

On $4-T$ -quasigroups with exactly 20 distinct parastrophes

Tatiana Rotari, Parascovia Syrbu

Abstract. The T -forms and the spectrum of $4-T$ -quasigroups with exactly 20 distinct parastrophes are considered in the present work. Characterizations of the spectra of finite binary quasigroups with a prescribed number of distinct parastrophes were given by C.C. Lindner and D. Steedly in [1]. Following the results of C.C. Lindner and D. Steedly, M. MacLeish proved that the maximum number of distinct parastrophes of an n -quasigroup (Q, A) is a divisor of $(n+1)!$, and obtained characterizations of the spectrum of finite ternary quasigroups with a prescribed (maximum) number of distinct parastrophes. Binary and ternary linear quasigroups over groups, with a given maximum number of distinct parastrophes have been studied by Belyavskaya, Rotari, Sokhatsky, Pirus, Fryz and others [4–8]. Characterizations of the general T -form of a $4-T$ -quasigroup with exactly 20 distinct parastrophes and some estimations of their spectrum are given in the present work.

Mathematics subject classification: 20N05, 20N15.

Keywords and phrases: n -quasigroup, $n-T$ -quasigroup, T -form, parastrophe, spectrum.

An n -ary groupoid (Q, A) is called an n -ary quasigroup (or an n -quasigroup) if in the equality $A(x_1, x_2, \dots, x_n) = x_{n+1}$ every element of $x_1, x_2, \dots, x_n, x_{n+1}$ is uniquely determined by the remaining n ones. If (Q, A) is an n -quasigroup and $\sigma \in S_{n+1}$, then the operation ${}^\sigma A$, defined by the equivalence

$${}^\sigma A(x_{\sigma 1}, \dots, x_{\sigma n}) = x_{\sigma(n+1)} \Leftrightarrow A(x_1, x_2, \dots, x_n) = x_{n+1},$$

is called a σ -parastrophe or, simply, a parastrophe of A .

C. C. Lindner and S. Steedly showed in [1] that the possible number of distinct parastrophes of a binary quasigroup divides 6, i.e. is 1, 2, 3, or 6. Moreover, they proved that there exist finite binary quasigroups with a given maximum number d of distinct parastrophes, where $d \in \{1, 2, 3, 6\}$, of any order $q \geq 4$.

M. McLeish [2,3] considered analogous questions in the ternary case. She showed that the possible number of distinct parastrophes of an n -quasigroup divides $(n+1)!$ and obtained a series of estimations of the spectra of finite ternary and n -ary quasigroups with a prescribed number of distinct parastrophes. In particular, M. McLeish showed that there exist finite ternary quasigroups:

- 1) with exactly 3 or 4 distinct parastrophes of any order $q \geq 3$;
- 2) with exactly 6, 12 or 24 distinct parastrophes of any order $q \geq 4$;

3) with exactly 1 distinct parastrophe (i.e. a TS –quasigroup) of any order $q \geq 1$.

M. McLeish obtained also a partial characterization of the spectrum of finite ternary quasigroups with exactly 2 or 8 distinct parastrophes.

Remark that the possible maximum number of distinct parastrophes of an n –quasigroup depend on the order of the existing subgroups in S_{n+1} . Namely, if (Q, A) is an n –quasigroup, then $H = \{\sigma \in S_{n+1} | \sigma A = A\}$ is a subgroup of S_{n+1} and the maximum number of distinct parastrophes of (Q, A) is equal to the index of H in S_{n+1} .

Binary quasigroups, which are linear over abelian groups and have a prescribed maximum number of distinct parastrophes, which are also orthogonal, were considered by G. Beleavskaya and T. Popovich (T. Rotari) in [4, 5].

Partial characterizations of ternary quasigroup operations, which are linear over groups and have a given number of distinct parastrophes, are obtained by F. Sokhatsky, Y. Pirus and I. Fryz in [6–8].

It is known that the group S_4 has a total of 30 subgroups which, up to isomorphism, are:

$$\{\varepsilon\}, \mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4, K_4, S_3, D_8, A_4, S_4. \quad (1)$$

Ternary quasigroups (Q, A) , linear over a group $(Q, +)$: $A(x_1, x_2, x_3) = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + c$, where $\alpha_1, \alpha_2, \alpha_3 \in S_Q$, $\alpha_i(0) = 0$, 0 is the neutral element of $(Q, +)$, $i = \overline{1, 3}$, $c \in Q$, and such that the subgroup $H = \{\sigma \in S_4 | \sigma A = A\}$ is one of the subgroups given in (1) are considered in [6, 7]. Remark that a linear n –quasigroup (Q, A) may have different general forms for different isomorphic subgroups $H = \{\sigma \in S_{n+1} | \sigma A = A\}$.

Characterizations of T –forms of the $4 - T$ –quasigroups with exactly 20 distinct parastrophes and some estimations of their spectrum are given in the present work.

Recall that an n –quasigroup is called an $n - T$ –quasigroup if there exist an abelian group $(Q, +)$, its automorphisms $\alpha_1, \alpha_2, \dots, \alpha_n$ and an element $c \in Q$, such that $A(x_1, x_2, \dots, x_n) = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n + c$. In this case the tuple $((Q, +), \alpha_1, \alpha_2, \dots, \alpha_n, c)$ is called a T –form of (Q, A) and $(Q, +)$ is called a T –group of (Q, A) [7, 8].

The possible (maximum) number of distinct parastrophes of a 4 –quasigroup is a divisor of 120 and, if (Q, A) has exactly d distinct parastrophes, then d is the index of the subgroup $H = \{\sigma \in S_5 | \sigma A = A\}$ in the group S_5 . It is known that S_5 has a total of 156 subgroups and that it has no subgroups of order 15, 30 and 40. Hence, there does not exist 4 –quasigroups with exactly 8, 4 or 3 distinct parastrophes.

To obtain a full characterization of the T –forms of a $4 - T$ –quasigroup with exactly 20 distinct parastrophes, we will consider all 30 subgroups of order 6 of the group S_5 , namely:

1) 10 subgroups isomorphic to \mathbb{Z}_6 :

$$H_1 = \langle (123)(45) \rangle, H_2 = \langle (124)(35) \rangle, H_3 = \langle (125)(34) \rangle, H_4 = \langle (134)(25) \rangle,$$

$$H_5 = \langle (135)(24) \rangle, H_6 = \langle (145)(34) \rangle, H_7 = \langle (234)(15) \rangle, H_8 = \langle (235)(14) \rangle,$$

$$H_9 = \langle (245)(13) \rangle, H_{10} = \langle (345)(12) \rangle;$$

2) 20 subgroups isomorphic to S_3 , each generated by two substitutions α and β , of order 3 and, respectively 2, including:

2a) 10 subgroups where β is a transposition

$$\begin{aligned} H_{11} &= \langle (123), (12) \rangle, H_{12} = \langle (124), (12) \rangle, H_{13} = \langle (134), (13) \rangle, \\ H_{14} &= \langle (125), (12) \rangle, H_{15} = \langle (135), (13) \rangle, H_{16} = \langle (145), (14) \rangle, \\ H_{17} &= \langle (234), (23) \rangle, H_{18} = \langle (235), (23) \rangle, H_{19} = \langle (245), (24) \rangle, \\ H_{20} &= \langle (345), (34) \rangle; \end{aligned}$$

