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Abstract. The T−forms and the spectrum of 4 − T−quasigroups with exactly 20
distinct parastrophes are considered in the present work. Characterizations of the
spectra of finite binary quasigroups with a prescribed number of distinct parastrophes
were given by C.C. Lindner and D. Steedly in [1]. Following the results of C.C. Lindner
and D. Steedly, M. MacLeish proved that the maximum number of distinct parastro-
phes of an n−quasigroup (Q,A) is a divizor of (n+1)!, and obtained characterizations
of the spectrum of finite ternary quasigroups with a prescribed (maximum) number of
distinct parastrophes. Binary and ternary linear quasigroups over groups, with a given
maximum number of distinct parastrophes have been studied by Belyavskaya, Rotari,
Sokhatsky, Pirus, Fryz and others [4-8]. Characterizations of the general T−form of a
4−T−quasigroup with exactly 20 distinct parastrophes and some estimations of their
spectrum are given in the present work.
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An n−ary groupoid (Q,A) is called an n−ary quasigroup (or an n−quasigroup)
if in the equality A(x1, x2, ..., xn) = xn+1 every element of x1, x2, ..., xn, xn+1 is
uniquely determined by the remaining n ones. If (Q,A) is an n−quasigroup and
σ ∈ Sn+1, then the operation σA, defined by the equivalence

σA(xσ1, ..., xσn) = xσ(n+1) ⇔ A(x1, x2, ..., xn) = xn+1,

is called a σ−parastrophe or, simply, a parastrophe of A.
C. C. Lindner and S. Steedly showed in [1] that the possible number of distinct

parastrophes of a binary quasigroup divides 6, i.e. is 1, 2, 3, or 6. Moreover, they
proved that there exist finite binary quasigroups with a given maximum number d
of distinct parastrophes, where d ∈ {1, 2, 3, 6}, of any order q ≥ 4.

M. McLeish [2,3] considered analogous questions in the ternary case. She showed
that the possible number of distinct parastrophes of an n−quasigoup devides (n+1)!
and obtained a series of estimations of the spectra of finite ternary and n−ary
quasigroups with a prescribed number of distinct parastrophes. In particular, M.
McLeish showed that there exist finite ternary quasigroups:

1) with exactly 3 or 4 distinct parastrophes of any order q ≥ 3;

2) with exactly 6, 12 or 24 distinct parastrophes of any order q ≥ 4;
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3) with exactly 1 distinct parastrophe (i.e. a TS−quasigroup) of any order q ≥ 1.

M. McLeish obtained also a partial characterization of the spectrum of finite ternary
quasigroups with exactly 2 or 8 distinct parastrophes.

Remark that the possible maximum number of distinct parastrophes of an
n−quasigroup depend on the order of the existing sugbgroups in Sn+1. Namely,
if (Q,A) is an n−guasigroup, then H = {σ ∈ Sn+1|σA = A} is a subgroup of Sn+1

and the maximum number of distinct parastrophes of (Q,A) is equal to the index
of H in Sn+1.

Binary quasigoups, which are linear over abelian groups and have a prescribed
maximum number of distinct parastrophes, which are also orthogonal, were consid-
ered by G. Beleavskaya and T. Popovich (T. Rotari) in [4, 5].

Partial characterizations of ternary quasigroup operations, which are linear over
groups and have a given number of distinct parastrophes, are obtained by F.
Sokhatsky, Y. Pirus and I. Fryz in [6–8].

It is known that the group S4 has a total of 30 subgroups which, up to isomor-
phism, are:

{ε}, Z2, Z3, Z4, K4, S3, D8, A4, S4. (1)

Ternary quasigroups (Q,A), linear over a group (Q,+) : A(x1, x2, x3) = α1x1 +
α2x2 + α3x3 + c, where α1, α2, α3 ∈ SQ, αi(0) = 0, 0 is the neutral element of
(Q,+), i = 1, 3, c ∈ Q, and such that the subgroup H = {σ ∈ S4|σA = A} is one of
the subgroups given in (1) are considered in [6,7]. Remark that a linear n−quasigoup
(Q,A) may have different general forms for different isomorphic subgroupsH = {σ ∈
Sn+1|σA = A}.

Characterizations of T−forms of the 4−T−quasigroups with exactly 20 distinct
parastrophes and some estimations of their spectrum are given in the present work.

Recall that an n−quasigroup is called an n − T−quasigroup if there exist an
abelian group (Q,+), its automorphisms α1, α2, ..., αn and an element c ∈ Q,
such that A(x1, x2, ..., xn) = α1x1 + α2x2 + ... + αnxn + c. In this case the tuple
((Q,+), α1, α2, ..., αn, c) is called a T−form of (Q,A) and (Q,+) is called a T−group
of (Q,A) [7,8].

The possible (maximum) number of distinct parastrophes of a 4−quasigroup is a
divisor of 120 and, if (Q,A) has exactly d distinct parastrophes, then d is the index
of the subgroup H = {σ ∈ S5|σA = A} in the group S5. It is known that S5 has a
total of 156 subgroups and that it has no subgroups of order 15, 30 and 40. Hence,
there does not exist 4−quasigroups with exactly 8, 4 or 3 distinct parastrophes.

