, 13,21) = 24 &

a% + (aaq)ze + (aar)xs + (qa)xg + aic+ axs + axg + aqzy + ¢ = x4,  (24)

which (for 1 = x9 = x5 = x4 = 0) implies ajc+ ¢ = 0.

Using the last equality and taking, respectively, x1 = z9 = x4 = 0 and 1 = x5 =
x3 = 0 in (24), we obtain a; = a4 = I, hence A(z}) = Iz1 + azs + azs + Ix4 +c
which implies, in particular, A =% A — a contradiction, as (14) ¢ H.

7) H = H; = ((234)(15)) = {&, (234)(15), (243), (15), (234), (15)(243)}.

From (234) € Hy it follows A =% A, hence

T2 + a3x3 + T4 = Ty + 3T + 4T3 (25)
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Taking zo = 23 = 0 and, respectively xo = x4 = 0, in (25) we obtain as = a4 and
a3 = (4, SO (g = (3 = (4.

Denoting as = ag = ay = «, we get A(a:‘f) = 11 + axy + axs + axy + ¢, which
implies, for example, A =34 — a contradiction, as (23) ¢ Hr.

8) H = Hyg = ((14)(235)) = {e, (14)(235), (253), (14), (235), (14)(253)}.

As (14) € Hg, ie. A =94 it follows aqz1 + uTs = Q1Z4 + @41, SO O] = Q4.
Also (235) e Hs= A =(235) 4 54 A(A(.%'%), x9, .%'4) =I3 <

a171 + ag(arr) + aj(ases) + ag(aizy) + asc+ asmy + ayzy +c = a3, (26)

which implies aac+ ¢ = 0. Using the last equality and taking z; = 29 = z3 = 0 and,
respectively 1 = x3 = x4 = 0, in (26) we get ag = a3 = 1.

Denoting oy = ay = o we obtain A(z]) = awxy + Ixg + Iz3 + awg + ¢, which
implies, in particular, A =23 A — a contradiction as (23) € H.

9) Let H = Hy = ((13)(245)) = {e, (13)(245), (254), (13), (245), (13)(254)}.
As (13) € Hg we have A —=(13) 4 which implies oz, + azx3 = aqx3 + sz, hence
a1 = az. Also, (245) € Hyg, so A =44 =

a1x1 + ag(aqxy) + a%xg + ag(a123) + ag(ayzy) + asc+ a3 + s + ¢ = x4, (27)

which implies asc+ ¢ = 0. Now, using the last equality and taking 1 = x9 =24 =0
and, respectively x; = x3 = x4 = 0, in (27) we get ag = ag = 1.

Denoting ap = ay = I we obtain A(x}) = ax +Ivg+azsz+ x4+, 50 A =94,
which is a contradiction as (24) ¢ Hy.

10) Let H = Hjp = ((12)(345)) = {e,(12)(345),(354), (12), (12)(354), (345)}.
As (12) € Hyp, ie. A =124 it follows T4y = a1Xg + Qory, 1.6. a1 = Q.

Also (345) € Hyg, i.e. A=BPA o A(xy,x0, A(z}), 23) = 24 &

a1x1+agrotag(arxy)+as(aare) +as(ases)+as(agry) +asc+agxs+c = xq, (28)

which (for 1 = x9 = x3 = x4 = 0) implies agc + ¢ = 0. Using the last equality
and taking o = x3 = x4 = 0 and, respectively z; = x9 = x3 = 0, in (28), we get
a3 = ay = I. Denoting a1 = as = a, we have A(x}) = axy + azxs + [v3 + [z +c,
which implies in particular A =G94 — a contradiction, so H # Hyo. O

Theorem 3. There are no 4—T— quasigoups (Q, A) such that H € {Ha1, Haa, ..., Hsp},
where H = {0 € S5|A ="A}.

Proof. In this case the subgroup H is generated by two substitutions o and 3, of
order 3 and, respectively 2, where § is a product of two independent transpositions.
The proof is analogous to those of Theorem 2. We will prove that each equality
H = K, where K € {Ho1, Hoo, ..., Hsp}, leads to a contradiction.

Let (Q, A) be a4—T— quasigroup with the T—form T' = ((Q, +), a1, ag, ag, ay, c)
and let H = {0 € S5 | A=A}

1. If H= Hy = ((123),(12)(45)) then (123) € H,ie. A= 24 so

171 + Qa2 + a3T3 = 13 + Q21 + 3T2.
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Taking x; = z9 = 0 and respectively, x1 = x3 = 0, in the previous equality, we
get a1 = ay = ag, hence T' = ((Q,+), a1, a1, a1, ag, ¢) which implies, in particular,
A =024 — a contradiction, as (12) ¢ H.

2. Let H = Hyy = ((124),(12)(35)), then (124) € H, i.e. A= 129 A hence

Q1T + QX2 + qT4 = Q14 + Q21 + Q4T2.