2b) 10 subgroups where β is a product of two independent transpositions

$$\begin{aligned} H_{21} &= \langle (123), (12)(45) \rangle, H_{22} = \langle (124), (12)(35) \rangle, H_{23} = \langle (125), (12)(34) \rangle, \\ H_{24} &= \langle (134), (13)(25) \rangle, H_{25} = \langle (135), (13)(24) \rangle, H_{26} = \langle (145), (14)(23) \rangle, \\ H_{27} &= \langle (234), (23)(15) \rangle, H_{28} = \langle (235), (23)(14) \rangle, H_{29} = \langle (245), (13)(24) \rangle, \\ H_{30} &= \langle (345), (34)(12) \rangle. \end{aligned}$$

Theorem 1. Let (Q, A) be a 4-T-quasigroup with the T-group $(Q, +)$ and let $H \in \{H_i, i = \overline{11, 20}\}$, where $H = \{\sigma \in S_5 \mid A = A\}$. Then there exist $\alpha, \beta \in \text{Aut}(Q, +)$ and an element $c \in Q$, where $\alpha \neq \beta$, $\alpha \neq I$, $\beta \neq I$, $\alpha c + c \neq 0$, $\beta c + c \neq 0$, $Ix = -x, \forall x \in Q$, 0 is the neutral element of $(Q, +)$, such that (Q, A) has one of the following T-forms:

$$\begin{aligned} T_1 &= ((Q, +), \alpha, \alpha, \alpha, \beta, c), T_2 = ((Q, +), \alpha, \alpha, \beta, \alpha, c), T_3 = ((Q, +), \alpha, \beta, \alpha, \alpha, c), \\ T_4 &= ((Q, +), \beta, \alpha, \alpha, \alpha, c), T_5 = ((Q, +), I, I, \alpha, \beta, c), T_6 = ((Q, +), I, \alpha, I, \beta, c), \\ T_7 &= ((Q, +), I, \alpha, \beta, I, c), T_8 = ((Q, +), \alpha, I, I, \beta, c), T_9 = ((Q, +), \alpha, I, \beta, I, c), \\ T_{10} &= ((Q, +), \alpha, \beta, I, I, c). \end{aligned}$$

Proof. Let (Q, A) be a 4-T-quasigroup, $T = ((Q, +), \alpha_1, \alpha_2, \alpha_3, \alpha_4, c)$ be a T-form and let $H \in \{H_i, i = \overline{11, 20}\}$, where $H = \{\sigma \in S_5 \mid A = A\}$.

1) If $H = H_{11} = \langle (123), (12) \rangle = \{\varepsilon, (123), (132), (12), (13), (23)\}$ then we have $(12), (13) \in H$, hence $A = {}^{(12)}A$ and $A = {}^{(13)}A$, i.e.

$$\begin{aligned} \begin{cases} \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + c = \alpha_1 x_2 + \alpha_2 x_1 + \alpha_3 x_3 + \alpha_4 x_4 + c \\ \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + c = \alpha_1 x_3 + \alpha_2 x_2 + \alpha_3 x_1 + \alpha_4 x_4 + c \end{cases} \Leftrightarrow \\ \begin{cases} \alpha_1 x_1 + \alpha_2 x_2 = \alpha_1 x_2 + \alpha_2 x_1 \\ \alpha_1 x_1 + \alpha_3 x_3 = \alpha_1 x_3 + \alpha_3 x_1. \end{cases} \end{aligned}$$

Taking $x_1 = 0$, the last two equalities imply $\alpha_1 = \alpha_2 = \alpha_3$. Denoting $\alpha_1 = \alpha_2 = \alpha_3 = \alpha$ and $\alpha_4 = \beta$, the operation A takes the form:

$$A(x_1^4) = \alpha x_1 + \alpha x_2 + \alpha x_3 + \beta x_4 + c,$$

where the 4-tuple (x_1, x_2, x_3, x_4) is denoted by (x_1^4) .

As $(14) \notin H_{11}$, we have: $A \neq^{(14)} A \Leftrightarrow \alpha x_1 + \beta x_4 \neq \beta x_1 + \alpha x_4 \Leftrightarrow \alpha(x_1 - x_4) \neq \beta(x_1 - x_4)$ i.e. $\alpha \neq \beta$. Also, $(15) \notin H_{11} \Rightarrow A \neq^{(15)} A \Rightarrow A(A(x_1^4), x_2, x_3, x_4) \neq x_1, \Rightarrow$

$$\alpha(\alpha x_1 + \alpha x_2 + \alpha x_3 + \beta x_4 + c) + \alpha x_2 + \alpha x_3 + \beta x_4 + c \neq x_1.$$

Denoting $\alpha x_2 + \alpha x_3 + \beta x_4 + c$ by y in the last inequality we obtain:

$$\alpha(\alpha x_1 + y) + y \neq x_1,$$

which for $\alpha = I$, implies $-(-x_1 + y) + y \neq x_1 \Leftrightarrow x_1 \neq x_1$, a contradiction, hence $\alpha \neq I$. Analogously, as $(45) \notin H_{11}$ we have:

$$A \neq^{(45)} A \Rightarrow A(x_1, x_2, x_3), A(x_1^4)) \neq x_4 \Leftrightarrow$$

$$\alpha x_1 + \alpha x_2 + \alpha x_3 + \beta(\alpha x_1 + \alpha x_2 + \alpha x_3 + \beta x_4 + c) + c \neq x_4.$$

Denoting $\alpha x_1 + \alpha x_2 + \alpha x_3 + c$ by y in the last inequality we have:

$$y + \beta(y + \beta x_4) \neq x_4,$$

which implies $\beta \neq I$ (as for $\beta = I$ we get $x_4 \neq x_4$, a contradiction).

2) Let $H = H_{12} = \langle(124), (12)\rangle = \{\varepsilon, (124), (142), (12), (24), (14)\}$. Then $(12), (14) \in H$, i.e. $A =^{(12)} A$ and $A =^{(14)} A$, so $\alpha_1 x_1 + \alpha_2 x_2 = \alpha_1 x_2 + \alpha_2 x_1$ and $\alpha_1 x_1 + \alpha_4 x_4 = \alpha_1 x_4 + \alpha_4 x_1$, which imply $\alpha_1 = \alpha_2 = \alpha_4$. Denoting $\alpha_1 = \alpha_2 = \alpha_4 = \alpha$ and $\alpha_3 = \beta$, we get the T -form: $T_2 = ((Q, +), \alpha, \alpha, \beta, \alpha, c)$.

As $(13), (15)$ and (35) are not in H_{12} , we have: $A \neq^{(13)} A$, $A \neq^{(15)} A$ and $A \neq^{(35)} A$, hence:

$$\alpha x_1 + \beta x_3 \neq \alpha x_3 + \beta x_1,$$

$$\alpha(\alpha x_1 + \alpha x_2 + \beta x_3 + \alpha x_4 + c) + \alpha x_2 + \beta x_3 + \alpha x_4 + c \neq x_1,$$

$$\alpha x_1 + \alpha x_2 + \beta(\alpha x_1 + \alpha x_2 + \beta x_3 + \alpha x_4 + c) + \alpha x_4 + c \neq x_3,$$

which imply, analogously to item 1), $\alpha \neq \beta, \alpha \neq I$ and $\beta \neq I$, respectively.

3) $H = H_{13} = \langle(134), (13)\rangle = \{\varepsilon, (134), (143), (13), (34), (14)\}$. Using the fact that $(13), (14) \in H_{13}$, we obtain $A =^{(13)} A$ and $A =^{(14)} A$, so $\alpha_1 x_1 + \alpha_3 x_3 = \alpha_1 x_3 + \alpha_3 x_1$ and $\alpha_1 x_1 + \alpha_4 x_4 = \alpha_1 x_4 + \alpha_4 x_1$, which imply $\alpha_1 = \alpha_3 = \alpha_4$. Denoting $\alpha_1 = \alpha_3 = \alpha_4$ by α and α_2 by β , we get the T -form: $((Q, +), \alpha, \beta, \alpha, \alpha, c) = T_3$.