To obtain a full characterization of the T−forms of a 4 − T−quasigroup with
exactly 20 distinct parastrophes, we will consider all 30 subgroups of order 6 of the
group S5, namely:

1) 10 subgroups isomorfic to Z6 :

H1 = ⟨(123)(45)⟩, H2 = ⟨(124)(35)⟩, H3 = ⟨(125)(34)⟩, H4 = ⟨(134)(25)⟩,

H5 = ⟨(135)(24)⟩, H6 = ⟨(145)(34)⟩, H7 = ⟨(234)(15)⟩, H8 = ⟨(235)(14)⟩,
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H9 = ⟨(245)(13)⟩, H10 = ⟨(345)(12)⟩;

2) 20 subgroups isomorfic to S3, each generated by two substitutions α and β, of
order 3 and, respectively 2, including:

2a) 10 subgroups where β is a transposition

H11 = ⟨(123), (12)⟩, H12 = ⟨(124), (12)⟩, H13 = ⟨(134), (13)⟩,

H14 = ⟨(125), (12)⟩, H15 = ⟨(135), (13)⟩, H16 = ⟨(145), (14)⟩,

H17 = ⟨(234), (23)⟩, H18 = ⟨(235), (23)⟩, H19 = ⟨(245), (24)⟩,

H20 = ⟨(345), (34)⟩;

2b) 10 subgroups where β is a product of two independent transpositions

H21 = ⟨(123), (12)(45)⟩, H22 = ⟨(124), (12)(35)⟩, H23 = ⟨(125), (12)(34)⟩,

H24 = ⟨(134), (13)(25)⟩, H25 = ⟨(135), (13)(24)⟩, H26 = ⟨(145), (14)(23)⟩,

H27 = ⟨(234), (23)(15)⟩, H28 = ⟨(235), (23)(14)⟩, H29 = ⟨(245), (13)(24)⟩,

H30 = ⟨(345), (34)(12)⟩.

Theorem 1. Let (Q,A) be a 4− T−quasigroup with the T−group (Q,+) and let
H ∈ {Hi, i = 11, 20}, where H = {σ ∈ S5|σA = A}. Then there exist α, β ∈
Aut(Q,+) and an element c ∈ Q, where α ̸= β, α ̸= I, β ̸= I, αc+ c ̸= 0, βc+ c ̸=
0, Ix = −x, ∀x ∈ Q, 0 is the neutral element of (Q,+), such that (Q,A) has one of
the following T−forms:

T1 = ((Q,+), α, α, α, β, c), T2 = ((Q,+), α, α, β, α, c), T3 = ((Q,+), α, β, α, α, c),
T4 = ((Q,+), β, α, α, α, c), T5 = ((Q,+), I, I, α, β, c), T6 = ((Q,+), I, α, I, β, c),
T7 = ((Q,+), I, α, β, I, c), T8 = ((Q,+), α, I, I, β, c), T9 = ((Q,+), α, I, β, I, c),

T10 = ((Q,+), α, β, I, I, c).

Proof. Let (Q,A) be a 4−T−quasigroup, T = ((Q,+), α1, α2, α3, α4, c) be a T−form
and let H ∈ {Hi, i = 11, 20}, where H = {σ ∈ S5|σA = A}.

1) If H = H11 = ⟨(123), (12)⟩ = {ε, (123), (132), (12), (13), (23)} then we have
(12), (13) ∈ H, hence A =(12)A and A =(13)A, i.e.{

α1x1 + α2x2 + α3x3 + α4x4 + c = α1x2 + α2x1 + α3x3 + α4x4 + c
α1x1 + α2x2 + α3x3 + α4x4 + c = α1x3 + α2x2 + α3x1 + α4x4 + c

⇔

{
α1x1 + α2x2 = α1x2 + α2x1
α1x1 + α3x3 = α1x3 + α3x1.

Taking x1 = 0, the last two equalities imply α1 = α2 = α3. Denoting α1 = α2 =
α3 = α and α4 = β, the operation A takes the form:

A(x41) = αx1 + αx2 + αx3 + βx4 + c,
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where the 4−tuple (x1, x2, x3, x4) is denoted by (x41).
As (14) /∈ H11, we have: A ̸=(14)A ⇔ αx1 + βx4 ̸= βx1 + αx4 ⇔ α(x1 − x4) ̸=

β(x1 − x4) i.e. α ̸= β. Also, (15) /∈ H11 ⇒ A ̸=(15)A ⇒ A(A(x41), x2, x3, x4) ̸= x1,⇒

α(αx1 + αx2 + αx3 + βx4 + c) + αx2 + αx3 + βx4 + c ̸= x1.

Denoting αx2 + αx3 + βx4 + c by y in the last inequality we obtain:

α(αx1 + y) + y ̸= x1,

which for α = I, implies −(−x1 + y) + y ̸= x1 ⇔ x1 ̸= x1, a contradiction, hence
α ̸= I. Analogously, as (45) /∈ H11 we have:

A ̸=(45)A ⇒ A(x1, x2, x3), A(x
4
1)) ̸= x4 ⇔

αx1 + αx2 + αx3 + β(αx1 + αx2 + αx3 + βx4 + c) + c ̸= x4.