From the last equality we get a; = ag = g and T' = ((Q, +), a1, a1, a3, a1, ¢),
which implies A = 12 A, which is not possible as (12) ¢ H.

3. If H = Hoz = ((125),(12)(34)) then (123) € H, hence A = 12BY A which
implies a1 = ag and a3 = ay, i.e. T = ((Q,+), a1, a1, a3, a3,c¢). In particular, we
get A =24 — a contradiction, as (12) ¢ H.

4. Let H = Hyy = ((134), (13)(25)). As (134) € H, we have: A =134 so

Q1T + Q323 + uTq = Qx4 + 3T + Q4T3.
From the previous equality we get oy = a3 = ay, i.e. T = ((Q,+), a1, a9, 1,1, ¢)
and, in particular, A = 134 — a contradiction.

5. If H = Hys = ((135), (13)(24)) then (13)(24) € H, ie. A= 13)CY4 5o

171 + Qa2 + a3T3 + gy = Q13 + a4 + 3T + 42,
which implies s = a4 and a3 = as, hence T' = ((Q,+), a1, a2, a1, 2, ¢) so, in
particular, A = 13 A, which is not possible as (13) ¢ H.
6. Let H = Hog = ((145), (14)(23)). As (14)(23) € H, we have A = 1324 4, 5o
o121 + aexo + a3x3 + 0Ty = 1y + oxy + a3xo + aqx,
which implies oy = a4 and g = ag, hence T' = ((Q,+), a1, a2, a2, a1, ¢) and then
A= )A — a contradiction, as (23) ¢ H.
7. Let H = Hyy = ((234), (15)(23)). As (234) € H, we have A = 234, 5o
QX2 + Q3x3 + QT4 = QT4 + Q3T2 + 4T3,
which implies ap = a3 = a4, i.e. T = ((Q,+), a1, a2, a2, a2,¢) and, in particular,
A =034 but (13) ¢ H.

8. If H = Hag = ((235), (14)(23)) then (14)(23) € H, hence A = (M(23) A  which
implies a1 = a4 and ay = ag, i.e. T = ((Q,+), a1, a2, a2, a1, ¢). In particular, we
get A =" A which is not possible as (14) ¢ H

9. If H = Hog = ((245), (13)(24)) then (13)(24) € H, hence A = 1) 4 which
implies a1 = a3 and ay = ay, i.e. T = ((Q,+), a1, ag, a1, a9,c¢). In particular, we
get A = (13) A which is impossible as (13) ¢ H

10. Let H = Hzy = ((345), (12)(34)) then (12)(34) € H, hence A = (1234 4,
which implies g = ag and a3 = ay, i.e. T = ((Q,+), a1, a1, ag, g, ¢). In particular,
we get A = 12 A — a contradiction, as (12) ¢ H.

O

An example of a 4 — T—quasigroup with exactly 20 distinct parastrophes is
(Zs, A), where A(x1, xo, 3, 74) = v1+22+x3+2x4. Inthiscase H ={oc € S5 | A=
“A} = Hio = ((124),(12)). A maximum set of its distinct parastrophes is given by
any set of representatives of cosets by H, for example,

1. A(x}) = 21 + 22 + 23 + 274; 2. (14)A(:c‘11) =21 + xo + 223 + 245

3. GV A(xd) = 21 + 220 + 23 + 245 4. CYA(xh) = 221 + 29 + 13 + 245
5. (15)14(;1:‘11) =21 + 420 + 4x3 + 3145 6. (25)14(3:‘1*) = x1 + 4w + 3w3 + 4wy
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7. (35)A(x‘11) =21 + 329 + 43 + 4a4; 8. (49) 4 (x‘ll) = 4x1 + x9 + 43 + 324;
9. (145)A(:L'4) 4x1+xo+ 313 +47y4; 10. A9 5)A(:17%) = 4x1+4xo+x3+ 314
11. WY A () = 4y + 4o+ 323+ gy 12, DICYA(2d) = 4y + 329 + 23 +4ay;
13 (14)(35) 4 A(x}) = 4x1 + 3z9 + dx3 + 745 14 (154)A(x‘11) =321 + 1o + 4x3 + 4day;
245)/1(1:%) = 3x1 +4x0 + 13 +434; 16. (24)(35) A(a:‘ll) = 31 +4xo +4x3+ 24
17 (254)14(:6‘11) = 3x1+2x9+2w3+214; 18. (25)(34) A(x}) = 221+ 3w2+223+274;
(345) 4 A(x}) = 221 + 229 + w3+ 224;  20. (354)14(38‘11) = 221 + 229 + 223 + 324.

Corollary 2. There exist 4 — T —quasigroups with exactly 20 distinct parastrophes
of any odd order q > 5, where (¢q,3) = 1.
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