Using the fact that $(12), (15)$ and (25) are not in H_{13} , i.e. $A \neq^{(12)} A$, $A \neq^{(15)} A$ and $A \neq^{(25)} A$, we obtain:

$$\alpha_1 x_1 + \alpha_2 x_2 \neq \alpha_1 x_2 + \alpha_2 x_1,$$

$$\alpha(\alpha x_1 + \beta x_2 + \alpha x_3 + \alpha x_4 + c) + \beta x_2 + \alpha x_3 + \alpha x_4 + c \neq x_1,$$

$$\alpha x_1 + \beta(\alpha x_1 + \beta x_2 + \alpha x_3 + \alpha x_4 + c) + \alpha x_3 + \alpha x_4 + c \neq x_2,$$

which imply $\alpha \neq \beta, \alpha \neq I$ and $\beta \neq I$.

4) $H = H_{14} = \langle(125), (12)\rangle = \{\varepsilon, (125), (12), (152), (25), (15)\}$.

As (12), (15) $\in H_{12}$, we have $A =^{(12)}A$ and $A =^{(15)}A$, i.e.

$$\alpha_1 x_1 + \alpha_2 x_2 = \alpha_1 x_2 + \alpha_2 x_1, \quad (2)$$

$$\alpha_1(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + c) + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + c = x_1. \quad (3)$$

Taking $x_2 = 0$ in (2), we obtain

$$\alpha_1 = \alpha_2. \quad (4)$$

For $x_1 = x_2 = x_3 = x_4 = 0$, (3) implies

$$\alpha_1 c + c = 0. \quad (5)$$

Using (4) and (5), and taking $x_1 = x_3 = x_4 = 0$ in (3), we get $\alpha_1(\alpha_2 x_2) = I(\alpha_2 x_2)$, i.e. $\alpha_1 = I$, so

$$\alpha_1 = \alpha_2 = I. \quad (6)$$

Denoting $\alpha_3 = \alpha$ and $\alpha_4 = \beta$, we obtain the T -form $T_4 = ((Q, +), I, I, \alpha, \beta, c)$.

Now, using the fact that the transpositions (23), (35), (14) do not belong to H_{14} , we have the inequalities:

$$\alpha_2 x_2 + \alpha_3 x_3 \neq \alpha_2 x_3 + \alpha_3 x_2,$$

$$Ix_1 + Ix_2 + \alpha(Ix_1 + Ix_2 + \alpha x_3 + \beta x_4 + c) + \beta x_4 + c \neq x_3,$$

$$Ix_1 + Ix_2 + \alpha x_3 + \beta(Ix_1 + Ix_2 + \alpha x_3 + \beta x_4 + c) + c \neq x_4,$$

which imply $\alpha \neq \beta$, $\alpha \neq I$ and $\beta \neq I$, respectively.

5) $H = H_{15} = \langle (135), (13) \rangle = \{\varepsilon, (135), (13), (35), (15), (153)\}$. Taking (13), (15) $\in H_{15}$, we have: $^{(13)}A = A$ and $^{(15)}A = A$, i.e.

$$\alpha_1 x_1 + \alpha_3 x_3 = \alpha_1 x_3 + \alpha_3 x_1, \quad (7)$$

$$\alpha_1(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + c) + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + c = x_1. \quad (8)$$

The equality (7) implies

$$\alpha_1 = \alpha_3, \quad (9)$$

and (8) implies $\alpha_1 c + c = 0$ (for $x_1 = x_2 = x_3 = x_4 = 0$). Using the equality $\alpha_1 c + c = 0$ and taking $x_1 = x_2 = x_3 = 0$ in (8), we get

$$\alpha_1(\alpha_4 x_4) + \alpha_4 x_4 = 0,$$

i.e. $\alpha_1 = I$. According to (9),

$$\alpha_1 = \alpha_3 = I,$$

so, denoting $\alpha_2 = \alpha$ and $\alpha_4 = \beta$, we get $T_5 = ((Q, +), I, \alpha, I, \beta, c)$. As (24), (25) and (45) are not in H_{15} , the following inequalities hold:

$$\alpha x_2 + \beta x_4 \neq \alpha x_4 + \beta x_2,$$

$$Ix_1 + \alpha(Ix_1 + \alpha x_2 + Ix_3 + \beta x_4 + c) + Ix_3 + \beta x_4 + c \neq x_2,$$

$$Ix_1 + \alpha x_2 + Ix_3 + \beta(Ix_1 + \alpha x_2 + Ix_3 + \beta x_4 + c) + c \neq x_4,$$

which imply, respectively, $\alpha \neq \beta, \alpha \neq I, \beta \neq I$.

6) $H = H_{16} = \langle (145), (14) \rangle = \{\varepsilon, (145), (154), (14), (14), (45)\}$. From (14), (15) $\in H_{16}$ it follows $A =^{(14)}A$ and $A =^{(15)}A$, i.e.

$$\alpha_1 x_1 + \alpha_4 x_4 = \alpha_1 x_4 + \alpha_4 x_1,$$

$$\alpha_1(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + c) + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + c = x_1, \quad (10)$$

which imply, respectively $\alpha_1 = \alpha_4$ and $\alpha_1 c + c = 0$. Using the last equality in (10) and taking $x_1 = x_3 = x_4 = 0$, we have $\alpha_1(\alpha_2 x_2) = I(\alpha_2 x_2), \forall x_2 \in Q$, i.e. $\alpha_1 = I$, hence

$$\alpha_1 = \alpha_4 = I. \quad (11)$$

Denoting $\alpha_2 = \alpha$ and $\alpha_3 = \beta$, we get $T_6 = ((Q, +), I, \alpha, \beta, I, c)$. Now, using the fact that (23), (25) and (35) do not belong to H_{16} , we get the inequalities

$$\alpha x_2 + \beta x_3 \neq \alpha x_3 + \beta x_2,$$

$$Ix_1 + \alpha(Ix_1 + \alpha x_2 + \beta x_3 + Ix_4 + c) + \beta x_3 + Ix_4 + c \neq x_3,$$

$$Ix_1 + \alpha x_2 + \beta(Ix_1 + \alpha x_2 + \beta x_3 + Ix_4 + c) + Ix_4 + c \neq x_3,$$

which imply, respectively, $\alpha \neq \beta, \alpha \neq I, \beta \neq I$.

7) $H_{17} = \langle (234), (23) \rangle = \{\varepsilon, (234), (243), (23), (24), (34)\}$. From the fact that (23), (24), (34) $\in H_{17}$ it follows: $A =^{(23)}A, A =^{(24)}A, A =^{(34)}A$, i.e. $\alpha_2 x_2 + \alpha_3 x_3 = \alpha_2 x_3 + \alpha_3 x_2, \alpha_2 x_2 + \alpha_4 x_4 = \alpha_2 x_4 + \alpha_4 x_2, \alpha_3 x_3 + \alpha_4 x_4 = \alpha_3 x_4 + \alpha_4 x_3$, which imply: $\alpha_2 = \alpha_3 = \alpha_4$. Denoting $\alpha_2 = \alpha_3 + \alpha_4 = \alpha$ and $\alpha_1 = \beta$, we get the T -form: $T_7 = ((Q, +), \beta, \alpha, \alpha, \alpha, c)$.