Denoting αx1 + αx2 + αx3 + c by y in the last inequality we have:

y + β(y + βx4) ̸= x4,

which implies β ̸= I (as for β = I we get x4 ̸= x4, a contradiction).
2) Let H = H12 = ⟨(124), (12)⟩ = {ε, (124), (142), (12), (24), (14)}. Then

(12), (14) ∈ H, i.e. A =(12)A and A =(14)A, so α1x1 + α2x2 = α1x2 + α2x1 and
α1x1+α4x4 = α1x4+α4x1, which imply α1 = α2 = α4. Denoting α1 = α2 = α4 = α
and α3 = β, we get the T−form: T2 = ((Q,+), α, α, β, α, c).

As (13), (15) and (35) are not inH12, we have: A ̸=(13)A, A ̸=(15)A and A ̸=(35)A,
hence:

αx1 + βx3 ̸= αx3 + βx1,

α(αx1 + αx2 + βx3 + αx4 + c) + αx2 + βx3 + αx4 + c ̸= x1,

αx1 + αx2 + β(αx1 + αx2 + βx3 + αx4 + c) + αx4 + c ̸= x3,

which imply, analogously to item 1), α ̸= β, α ̸= I and β ̸= I, respectively.
3) H = H13 = ⟨(134), (13)⟩ = {ε, (134), (143), (13), (34), (14)}. Using the fact

that (13), (14) ∈ H13, we obtain A =(13)A and A =(14)A, so α1x1 + α3x3 = α1x3 +
α3x1 and α1x1 + α4x4 = α1x4 + α4x1, which imply α1 = α3 = α4. Denoting α1 =
α3 = α4 by α and α2 by β, we get the T−form: ((Q,+), α, β, α, α, c) = T3.

Using the fact that (12), (15) and (25) are not in H13, i.e. A ̸=(12)A,A ̸=(15)A
and A ̸=(25)A, we obtain:

α1x1 + α2x2 ̸= α1x2 + α2x1,

α(αx1 + βx2 + αx3 + αx4 + c) + βx2 + αx3 + αx4 + c ̸= x1,

αx1 + β(αx1 + βx2 + αx3 + αx4 + c) + αx3 + αx4 + c ̸= x2,

which imply α ̸= β, α ̸= I and β ̸= I.
4) H = H14 = ⟨(125), (12)⟩ = {ε, (125), (12), (152), (25), (15)}.
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As (12), (15) ∈ H12, we have A =(12)A and A =(15)A, i.e.

α1x1 + α2x2 = α1x2 + α2x1, (2)

α1(α1x1 + α2x2 + α3x3 + α4x4 + c) + α2x2 + α3x3 + α4x4 + c = x1. (3)

Taking x2 = 0 in (2), we obtain

α1 = α2. (4)

For x1 = x2 = x3 = x4 = 0, (3) implies

α1c+ c = 0. (5)

Using (4) and (5), and taking x1 = x3 = x4 = 0 in (3), we get α1(α2x2) = I(α2x2),
i.e. α1 = I, so

α1 = α2 = I. (6)

Denoting α3 = α and α4 = β, we obtain the T−form T4 = ((Q,+), I, I, α, β, c).
Now, using the fact that the transpositions (23), (35), (14) do not belong to H14,

we have the inequalities:

α2x2 + α3x3 ̸= α2x3 + α3x2,

Ix1 + Ix2 + α(Ix1 + Ix2 + αx3 + βx4 + c) + βx4 + c ̸= x3,

Ix1 + Ix2 + αx3 + β(Ix1 + Ix2 + αx3 + βx4 + c) + c ̸= x4,

which imply α ̸= β, α ̸= I and β ̸= I, respectively.
5) H = H15 = ⟨(135), (13)⟩ = {ε, (135), (13), (35), (15), (153)}. Taking (13),

(15) ∈ H15, we have: (13)A = A and (15)A = A, i.e.

α1x1 + α3x3 = α1x3 + α3x1, (7)

α1(α1x1 + α2x2 + α3x3 + α4x4 + c) + α2x2 + α3x3 + α4x4 + c = x1. (8)

The equality (7) implies

α1 = α3, (9)

and (8) implies α1c + c = 0 (for x1 = x2 = x3 = x4 = 0). Using the equality
α1c+ c = 0 and taking x1 = x2 = x3 = 0 in (8), we get

α1(α4x4) + α4x4 = 0,

i.e. α1 = I. According to (9),

α1 = α3 = I,

so, denoting α2 = α and α4 = β, we get T5 = ((Q,+), I, α, I, β, c). As (24), (25) and
(45) are not in H15, the following inequalities hold:

αx2 + βx4 ̸= αx4 + βx2,
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Ix1 + α(Ix1 + αx2 + Ix3 + βx4 + c) + Ix3 + βx4 + c ̸= x2,

Ix1 + αx2 + Ix3 + β(Ix1 + αx2 + Ix3 + βx4 + c) + c ̸= x4,

which imply, resctively, α ̸= β, α ̸= I, β ̸= I.
6) H = H16 = ⟨(145), (14)⟩ = {ε, (145), (154), (14), (14), (45)}. From (14), (15) ∈

H16 it follows A =(14)A and A =(15)A, i.e.