The inequalities $\alpha \neq \beta, \beta \neq I$ and $\alpha \neq I$ follow, respectively, from those given by (12) $\notin H_{17}$, (15) $\notin H_{17}$, (25) $\notin H_{17}$, as:

$$\beta x_1 + \alpha x_2 \neq \beta x_2 + \alpha x_1,$$

$$\beta(\beta x_1 + \alpha x_2 + \alpha x_3 + \alpha x_4 + c) + \alpha x_2 + \alpha x_3 + \alpha x_4 + c \neq x_1,$$

$$\beta x_1 + \alpha(\beta x_2 + \alpha x_2 + \alpha x_3 + \alpha x_4 + c) + \alpha x_3 + \alpha x_4 + c \neq x_2.$$

8) $H = H_{18} = \langle (235), (23) \rangle = \{\varepsilon, (235), (23), (35), (253), (25)\}$.

From (23), (35) $\in H_{18}$, we have $A =^{(23)}A$ and $A =^{(35)}A$, hence

$$\alpha_2 x_2 + \alpha_3 x_3 = \alpha_2 x_3 + \alpha_3 x_2,$$

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + c) + \alpha_4 x_4 + c = x_3, \quad (12)$$

which imply, respectively,

$$\alpha_2 = \alpha_3 \quad (13)$$

and $\alpha_3c + c = 0$. Using the last equality and taking $x_2 = x_3 = x_4 = 0$ in (12), we have $\alpha_3(\alpha_1x_1) = I(\alpha_1x_1)$, which implies $\alpha_3 = I$, so (according to (13)), $\alpha_1 = \alpha_3 = I$. Denoting $\alpha_2 = \alpha$ and $\alpha_4 = \beta$, we get $T = T_8 = ((Q, +), \alpha, I, I, \beta, c)$.

Using T_8 and the fact that (14) $\notin H_{18}$, (15) $\notin H_{18}$ and (45) $\notin H_{18}$, we obtain the inequalities:

$$\begin{aligned} \alpha x_1 + \beta x_4 &\neq \alpha x_4 + \beta x_1, \\ \alpha(\alpha x_1 + Ix_2 + Ix_3 + \beta x_4 + c) + Ix_2 + Ix_3 + \beta x_4 + c &\neq x_1, \\ \alpha x_1 + Ix_2 + Ix_3 + \beta(\alpha x_1 + Ix_2 + Ix_3 + \beta x_4 + c) + c &\neq x_4, \end{aligned}$$

which imply, respectively, $\alpha \neq \beta$, $\alpha \neq I$ and $\beta \neq I$.

9) $H = H_{19} = \langle (245), (24) \rangle = \{\varepsilon, (245), (254), (24), (25), (25), (45)\}$.

From (24), (25) $\in H_{19}$ it follows, respectively,

$$\begin{aligned} \alpha_2 x_2 + \alpha_4 x_4 &= \alpha_2 x_4 + \alpha_4 x_2, \\ \alpha_1 x_1 + \alpha_2(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + c) + \alpha_3 x_3 + \alpha_4 x_4 + c &= x_2, \end{aligned} \quad (14)$$

which imply, $\alpha_2 = \alpha_4$ and $\alpha_2 c + c = 0$. Using the equality $\alpha_2 c + c = 0$ and taking $x_1 = x_2 = x_4 = 0$ in (14), we get $\alpha_2(\alpha_3 x_3) = I(\alpha_3 x_3)$, so $\alpha_2 = I$, i.e. $\alpha_2 = \alpha_4 = I$. Denoting $\alpha_1 = \alpha$ and $\alpha_3 = \beta$, we obtain the T -form $T_9 = ((Q, +), \alpha, I, I, \beta, I, c)$. Now, using T_9 and the fact that (13) $\notin H_{19}$, (15) $\notin H_{19}$ and (45) $\notin H_{19}$ we obtain the inequalities:

$$\begin{aligned} \alpha x_1 + \beta x_3 &\neq \alpha x_3 + \beta x_1, \\ \alpha(\alpha x - 1 + Ix_2 + \beta x_3 + Ix_4 + c) + Ix_2 + \beta x_3 + Ix_4 + c &\neq x_1, \\ \alpha x_1 + Ix_2 + \beta(\alpha x_1 + Ix_2 + \beta x_3 + Ix_4 + c) + Ix_3 + c &\neq x_3, \end{aligned}$$

which imply, respectively, $\alpha \neq \beta$, $\beta \neq I$, $\alpha \neq I$.

10) $H_{20} = \langle (345), (34) \rangle = \{\varepsilon, (345), (354), (54), (35), (45)\}$.

As (34), (35) $\in H_{20}$, we have $A =^{(34)} A$ and $A =^{(35)} A$, i.e.

$$\begin{aligned} \alpha_3 x_3 + \alpha_4 x_4 &= \alpha_3 x_4 + \alpha_4 x_3, \\ \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + c) + \alpha_4 x_4 + c &= x_3, \end{aligned} \quad (15)$$

which imply, respectively, $\alpha_3 = \alpha_4$ and $\alpha_3 c + c = 0$. Using the equality $\alpha_3 c + c = 0$ and taking $x_1 = x_2 = x_3 = 0$ in (15), we obtain $\alpha(\alpha_4 x_4) = I(\alpha_4 x_4)$, so $\alpha \alpha_3 = I$, i.e. $\alpha_3 = \alpha_4 = I$. Denoting $\alpha_1 = \alpha$ and $\alpha_2 = \beta$ we get the T -form $T_{20} = ((Q, +), \alpha, \beta, I, I, c)$. The inequalities $\alpha \neq \beta$, $\alpha \neq I$ and $\beta \neq I$ follow from the fact that (12) $\notin H_{20}$, (15) $\notin H_{20}$ and (25) $\notin H_{20}$ (using the T -form T_{10}), i.e. from the following inequalities, respectively:

$$\begin{aligned} \alpha x_1 + \beta x_2 &\neq \alpha x_2 + \beta x_1, \\ \alpha(\alpha x_1 + \beta x_2 + Ix_3 + Ix_4 + c) + \beta x_2 + Ix_3 + Ix_4 + c &\neq x_1, \\ \alpha x_1 + \beta(\alpha x_1 + \beta x_2 + Ix_3 + Ix_4 + c) + Ix_3 + Ix_4 + c &\neq x_2. \end{aligned}$$

□

Proposition 1. *The 4 – T–quasigroup (Q, A) with the T–form*

$$T_1 = ((Q, +), \alpha, \alpha, \alpha, \beta, c),$$

where $\alpha \neq \beta$, $\alpha \neq I$, $\beta \neq I$, $I(x) = -x$, $\forall x \in Q$, has exactly 20 distinct parastrophes.

Proof. It is sufficient to show that $H = \{\sigma \in S_5 | {}^\sigma A = A\}$ is a subgroup of order six. If T_1 is a T–form of the n – T–quasigroup (Q, A) , then

$$A(x_1^4) = \alpha x_1 + \alpha x_2 + \alpha x_3 + \beta x_4 + c, \forall x_1, x_2, x_3, x_4 \in Q,$$

so ${}^\sigma A = A$, $\forall \sigma \in S'_5$, where $S'_5 = \{\sigma \in S_5 | \sigma(4) = 4, \sigma(5) = 5\}$, i.e. $S'_5 \subseteq H$.

Let consider the following set of representativies of the cosets $\{S'_5 \tau | \tau \in S_5\}$:

$$U = \{\varepsilon, (14), (24), (34), (15), (25), (35), (45), (14)(25), (14)(35), (15)(24),$$

$$(15)(34), (24)(35), (25)(34), (145), (154), (245), (254), (345), (354)\}.$$

If $\tau \in U$, then $\beta \in S'_5 \tau \Leftrightarrow \exists \sigma \in S'_5 : \beta = \sigma \tau \Leftrightarrow {}^\beta A = {}^{\sigma \tau} A = {}^\tau ({}^\sigma A) = {}^\tau A$. We will prove below that $\tau \notin H, \forall \tau \in U \setminus \{\varepsilon\}$, i.e. that $H = S'_5$.

If $(14) \in H$ then: $A = {}^{(14)} A \Leftrightarrow \alpha x_1 + \alpha x_2 + \alpha x_3 + \beta x_4 + c = \alpha x_4 + \alpha x_2 + \alpha x_3 + \beta x_1 + c \Rightarrow \alpha = \beta$, a contradiction, so $(14) \notin H$.

Analogously, $\alpha \neq \beta$ implies $(24) \notin H$ and $(34) \notin H$.

If $(15) \in H$ then: $A = {}^{(15)} A \Leftrightarrow A(A(x_1^4), x_2, x_3, x_4) = x_2 \Leftrightarrow \alpha(\alpha x_1 + \alpha x_2 + \alpha x_3 + \beta x_4 + c) + \alpha x_2 + \alpha x_3 + \beta x_4 + c = x_1$. Denoting $\alpha x_2 + \alpha x_3 + \alpha x_4 + c$ by y , we get $\alpha(\alpha x_1 + y) + y = x_1$, which (for $x_1 = 0$) implies $\alpha = I$ – a contradiction, so $(15) \notin H$.

Analogously, we get $(25) \notin H$ and $(35) \notin H$.

Also:

$$\begin{aligned} A = {}^{(45)} A &\Leftrightarrow A(x_1^3, A(x_1^4)) = x_4 \Leftrightarrow \\ \alpha x_1 + \alpha x_2 + \alpha x_3 + \beta(\alpha x_1 + \alpha x_2 + \alpha x_3 + \beta x_4 + c) + c &= x_4. \end{aligned}$$

Denoting $\alpha x_1 + \alpha x_2 + \alpha x_3 + x = y$ in the last equality we get: $\beta(\beta x_4 + y) + y = x_4$, which (for $x_4 = 0$) implies $\beta = I$ – a contradiction, hence $(45) \notin H$.

If $(14)(35) \in H$, then: $A = {}^{(14)(35)} A \Leftrightarrow A(x_1^4) = {}^{(34)} A(x_4, x_2, x_3, x_1) \Leftrightarrow A(x_4, x_2, A(x_1^4), x_1) = x_3 \Leftrightarrow$

$$\alpha x_4 + \alpha x_2 + \alpha(\alpha x_1 + \alpha x_2 + \alpha x_3 + \beta x_4 + c) + \beta x_1 + c = x_3. \quad (16)$$

Taking $x_1 = x_2 = x_3 = x_4$ in the last equality we get $\alpha c + c = 0$. Using $\alpha c + c = 0$ and taking $x_1 = x_3 = x_4 = 0$ in (16) we obtain $\alpha(\alpha x_2) = I(\alpha x_2)$, i.e. $\alpha = I$, a contradiction, so $(14)(35) \notin H$. Analogously, we obtain $(14)(25) \notin H$, $(15)(24) \notin H$, $(15)(34) \notin H$, $(24)(35) \notin H$ and $(25)(34) \notin H$.

If $(145) \in H$, then we have:

$$\begin{aligned} A = {}^{(145)} A &\Leftrightarrow A(x_4, x_2, x_3, A(x_1^4)) = x_1 \Leftrightarrow \\ \alpha x_4 + \alpha x_2 + \alpha x_3 + \beta(\alpha x_1 + \alpha x_2 + \alpha x_3 + \beta x_4 + c) + c &= x_1. \end{aligned} \quad (17)$$

Taking $x_1 = x_2 = x_3 = x_4 = 0$ in (17) we get $\beta c + c = 0$. Using the equality $\beta c + c = 0$ and taking $x_1 = x_3 = x_4 = 0$ in (17), we obtain $\beta(\alpha x_2) = I(\alpha x_2)$, which implies $\beta = I$, a contradiction, so $(145) \notin H$.

Analogously, we get that each of the substitutions: (154), (245), (254), (345), (354) does not belong to H . Hence, $H = S'_5 \cong S_3$, i.e. (Q, A) has exactly 20 distinct parastrophes. \square

Corollary 1. *A 4-T-quasigroup (Q, A) , where $\{\sigma \in S_5 | A =^\sigma A\} = \langle (123), (23) \rangle$, has exactly 20 distinct parastrophes if and only if it has a T-form $((Q, +), \alpha, \alpha, \alpha, \beta, c)$, where $\alpha \neq \beta$, $\alpha \neq I$, $\beta \neq I$, $I(x) = -x, \forall x \in Q$.*

Theorem 2. *There do not exist 4-T-quasigroups (Q, A) such that the group $H = \{\sigma \in S_5 | A =^\sigma A\}$ is isomorphic to \mathbb{Z}_6 .*

Proof. Let (Q, A) be a 4-T-quasigroup with T-form $((Q, +), \alpha_1, \alpha_2, \alpha_3, \alpha_4, c)$, and let $H = \{\sigma \in S_5 | A =^\sigma A\}$. The group S_5 has 10 subgroups isomorphic to \mathbb{Z}_6 : $H_i, \overline{1, 10}$. It will be shown below that $H \neq H_i$, for every $i = \overline{1, 10}$.

1) Let $H = H_1 = \langle (123)(45) \rangle = \{\varepsilon, (123)(45), (132), (45), (123), (132)(45)\}$. As $(123) \in H_1$, we have $A =^{(123)} A \Leftrightarrow A(x_1^4) = A(x_3, x_1, x_2, x_4)$, which implies

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = \alpha_1 x_3 + \alpha_2 x_1 + \alpha_3 x_2. \quad (18)$$

Taking $x_1 = x_3 = 0$, and respectively $x_1 = x_2 = 0$, in (18) we get $\alpha_2 = \alpha_3$ and $\alpha_1 = \alpha_3$, i.e. $\alpha_1 = \alpha_2 = \alpha_3$.

Denoting $\alpha_1 = \alpha_2 = \alpha_3 = \alpha$, we obtain $T = ((Q, +), \alpha, \alpha, \alpha, \alpha, c)$, i.e. $A(x_1^4) = \alpha x_1 + \alpha x_2 + \alpha x_3 + \alpha x_4 + c$. Also, $(45) \in H_1$, so $A =^{(45)} A$, i.e. $x_4 = A(x_1, x_2, x_3, A(x_1^4)) \Leftrightarrow$

$$\alpha x_1 + \alpha x_2 + \alpha x_3 + \alpha(\alpha x_1 + \alpha x_2 + \alpha x_3 + \alpha x_4 + c) + c = x_4, \quad (19)$$

which (for $x_1 = x_2 = x_3 = x_4 = 0$) implies $\alpha_4 c + c = 0$. Using the last equality in (19) and taking $x_1 = x_2 = x_4 = 0$, we have $\alpha_4(\alpha(x_3)) = I(\alpha x_3)$, i.e. $\alpha \alpha_4 = I$, hence $T = ((Q, +), \alpha, \alpha, \alpha, I, c)$. But an 4-T-quasigroups (Q, A) with such a T-form satisfies, for example, the equality $A =^{(12)} A$ and $(12) \notin H_1$, hence $H \neq H_1$.