α1x1 + α4x4 = α1x4 + α4x1,

α1(α1x1 + α2x2 + α3x3 + α4x4 + c) + α2x2 + α3x3 + α4x4 + c = x1, (10)

which imply, respectively α1 = α4 and α1c + c = 0. Using the last equality in (10)
and taking x1 = x3 = x4 = 0, we have α1(α2x2) = I(α2x2), ∀x2 ∈ Q, i.e. α1 = I,
hence

α1 = α4 = I. (11)

Denoting α2 = α and α3 = β, we get T6 = ((Q,+), I, α, β, I, c). Now, using the
fact that (23), (25) and (35) do not belong to H16, we get the inequalities

αxx2 + βx3 ̸= αx3 + βx2,

Ix1 + α(Ix1 + αx2 + βx3 + Ix4 + c) + βx3 + Ix4 + c ̸= x3,

Ix1 + αx2 + β(Ix1 + αx− 2 + βx3 + Ix4 + c) + Ix4 + c ̸= x3,

which imply, respectively, α ̸= β, α ̸= I, β ̸= I.
7) H17 = ⟨(234), (23)⟩ = {ε, (234), (243), (23), (24), (34)}. From the fact that

(23), (24), (34) ∈ H17 it follows: A =(23)A,A =(24)A,A =(34)A, i.e. α2x2 + α3x3 =
α2x3+α3x2, α2x2+α4x4 = α2x4+α4x2, α3x3+α4x4 = α3x4+α4x3, which imply:
α2 = α3 = α4. Denoting α2 = α3 + α4 = α and α1 = β, we get the T−form:
T7 = ((Q,+), β, α, α, α, c).

The inequalities α ̸= β, β ̸= I and α ̸= I follow, respectively, from those given
by (12) /∈ H17, (15) /∈ H17, (25) /∈ H17, as:

βx1 + αx2 ̸= βx2 + αx1,

β(βx1 + αx2 + αx3 + αx4 + c) + αx2 + αx3 + αx4 + c ̸= x1,

βx1 + α(βx2 + αx2 + αx3 + αx4 + c) + αx3 + αx4 + c ̸= x2.

8) H = H18 = ⟨(235), (23)⟩ = {ε, (235), (23), (35), (253), (25)}.
From (23), (35) ∈ H18, we have A =(23)A and A =(35)A, hence

α2x2 + α3x3 = α2x3 + α3x2,

α1x1 + α2x2 + α3(α1x1 + α2x2 + α3x3 + α4x4 + c) + α4x4 + c = x3, (12)

which imply, respectively,

α2 = α3 (13)



ON 4− T−QUASIGROUPS WITH EXACTLY 20 DISTINCT PARASTROPHES 113

and α3c + c = 0. Using the last equality and taking x2 = x3 = x4 = 0 in (12), we
have α3(α1x1) = I(α1x1), which implies α3 = I, so (according to (13)), α1 = α3 = I.
Denoting α2 = α and α4 = β, we get T = T8 = ((Q,+), α, I, I, β, c).

Using T8 and the fact that (14) /∈ H18, (15) /∈ H18 and (45) /∈ H18, we obtain the
inequalities:

αx1 + βx4 ̸= αx4 + βx1,

α(αx1 + Ix2 + Ix3 + βx4 + c) + Ix2 + Ix3 + βx4 + c ̸= x1,

αx1 + Ix2 + Ix3 + β(αx1 + Ix2 + Ix3 + βx4 + c) + c ̸= x4,

which imply, respectively, α ̸= β, α ̸= I and β ̸= I.
9) H = H19 = ⟨(245), (24)⟩ = {ε, (245), (254), (24), (25), (25), (45)}.
From (24), (25) ∈ H19 it follows, respectively,

α2x2 + α4x4 = α2x4 + α4x2,

α1x1 + α2(α1x1 + α2x2 + α3x3 + α4x4 + c) + α3x3 + α4x4 + c = x2, (14)

which imply, α2 = α4 and α2c + c = 0. Using the equality α2c + c = 0 and taking
x1 = x2 = x4 = 0 in (14), we get α2(α3x3) = I(α3x3), so α2 = I, i.e. α2 = α4 = I.
Denoting α1 = α and α3 = β, we obtain the T−form T9 = ((Q,+), α, I, I, β, I, c).
Now, using T9 and the fact that (13) /∈ H19, (15) /∈ H19 and (45) /∈ H19 we obtain
the inequalities:

αx1 + βx3 ̸= αx3 + βx1,

α(αx− 1 + Ix2 + βx3 + Ix4 + c) + Ix2 + βx3 + Ix4 + c ̸= x1,

αx1 + Ix2 + β(αx1 + Ix2 + βx3 + Ix4 + c) + Ix3 + c ̸= x3,

which imply, respectively, α ̸= β, β ̸= I, α ̸= I.
10) H20 = ⟨(345), (34)⟩ = {ε, (345), (354), (54), (35), (45)}.
As (34), (35) ∈ H20, we have A =(34)A and A =(35)A, i.e.

α3x3 + α4x4 = α3x4 + α4x3,

α1x1 + α2x2 + α3(α1x1 + α2x2 + α3x3 + α4x4 + c) + α4x4 + c = x3, (15)

which imply, respectively, α3 = α4 and α3c + c = 0. Using the equality α3c +
c = 0 and taking x1 = x2 = x3 = 0 in (15), we obtain α(α4x4) = I(α4x4), so
aα3 = I, i.e. α3 = α4 = I. Denoting α1 = α and α2 = β we get the T−form
T20 = ((Q,+), α, β, I, I, c). The inequalities α ̸= β, α ̸= I and β ̸= I follow from the
fact that (12) /∈ H20, (15) /∈ H20 and (25) /∈ H20 (using the T−form T10), i.e. from
the following inequalities, respectively:

αx1 + βx2 ̸= αx2 + βx1,

α(αx1 + βx2 + Ix3 + Ix4 + c) + βx2 + Ix3 + Ix4 + c ̸= x1,

αx1 + β(αx1 + βx2 + Ix3 + Ix4 + c) + Ix3 + Ix4 + c ̸= x2.
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Proposition 1. The 4− T−quasigroup (Q,A) with the T−form

T1 = ((Q,+), α, α, α, β, c),

where α ̸= β, α ̸= I, β ̸= I, I(x) = −x,∀x ∈ Q, has exactly 20 distinct parastrophes.