2) Let $H = H_2 = \langle (124)(35) \rangle = \{\varepsilon, (124)(35), (1142), (35), (124), (142)(35)\}$. As $(124) \in H$, we have $A =^{(124)} A \Leftrightarrow A(x_1^4) = A(x_4, x_1, x_3, x_2)$, which implies

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_4 x_4 = \alpha_1 x_4 + \alpha_2 x_1 + \alpha_4 x_2. \quad (20)$$

Taking $x_1 = x_2 = 0$ and respectively $x_1 = x_4 = 0$, in (20), we get $\alpha_1 = \alpha_2 = \alpha_4$.

Denoting $\alpha_1 = \alpha_2 = \alpha_4 = \alpha$, we get $T = ((Q, +), \alpha, \alpha, \alpha, \alpha, c)$, i.e. $A(x_1^4) = \alpha x_1 + \alpha x_2 + \alpha x_3 + \alpha x_4 + c$, which implies in particular $A =^{(12)} A$, a contradiction, as $(12) \notin H_2$, so $H \neq H_2$.

3) Let $H = H_3 = \langle (125)(34) \rangle = \{\varepsilon, (125)(34), (152), (34), (125), (152)(34)\}$.

As $(34) \in H_3$ we have $A =^{(34)} A$, which implies $\alpha_3 x_3 + \alpha_4 x_4 = \alpha_3 x_4 + \alpha_4 x_3$, so (taking $x_4 = 0$) $\alpha_3 = \alpha_4$.

Let us denote $\alpha_3 = \alpha_4 = \alpha$ and let us consider $(125) \in H_3$. As $A =^{(125)} A$, we get $A(x_2, A(x_1^4), x_3, x_4) = x_1$, i.e.

$$\alpha_1 x_2 + \alpha_2(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + c) + \alpha x_3 + \alpha x_4 + c = x_1, \quad (21)$$

which (for $x_1 = x_2 = x_3 = x_4 = 0$) implies $\alpha_2 c + c = 0$. Using the last equality in (21) and taking $x_1 = x_2 = x_4 = 0$, we get $\alpha_2(\alpha x_3) = I(\alpha x_3)$, i.e. $\alpha_2 = I$. Also, for $x_1 = x_3 = x_4 = 0$, the equality (21) implies

$$\alpha_2^2 x_2 = I(\alpha_1 x_2) \Leftrightarrow x_2 = I(\alpha_1 x_2),$$

i.e. $\alpha_1 = I$, hence $T = ((Q, +), I, I, \alpha, \alpha, c)$. In particular, we obtained $A =^{(12)} A$, impossible, as $(12) \notin H_3$.

4) Let $H = H_4 = \langle (134)(25) \rangle = \{\varepsilon, (134)(25), (143), (25), (134), (143)(25)\}$. From $(134) \in H_4$ we have $A =^{(134)} A \Leftrightarrow A(x_1^4) = A(x_4, x_2, x_1, x_3)$, hence

$$\alpha_1 x_1 + \alpha_3 x_3 + \alpha_4 x_4 = \alpha_1 x_4 + \alpha_3 x_1 + \alpha_4 x_3. \quad (22)$$

Taking $x_1 = x_3 = 0$ and, respectively $x_1 = x_4 = 0$, in (22) we get $\alpha_1 = \alpha_4$ and $\alpha_3 = \alpha_4$, so $\alpha_1 = \alpha_3 = \alpha_4$.

Denoting $\alpha_1 = \alpha_3 = \alpha_4 = \alpha$, we obtain the T -form $T = ((Q, +), \alpha, \alpha_2, \alpha, \alpha, c)$, so $A(x_1^4) = \alpha x_1 + \alpha_2 x_2 + \alpha x_3 + \alpha x_4 + c$, which implies, for example, $A =^{(13)} A$, a contradiction as $(13) \notin H_4$, so $H \neq H_4$.

5) Let $H = H_5 = \langle (135)(24) \rangle = \{\varepsilon, (135)(24), (153), (24), (135), (153)(24)\}$. As $(24) \in H_5$ we have $A =^{(24)} A$, i.e. $\alpha_2 x_2 + \alpha_4 x_4 = \alpha_2 x_4 + \alpha_4 x_2$, which implies $\alpha_2 = \alpha_4$. Let us denote $\alpha_2 = \alpha_4 = \alpha$ and let us consider $A =^{(135)} A \Leftrightarrow A(A(x_1^4), x_2, x_1, x_4) = x_3 \Leftrightarrow$

$$\alpha_1^2 + (\alpha \alpha_1) x_2 + (\alpha_3 \alpha_1) x_3 + (\alpha \alpha_1) x_4 + \alpha_1 c + \alpha x_2 + \alpha_3 x_1 + \alpha x_4 + c = x_3. \quad (23)$$

Taking $x_1 = x_2 = x_3 = 0$ and, respectively $x_2 = x_3 = x_4 = 0$, we obtain $\alpha_1 = \alpha_3 = I$, so $A(x_1^4) = I x_1 + \alpha x_2 + I x_3 + \alpha x_4 + c$, which implies $A =^{(13)} A$, where $(13) \notin H_5$.

6) Let $H = H_6 = \langle (145)(23) \rangle = \{\varepsilon, (145)(23), (154), (23), (145), (154)(23)\}$. From $(23) \in H$, i.e. $A =^{(23)} A$, we get $\alpha_2 x_2 + \alpha_3 x_3 = \alpha_2 x_3 + \alpha_3 x_2$, so $\alpha_2 = \alpha_3$. Denoting $\alpha_2 = \alpha_3 = \alpha$, it follows $T = ((Q, +), \alpha_1, \alpha, \alpha, \alpha_4, c)$.

Also, $(145) \in H_6$, so $A =^{(145)} A \Leftrightarrow A(A(x_1^4), x_2, x_3, x_1) = x_4 \Leftrightarrow$

$$\alpha_1^2 + (\alpha \alpha_1) x_2 + (\alpha \alpha_1) x_3 + (\alpha_4 \alpha_1) x_4 + \alpha_1 c + \alpha x_2 + \alpha x_3 + \alpha_4 x_4 + c = x_4, \quad (24)$$

which (for $x_1 = x_2 = x_3 = x_4 = 0$) implies $\alpha_1 c + c = 0$.

Using the last equality and taking, respectively, $x_1 = x_2 = x_4 = 0$ and $x_1 = x_2 = x_3 = 0$ in (24), we obtain $\alpha_1 = \alpha_4 = I$, hence $A(x_1^4) = I x_1 + \alpha x_2 + \alpha x_3 + I x_4 + c$ which implies, in particular, $A =^{(14)} A$ – a contradiction, as $(14) \notin H_6$.

7) $H = H_7 = \langle (234)(15) \rangle = \{\varepsilon, (234)(15), (243), (15), (234), (15)(243)\}$.

From $(234) \in H_7$ it follows $A =^{(234)} A$, hence

$$\alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 = \alpha_2 x_4 + \alpha_3 x_2 + \alpha_4 x_3. \quad (25)$$

Taking $x_2 = x_3 = 0$ and, respectively $x_2 = x_4 = 0$, in (25) we obtain $\alpha_2 = \alpha_4$ and $\alpha_3 = \alpha_4$, so $\alpha_2 = \alpha_3 = \alpha_4$.

Denoting $\alpha_2 = \alpha_3 = \alpha_4 = \alpha$, we get $A(x_1^4) = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 + c$, which implies, for example, $A =^{(23)} A$ – a contradiction, as $(23) \notin H_7$.

8) $H = H_8 = \langle (14)(235) \rangle = \{\varepsilon, (14)(235), (253), (14), (235), (14)(253)\}$.

As $(14) \in H_8$, i.e. $A =^{(14)} A$, it follows $\alpha_1 x_1 + \alpha_4 x_4 = \alpha_1 x_4 + \alpha_4 x_1$, so $\alpha_1 = \alpha_4$. Also $(235) \in H_8 \Rightarrow A =^{(235)} A \Leftrightarrow A(A(x_1^4), x_2, x_4) = x_3 \Leftrightarrow$

$$\alpha_1 x_1 + \alpha_2(\alpha_1 x_1) + \alpha_2^2(\alpha_3 x_3) + \alpha_2(\alpha_1 x_4) + \alpha_2 c + \alpha_3 x_2 + \alpha_1 x_4 + c = x_3, \quad (26)$$

which implies $\alpha_2 c + c = 0$. Using the last equality and taking $x_1 = x_2 = x_3 = 0$ and, respectively $x_1 = x_3 = x_4 = 0$, in (26) we get $\alpha_2 = \alpha_3 = I$.

Denoting $\alpha_1 = \alpha_4 = \alpha$ we obtain $A(x_1^4) = \alpha x_1 + I x_2 + I x_3 + \alpha x_4 + c$, which implies, in particular, $A =^{(23)} A$ – a contradiction as $(23) \in H_8$.

9) Let $H = H_9 = \langle (13)(245) \rangle = \{\varepsilon, (13)(245), (254), (13), (245), (13)(254)\}$. As $(13) \in H_9$ we have $A =^{(13)} A$ which implies $\alpha_1 x_1 + \alpha_3 x_3 = \alpha_1 x_3 + \alpha_3 x_1$, hence $\alpha_1 = \alpha_3$. Also, $(245) \in H_9$, so $A =^{(245)} A \Rightarrow$

$$\alpha_1 x_1 + \alpha_2(\alpha_1 x_1) + \alpha_2^2 x_2 + \alpha_2(\alpha_1 x_3) + \alpha_2(\alpha_4 x_4) + \alpha_2 c + \alpha_1 x_3 + \alpha_4 x_2 + c = x_4, \quad (27)$$

which implies $\alpha_2 c + c = 0$. Now, using the last equality and taking $x_1 = x_2 = x_4 = 0$ and, respectively $x_1 = x_3 = x_4 = 0$, in (27) we get $\alpha_2 = \alpha_4 = I$.

Denoting $\alpha_2 = \alpha_4 = I$ we obtain $A(x_1^4) = \alpha x_1 + I x_2 + \alpha x_3 + I x_4 + c$, so $A =^{(24)} A$, which is a contradiction as $(24) \notin H_9$.

10) Let $H = H_{10} = \langle (12)(345) \rangle = \{\varepsilon, (12)(345), (354), (12), (12)(354), (345)\}$. As $(12) \in H_{10}$, i.e. $A =^{(12)} A$, it follows $\alpha_1 x_1 + \alpha_2 x_2 = \alpha_1 x_2 + \alpha_2 x_1$, i.e. $\alpha_1 = \alpha_2$.

Also $(345) \in H_{10}$, i.e. $A =^{(345)} A \Leftrightarrow A(x_1, x_2, A(x_1^4), x_3) = x_4 \Leftrightarrow$

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3(\alpha_1 x_1) + \alpha_3(\alpha_2 x_2) + \alpha_3(\alpha_3 x_3) + \alpha_3(\alpha_4 x_4) + \alpha_3 c + \alpha_4 x_3 + c = x_4, \quad (28)$$

which (for $x_1 = x_2 = x_3 = x_4 = 0$) implies $\alpha_3 c + c = 0$. Using the last equality and taking $x_2 = x_3 = x_4 = 0$ and, respectively $x_1 = x_2 = x_3 = 0$, in (28), we get $\alpha_3 = \alpha_4 = I$. Denoting $\alpha_1 = \alpha_2 = \alpha$, we have $A(x_1^4) = \alpha x_1 + \alpha x_2 + I x_3 + I x_4 + c$, which implies in particular $A =^{(34)} A$ – a contradiction, so $H \neq H_{10}$. \square

Theorem 3. *There are no 4-T-quasigroups (Q, A) such that $H \in \{H_{21}, H_{22}, \dots, H_{30}\}$, where $H = \{\sigma \in S_5 \mid A =^{\sigma} A\}$.*

Proof. In this case the subgroup H is generated by two substitutions α and β , of order 3 and, respectively 2, where β is a product of two independent transpositions. The proof is analogous to those of Theorem 2. We will prove that each equality $H = K$, where $K \in \{H_{21}, H_{22}, \dots, H_{30}\}$, leads to a contradiction.

Let (Q, A) be a 4-T-quasigroup with the T-form $T = ((Q, +), \alpha_1, \alpha_2, \alpha_3, \alpha_4, c)$ and let $H = \{\sigma \in S_5 \mid A =^{\sigma} A\}$.

1. If $H = H_{21} = \langle (123), (12)(45) \rangle$ then $(123) \in H$, i.e. $A =^{(123)} A$, so

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 = \alpha_1 x_3 + \alpha_2 x_1 + \alpha_3 x_2.$$

Taking $x_1 = x_2 = 0$ and respectively, $x_1 = x_3 = 0$, in the previous equality, we get $\alpha_1 = \alpha_2 = \alpha_3$, hence $T = ((Q, +), \alpha_1, \alpha_1, \alpha_1, \alpha_4, c)$ which implies, in particular, $A = {}^{(12)}A$ – a contradiction, as $(12) \notin H$.

2. Let $H = H_{22} = \langle (124), (12)(35) \rangle$, then $(124) \in H$, i.e. $A = {}^{(124)}A$, hence

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_4 x_4 = \alpha_1 x_4 + \alpha_2 x_1 + \alpha_4 x_2.$$

From the last equality we get $\alpha_1 = \alpha_2 = \alpha_4$ and $T = ((Q, +), \alpha_1, \alpha_1, \alpha_3, \alpha_1, c)$, which implies $A = {}^{(12)}A$, which is not possible as $(12) \notin H$.

3. If $H = H_{23} = \langle (125), (12)(34) \rangle$ then $(123) \in H$, hence $A = {}^{(12)(34)}A$, which implies $\alpha_1 = \alpha_2$ and $\alpha_3 = \alpha_4$, i.e. $T = ((Q, +), \alpha_1, \alpha_1, \alpha_3, \alpha_3, c)$. In particular, we get $A = {}^{(12)}A$ – a contradiction, as $(12) \notin H$.

4. Let $H = H_{24} = \langle (134), (13)(25) \rangle$. As $(134) \in H$, we have: $A = {}^{(134)}A$, so

$$\alpha_1 x_1 + \alpha_3 x_3 + \alpha_4 x_4 = \alpha_1 x_4 + \alpha_3 x_1 + \alpha_4 x_3.$$

From the previous equality we get $\alpha_1 = \alpha_3 = \alpha_4$, i.e. $T = ((Q, +), \alpha_1, \alpha_2, \alpha_1, \alpha_1, c)$ and, in particular, $A = {}^{(13)}A$ – a contradiction.

5. If $H = H_{25} = \langle (135), (13)(24) \rangle$ then $(13)(24) \in H$, i.e. $A = {}^{(13)(24)}A$, so

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 = \alpha_1 x_3 + \alpha_2 x_4 + \alpha_3 x_1 + \alpha_4 x_2,$$

which implies $\alpha_2 = \alpha_4$ and $\alpha_1 = \alpha_3$, hence $T = ((Q, +), \alpha_1, \alpha_2, \alpha_1, \alpha_2, c)$ so, in particular, $A = {}^{(13)}A$, which is not possible as $(13) \notin H$.