Proof. It is sufficient to show that H = {σ ∈ S5|σA = A} is a subgroup of order six.
If T1 is a T−form of the n− T−quasigroup (Q,A), then

A(x41) = αx1 + αx2 + αx3 + βx4 + c,∀x1, x2, x3, x4 ∈ Q,

so σA = A,∀σ ∈ S′
5, where S′

5 = {σ ∈ S5|σ(4) = 4, σ(5) = 5}, i.e. S′
5 ⊆ H.

Let consider the following set of representativies of the cosets {S′
5τ |τ ∈ S5} :

U = {ε, (14), (24), (34), (15), (25), (35), (45), (14)(25), (14)(35), (15)(24),

(15)(34), (24)(35), (25)(34), (145), (154), (245), (254), (345), (354)}.

If τ ∈ U, then β ∈ S′
5τ ⇔ ∃σ ∈ S′

5 : β = στ ⇔βA =στA =τ (σA) =τA. We will
prove below that τ /∈ H,∀τ ∈ U \ {ε}, i.e. that H = S′

5.
If (14) ∈ H then: A =(14)A ⇔ αx1 + αx2 + αx3 + βx4 + c = αx4 + αx2 + αx3 +

βx1 + c ⇒ α = β, a contradiction, so (14) /∈ H.
Analogously, α ̸= β implies (24) /∈ H and (34) /∈ H.
If (15) ∈ H then: A =(15)A ⇔ A(A(x41), x2, x3, x4) = x2 ⇔ α(αx1 +αx2 +αx3 +

βx4 + c) + αx2 + αx3 + βx4 + c = x1. Denoting αx2 + αx3 + αx4 + c by y, we get
α(αx1+y)+y = x1, which (for x1 = 0) implies α = I− a contradiction, so (15) /∈ H.

Analogously, we get (25) /∈ H and (35) /∈ H.
Also:

A =(45)A ⇔ A(x31, A(x
4
1)) = x4 ⇔

αx1 + αx2 + αx3 + β(αx1 + αx2 + αx3 + βx4 + c) + c = x4.

Denoting αx1 +αx2 +αx3 + x = y in the last equality we get: β(βx4 + y) + y = x4,
which (for x4 = 0) implies β = I− a contradiction, hence (45) /∈ H.

If (14)(35) ∈ H, then: A =(14)(35) A ⇔ A(x41) =(34) A(x4, x2, x3, x1) ⇔
A(x4, x2, A(x

4
1), x1) = x3 ⇔

αx4 + αx2 + α(αx1 + αx2 + αx3 + βx4 + c) + βx1 + c = x3. (16)

Taking x1 = x2 = x3 = x4 in the last equality we get αc+ c = 0. Using αc+ c = 0
and taking x1 = x3 = x4 = 0 in (16) we obtain α(αx2) = I(αx2), i.e. α = I, a
contradiction, so (14)(35) /∈ H. Analogously, we obtain (14)(25) /∈ H, (15)(24) /∈ H,
(15)(34) /∈ H, (24)(35) /∈ H and (25)(34) /∈ H.

If (145) ∈ H, then we have:

A =(145)A ⇔ A(x4, x2, x3, A(x
4
1)) = x1 ⇔

αx4 + αx2 + αx3 + β(αx1 + αx2 + αx3 + βx4 + c) + c = x1. (17)
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Taking x1 = x2 = x3 = x4 = 0 in (17) we get βc + c = 0. Using the equality
βc+ c = 0 and taking x1 = x3 = x4 = 0 in (17), we obtain β(αx2) = I(αx2), which
implies β = I, a contradiction, so (145) /∈ H.

Analogously, we get that each of the substitutions: (154), (245), (254), (345), (354)
does not belong to H. Hence, H = S′

5
∼= S3, i.e. (Q,A) has exactly 20 distinct paras-

trophes.

Corollary 1. A 4 − T−quasigroup (Q,A), where {σ ∈ S5|A =σA} = ⟨(123), (23)⟩,
has exactly 20 distinct parastrophes if and only if it has a T−form ((Q,+), α, α, α, β, c),
where α ̸= β, α ̸= I, β ̸= I, I(x) = −x, ∀x ∈ Q.

Theorem 2. There do not exist 4 − T−quasigroups (Q,A) such that the group
H = {σ ∈ S5|A =σA} is isomorphic to Z6.

Proof. Let (Q,A) be a 4 − T−quasigroup with T−form ((Q,+), α1, α2, α3, α4, c),
and let H = {σ ∈ S5|A = σA}. The group S5 has 10 subgroups isomorphic to Z6 :
Hi, 1, 10. It will be shown below that H ̸= Hi, for every i = 1, 10.