6. Let $H = H_{26} = \langle (145), (14)(23) \rangle$. As $(14)(23) \in H$, we have $A = {}^{(14)(23)}A$, so

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 = \alpha_1 x_4 + \alpha_2 x_3 + \alpha_3 x_2 + \alpha_4 x_1,$$

which implies $\alpha_1 = \alpha_4$ and $\alpha_2 = \alpha_3$, hence $T = ((Q, +), \alpha_1, \alpha_2, \alpha_2, \alpha_1, c)$ and then $A = {}^{(23)}A$ – a contradiction, as $(23) \notin H$.

7. Let $H = H_{27} = \langle (234), (15)(23) \rangle$. As $(234) \in H$, we have $A = {}^{(234)}A$, so

$$\alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 = \alpha_2 x_4 + \alpha_3 x_2 + \alpha_4 x_3,$$

which implies $\alpha_2 = \alpha_3 = \alpha_4$, i.e. $T = ((Q, +), \alpha_1, \alpha_2, \alpha_2, \alpha_2, c)$ and, in particular, $A = {}^{(13)}A$, but $(13) \notin H$.

8. If $H = H_{28} = \langle (235), (14)(23) \rangle$ then $(14)(23) \in H$, hence $A = {}^{(14)(23)}A$, which implies $\alpha_1 = \alpha_4$ and $\alpha_2 = \alpha_3$, i.e. $T = ((Q, +), \alpha_1, \alpha_2, \alpha_2, \alpha_1, c)$. In particular, we get $A = {}^{(14)}A$, which is not possible as $(14) \notin H$.

9. If $H = H_{29} = \langle (245), (13)(24) \rangle$ then $(13)(24) \in H$, hence $A = {}^{(13)(24)}A$, which implies $\alpha_1 = \alpha_3$ and $\alpha_2 = \alpha_4$, i.e. $T = ((Q, +), \alpha_1, \alpha_2, \alpha_1, \alpha_2, c)$. In particular, we get $A = {}^{(13)}A$ which is impossible as $(13) \notin H$.

10. Let $H = H_{30} = \langle (345), (12)(34) \rangle$ then $(12)(34) \in H$, hence $A = {}^{(12)(34)}A$, which implies $\alpha_1 = \alpha_2$ and $\alpha_3 = \alpha_4$, i.e. $T = ((Q, +), \alpha_1, \alpha_1, \alpha_2, \alpha_2, c)$. In particular, we get $A = {}^{(12)}A$ – a contradiction, as $(12) \notin H$.

□

An example of a $4 - T$ -quasigroup with exactly 20 distinct parastrophes is (Z_5, A) , where $A(x_1, x_2, x_3, x_4) = x_1 + x_2 + x_3 + 2x_4$. In this case $H = \{\sigma \in S_5 \mid A = {}^\sigma A\} = H_{12} = \langle (124), (12) \rangle$. A maximum set of its distinct parastrophes is given by any set of representatives of cosets by H , for example,

1. $A(x_1^4) = x_1 + x_2 + x_3 + 2x_4;$	2. ${}^{(14)}A(x_1^4) = x_1 + x_2 + 2x_3 + x_4;$
3. ${}^{(24)}A(x_1^4) = x_1 + 2x_2 + x_3 + x_4;$	4. ${}^{(34)}A(x_1^4) = 2x_1 + x_2 + x_3 + x_4;$
5. ${}^{(15)}A(x_1^4) = x_1 + 4x_2 + 4x_3 + 3x_4;$	6. ${}^{(25)}A(x_1^4) = x_1 + 4x_2 + 3x_3 + 4x_4;$

$$\begin{array}{ll}
7. \ (35) A(x_1^4) = x_1 + 3x_2 + 4x_3 + 4x_4; & 8. \ (45) A(x_1^4) = 4x_1 + x_2 + 4x_3 + 3x_4; \\
9. \ (145) A(x_1^4) = 4x_1 + x_2 + 3x_3 + 4x_4; & 10. \ (14)(25) A(x_1^4) = 4x_1 + 4x_2 + x_3 + 3x_4; \\
11. \ (15)(24) A(x_1^4) = 4x_1 + 4x_2 + 3x_3 + x_4; & 12. \ (15)(34) A(x_1^4) = 4x_1 + 3x_2 + x_3 + 4x_4; \\
13. \ (14)(35) A(x_1^4) = 4x_1 + 3x_2 + 4x_3 + x_4; & 14. \ (154) A(x_1^4) = 3x_1 + x_2 + 4x_3 + 4x_4; \\
15. \ (245) A(x_1^4) = 3x_1 + 4x_2 + x_3 + 4x_4; & 16. \ (24)(35) A(x_1^4) = 3x_1 + 4x_2 + 4x_3 + x_4; \\
17. \ (254) A(x_1^4) = 3x_1 + 2x_2 + 2x_3 + 2x_4; & 18. \ (25)(34) A(x_1^4) = 2x_1 + 3x_2 + 2x_3 + 2x_4; \\
19. \ (345) A(x_1^4) = 2x_1 + 2x_2 + 3x_3 + 2x_4; & 20. \ (354) A(x_1^4) = 2x_1 + 2x_2 + 2x_3 + 3x_4. \\
\end{array}$$

Corollary 2. *There exist 4 – T-quasigroups with exactly 20 distinct parastrophes of any odd order $q \geq 5$, where $(q, 3) = 1$.*

Acknowledgments. The present work was partially supported by the Institutional Research Program of the Moldova State University for 2024 – 2027 years, subprogram 011303 "SATGED".

References

- [1] LINDNER C.C., STEEDLY D., *On the number of conjugates of a quasigroup*. Algebra Univ. **5**, 1975, pp. 191–196.
- [2] M. E. MCLEISH. *On the existence of ternary quasigroups with two or eight, conjugacy classes*. Combinatorial Theory, Seria A, **29**, 1980, pp. 199–211.
- [3] M. E MCLEISH. *On the number of conjugates of n -ary quasigroups*, I. Math, V. XXXI, Nr. **3**, 1979, pp.637–654.
- [4] BELEAVSKAYA G., POPOVICH T. *Conjugate sets of loops and quasigroups. DC- quasigroups*. Bul. Acad. de Științe a Republicii Moldova. Matematica, 1 (68), 2012, pp. 21–31.
- [5] BELYAVSKAYA G., POPOVICH T. *Totally conjugate orthogonal quasigroups and complete graphs*. J. Math. Sci., **185**, 2012, No. 2, 184–191.
- [6] F. SOKHATSKY, Y. PIRUS. *Classification of ternary quasigroups according to their parastrophic symmetry groups*, I. Visnik DonNU. Seria A: Prirod. nauki, N 1-2, 2018, pp. 70–81.
- [7] Y. PIRUS. *Classification of ternary quasigroups according to their parastrophic symmetry groups*, II, Visnik DonNU. Seria A: Prirod. nauki, N 1–2, 2019, pp. 66–75.
- [8] IRYNA FRYZ, FEDIR SOKHATSKY. *Construction of medial ternary self-orthogonal quasigroups*. Bul. Acad. Stiinte Repub. Mold. Mat., 3 (100), 2022, 41–55.
- [9] KEPKA T., NEMEC P. *T-quasigroups. I*, Acta univ. Carolin. Math. Phys., **12**, no. 1, 1971, pp. 31–39.
- [10] KEPKA T., NEMEC P. *T-quasigroups. II*, Acta univ. Carolin. Math. Phys., **12**, no. 1, 1971, pp. 39–49.

TATIANA ROTARI
 Alecu Russo Balti State University,
 Chair of Mathematics and Science
 E-mail: tatiana.rotari@usarb.md
 PARASCOVIA SYRBU
 Moldova State University,
 Department of Mathematics
 E-mail: parascovia.syrbu@gmail.com

Received July 30, 2025