1) Let H = H1 = ⟨(123)(45)⟩ = {ε, (123)(45), (132), (45), (123), (132)(45)}.
As (123) ∈ H1, we have A =(123)A ⇔ A(x41) = A(x3, x1, x2, x4), which implies

α1x1 + α2x2 + α3x3 = α1x3 + α2x1 + α3x2. (18)

Taking x1 = x3 = 0, and respectively x1 = x2 = 0, in (18) we get α2 = α3 and
α1 = α3, i.e. α1 = α2 = α3.

Denoting α1 = α2 = α3 = α, we obtain T = ((Q,+), α, α, α, α4, c), i.e.
A(x41) = αx1 + αx2 + αx3 + α4x4 + c. Also, (45) ∈ H1, so A =(45) A, i.e.
x4 = A(x1, x2, x3, A(x

4
1)) ⇔

αx1 + αx2 + αx3 + α4(αx1 + αx2 + αx3 + α4x4 + c) + c = x4, (19)

which (for x1 = x2 = x3 = x4 = 0) implies α4c + c = 0. Using the last equality in
(19) and taking x1 = x2 = x4 = 0, we have α4(α(x3)) = I(αx3), i.e. aα4 = I, hence
T = ((Q,+), α, α, α, I, c). But an 4 − T−quasigroups (Q,A) with such a T−form
satisfies, for example, the equality A =(12)A and (12) /∈ H1, hence H ̸= H1.

2) Let H = H2 = ⟨(124)(35)⟩ = {ε, (124)(35), (1142), (35), (124), (142)(35)}.
As (124) ∈ H, we have A =(124)A ⇔ A(x41) = A(x4, x1, x3, x2), which implies

α1x1 + α2x2 + α4x4 = α1x4 + α2x1 + α4x2. (20)

Taking x1 = x2 = 0 and respectively x1 = x4 = 0, in (20), we get α1 = α2 = α4.

Denoting α1 = α2 = α4 = α, we get T = ((Q,+), α, α, α3, α, c), i.e. A(x41) =
αx1 + αx2 + α3x3 + αx4 + c, which implies in particular A =(12)A, a contradiction,
as (12) /∈ H2, so H ̸= H2.

3) Let H = H3 = ⟨(125)(34)⟩ = {ε, (125)(34), (152), (34), (125), (152)(34)}.
As (34) ∈ H3 we have A =(34)A, which implies α3x3 + α4x4 = α3x4 + α4x3, so

(taking x4 = 0) α3 = α4.
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Let us denote α3 = α4 = α and let us consider (125) ∈ H3. As A =(125)A, we get
A(x2, A(x

4
1), x3, x4) = x1, i.e.

α1x2 + α2(α1x1 + α2x2 + αx3 + αx4 + c) + αx3 + αx4 + c = x1, (21)

which (for x1 = x2 = x3 = x4 = 0) implies α2c + c = 0. Using the last equality in
(21) and taking x1 = x2 = x4 = 0, we get α2(αx3) = I(αx3), i.e. α2 = I. Also, for
x1 = x3 = x4 = 0, the equality (21) implies

α2
2x2 = I(α1x2) ⇔ x2 = I(α1x2),

i.e. α1 = I, hence T = ((Q,+), I, I, α, α, c). In particular, we obtained A =(12)A,
impossible, as (12) /∈ H3.

4) Let H = H4 = ⟨(134)(25)⟩ = {ε, (134)(25), (143), (25), (134), (143)(25)}. From
(134) ∈ H4 we have A =(134)A ⇔ A(x41) = A(x4, x2, x1, x3), hence

α1x1 + α3x3 + α4x4 = α1x4 + α3x1 + α4x3. (22)

Taking x1 = x3 = 0 and, respectively x1 = x4 = 0, in (22) we get α1 = α4 and
α3 = α4, so α1 = α3 = α4.

Denoting α1 = α3 = α4 = α, we obtain the T−form T = ((Q,+), α, α2, α, α, c),
so A(x41) = αx1 + α2x2 + αx3 + αx4 + c, which implies, for example, A =(13)A, a
contradiction as (13) /∈ H4, so H ̸= H4.

5) Let H = H5 = ⟨(135)(24)⟩ = {ε, (135)(24), (153), (24), (135), (153)(24)}.
As (24) ∈ H5 we have A =(24) A, i.e. α2x2 + α4x4 = α2x4 + α4x2, which im-
plies α2 = α4. Let us denote α2 = α4 = α and let us consider A =(135) A ⇔
A(A(x41), x2, x1, x4) = x3 ⇔

α2
1 + (αα1)x2 + (α3α1)x3 + (αα1)x4 + α1c+ αx2 + α3x1 + αx4 + c = x3. (23)

Taking x1 = x2 = x3 = 0 and, respectively x2 = x3 = x4 = 0, we obtain α1 = α3 =
I, so A(x41) = Ix1 +αx2 + Ix3 +αx4 + c, which implies A =(13)A, where (13) /∈ H5.

6) Let H = H6 = ⟨(145)(23)⟩ = {ε, (145)(23), (154), (23), (145), (154)(23)}. From
(23) ∈ H, i.e. A =(23)A, we get α2x2 + α3x3 = α2x3 + α3x2, so α2 = α3. Denoting
α2 = α3 = α, it follows T = ((Q,+), α1, α, α, α4, c).

Also, (145) ∈ H6, so A =(145)A ⇔ A(A(x41), x2, x3, x1) = x4 ⇔

α2
1 + (αα1)x2 + (αα1)x3 + (α4α1)x4 + α1c+ αx2 + αx3 + α4x4 + c = x4, (24)

which (for x1 = x2 = x3 = x4 = 0) implies α1c+ c = 0.
Using the last equality and taking, respectively, x1 = x2 = x4 = 0 and x1 = x2 =

x3 = 0 in (24), we obtain α1 = α4 = I, hence A(x41) = Ix1 + αx2 + αx3 + Ix4 + c
which implies, in particular, A =(14)A − a contradiction, as (14) /∈ H6.

7) H = H7 = ⟨(234)(15)⟩ = {ε, (234)(15), (243), (15), (234), (15)(243)}.
From (234) ∈ H7 it follows A =(234)A, hence

α2x2 + α3x3 + α4x4 = α2x4 + α3x2 + α4x3. (25)
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Taking x2 = x3 = 0 and, respectively x2 = x4 = 0, in (25) we obtain α2 = α4 and
α3 = α4, so α2 = α3 = α4.

Denoting α2 = α3 = α4 = α, we get A(x41) = α1x1 +αx2 +αx3 +αx4 + c, which
implies, for example, A =(23)A − a contradiction, as (23) /∈ H7.

8) H = H8 = ⟨(14)(235)⟩ = {ε, (14)(235), (253), (14), (235), (14)(253)}.
As (14) ∈ H8, i.e. A =(14)A, it follows α1x1 + α4x4 = α1x4 + α4x1, so α1 = α4.

Also (235) ∈ H8 ⇒ A =(235)A ⇔ A(A(x41), x2, x4) = x3 ⇔

α1x1 + α2(α1x1) + α2
2(α3x3) + α2(α1x4) + α2c+ α3x2 + α1x4 + c = x3, (26)

which implies α2c+ c = 0. Using the last equality and taking x1 = x2 = x3 = 0 and,
respectively x1 = x3 = x4 = 0, in (26) we get α2 = α3 = I.

Denoting α1 = α4 = α we obtain A(x41) = αx1 + Ix2 + Ix3 + αx4 + c, which
implies, in particular, A =(23)A − a contradiction as (23) ∈ H8.

9) Let H = H9 = ⟨(13)(245)⟩ = {ε, (13)(245), (254), (13), (245), (13)(254)}.
As (13) ∈ H9 we have A =(13)A which implies α1x1 + α3x3 = α1x3 + α3x1, hence
α1 = α3. Also, (245) ∈ H9, so A =(245)A ⇒

α1x1+α2(α1x1)+α2
2x2+α2(α1x3)+α2(α4x4)+α2c+α1x3+α4x2+ c = x4, (27)

which implies α2c+ c = 0. Now, using the last equality and taking x1 = x2 = x4 = 0
and, respectively x1 = x3 = x4 = 0, in (27) we get α2 = α4 = I.

Denoting α2 = α4 = I we obtain A(x41) = αx1+Ix2+αx3+Ix4+c, so A =(24)A,
which is a contradiction as (24) /∈ H9.

10) Let H = H10 = ⟨(12)(345)⟩ = {ε, (12)(345), (354), (12), (12)(354), (345)}.
As (12) ∈ H10, i.e. A =(12)A, it follows α1x+α2x2 = α1x2 + α2x1, i.e. α1 = α2.

Also (345) ∈ H10, i.e. A =(345)A ⇔ A(x1, x2, A(x
4
1), x3) = x4 ⇔

α1x1+α2x2+α3(α1x1)+α3(α2x2)+α3(α3x3)+α3(α4x4)+α3c+α4x3+c = x4, (28)

which (for x1 = x2 = x3 = x4 = 0) implies α3c + c = 0. Using the last equality
and taking x2 = x3 = x4 = 0 and, respectively x1 = x2 = x3 = 0, in (28), we get
α3 = α4 = I. Denoting α1 = α2 = α, we have A(x41) = αx1 + αx2 + Ix3 + Ix4 + c,
which implies in particular A =(34)A − a contradiction, so H ̸= H10.

Theorem 3. There are no 4−T−quasigoups (Q,A) such that H ∈ {H21, H22, . . . ,H30},
where H = {σ ∈ S5|A =σA}.

Proof. In this case the subgroup H is generated by two substitutions α and β, of
order 3 and, respectively 2, where β is a product of two independent transpositions.
The proof is analogous to those of Theorem 2. We will prove that each equality
H = K, where K ∈ {H21, H22, . . . ,H30}, leads to a contradiction.

Let (Q,A) be a 4−T− quasigroup with the T−form T = ((Q,+), α1, α2, α3, α4, c)
and let H = {σ ∈ S5 | A = σA}.

1. If H = H21 = ⟨(123), (12)(45)⟩ then (123) ∈ H, i.e. A = (123)A, so
α1x1 + α2x2 + α3x3 = α1x3 + α2x1 + α3x2.
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Taking x1 = x2 = 0 and respectively, x1 = x3 = 0, in the previous equality, we
get α1 = α2 = α3, hence T = ((Q,+), α1, α1, α1, α4, c) which implies, in particular,
A = (12)A − a contradiction, as (12) /∈ H.

2. Let H = H22 = ⟨(124), (12)(35)⟩, then (124) ∈ H, i.e. A = (124)A, hence
α1x1 + α2x2 + α4x4 = α1x4 + α2x1 + α4x2.

From the last equality we get α1 = α2 = α4 and T = ((Q,+), α1, α1, α3, α1, c),
which implies A = (12)A, which is not possible as (12) /∈ H.

3. If H = H23 = ⟨(125), (12)(34)⟩ then (123) ∈ H, hence A = (12)(34)A, which
implies α1 = α2 and α3 = α4, i.e. T = ((Q,+), α1, α1, α3, α3, c). In particular, we
get A = (12)A − a contradiction, as (12) /∈ H.

4. Let H = H24 = ⟨(134), (13)(25)⟩. As (134) ∈ H, we have: A = (134)A, so
α1x1 + α3x3 + α4x4 = α1x4 + α3x1 + α4x3.

From the previous equality we get α1 = α3 = α4, i.e. T = ((Q,+), α1, α2, α1, α1, c)
and, in particular, A = (13)A − a contradiction.

5. If H = H25 = ⟨(135), (13)(24)⟩ then (13)(24) ∈ H, i.e. A = (13)(24)A, so
α1x1 + α2x2 + α3x3 + α4x4 = α1x3 + α2x4 + α3x1 + α4x2,

which implies α2 = α4 and α1 = α3, hence T = ((Q,+), α1, α2, α1, α2, c) so, in
particular, A = (13)A, which is not possible as (13) /∈ H.

6. Let H = H26 = ⟨(145), (14)(23)⟩. As (14)(23) ∈ H, we have A = (13)(24)A, so
α1x1 + α2x2 + α3x3 + α4x4 = α1x4 + α2x3 + α3x2 + α4x1,

which implies α1 = α4 and α2 = α3, hence T = ((Q,+), α1, α2, α2, α1, c) and then
A = (23)A − a contradiction, as (23) /∈ H.

7. Let H = H27 = ⟨(234), (15)(23)⟩. As (234) ∈ H, we have A = (234)A, so
α2x2 + α3x3 + α4x4 = α2x4 + α3x2 + α4x3,

which implies α2 = α3 = α4, i.e. T = ((Q,+), α1, α2, α2, α2, c) and, in particular,
A = (13)A, but (13) /∈ H.

8. If H = H28 = ⟨(235), (14)(23)⟩ then (14)(23) ∈ H, hence A = (14)(23)A, which
implies α1 = α4 and α2 = α3, i.e. T = ((Q,+), α1, α2, α2, α1, c). In particular, we
get A = (14)A, which is not possible as (14) /∈ H.

9. If H = H29 = ⟨(245), (13)(24)⟩ then (13)(24) ∈ H, hence A = (13)(24)A, which
implies α1 = α3 and α2 = α4, i.e. T = ((Q,+), α1, α2, α1, α2, c). In particular, we
get A = (13)A which is impossible as (13) /∈ H.

10. Let H = H30 = ⟨(345), (12)(34)⟩ then (12)(34) ∈ H, hence A = (12)(34)A,
which implies α1 = α2 and α3 = α4, i.e. T = ((Q,+), α1, α1, α2, α2, c). In particular,
we get A = (12)A − a contradiction, as (12) /∈ H.

An example of a 4 − T−quasigroup with exactly 20 distinct parastrophes is
(Z5, A), where A(x1, x2, x3, x4) = x1+x2+x3+2x4. In this case H = {σ ∈ S5 | A =
σA} = H12 = ⟨(124), (12)⟩. A maximum set of its distinct parastrophes is given by
any set of representatives of cosets by H, for example,

1. A(x41) = x1 + x2 + x3 + 2x4; 2. (14)A(x41) = x1 + x2 + 2x3 + x4;
3. (24)A(x41) = x1 + 2x2 + x3 + x4; 4. (34)A(x41) = 2x1 + x2 + x3 + x4;
5. (15)A(x41) = x1 + 4x2 + 4x3 + 3x4; 6. (25)A(x41) = x1 + 4x2 + 3x3 + 4x4;
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7. (35)A(x41) = x1 + 3x2 + 4x3 + 4x4; 8. (45)A(x41) = 4x1 + x2 + 4x3 + 3x4;
9. (145)A(x41) = 4x1+x2+3x3+4x4; 10. (14)(25)A(x41) = 4x1+4x2+x3+3x4;
11. (15)(24)A(x41) = 4x1+4x2+3x3+x4; 12. (15)(34)A(x41) = 4x1+3x2+x3+4x4;
13. (14)(35)A(x41) = 4x1 + 3x2 + 4x3 + x4; 14.

(154)A(x41) = 3x1 + x2 + 4x3 + 4x4;
15. (245)A(x41) = 3x1+4x2+x3+4x4; 16. (24)(35)A(x41) = 3x1+4x2+4x3+x4;
17. (254)A(x41) = 3x1+2x2+2x3+2x4; 18. (25)(34)A(x41) = 2x1+3x2+2x3+2x4;
19. (345)A(x41) = 2x1+2x2+3x3+2x4; 20. (354)A(x41) = 2x1+2x2+2x3+3x4.

Corollary 2. There exist 4 − T−quasigroups with exactly 20 distinct parastrophes
of any odd order q ≥ 5, where (q, 3) = 1.
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